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MEAN LEVELS IN NONLINEAR ANALYSIS
AND IDENTIFICATION

J.C. Peyton Jones
School of Engineering, University of Sussex, Falmer, Brighton, E.Sussex, BN1 9QT
S.A. Billings
Dept. Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Sheffield S1 3]D.

Abstract: The effects of data pretreatment and mean levels upon nonlinear model structures is
investigated. Techniques which are commonly used to prefiller data in linear system
identification are shown 1o alter the model structure in the nonlinear case. The effects of mean
_levels are considered in detail and a new unravelling algorithm is derived to recover the underly-
ing system model when the offsets are external the the system. A new mapping from the time
domain to the frequency domain is also introduced for the case where offsets can be considered
as an implicit part of the system.

1. Introduction

The treatment of d.c or constant terms in linear system analysis and identification is
well established [Astrom 1980], [Isermann 1980], and the temptation is perhaps to
apply the same techniques to the nonlinear case. Unfortunately such an approach may
give misleading results, and new methods must be developed for the identification of
nonlinear systems subjected to constant output additive disturbances, or to enable the
analysis in the generalised frequency domain of nonlinear systems incorporating d.c.

components.

In linear system identification for example it is common practice to remove mean lev-
els from the data, partly because the static behaviour of the system might not be of
interest, and partly because unknown measurement offsets (which cannot be dis-
tinguished from the system d.c. gain) may introduce bias into the estimates. Indeed
mean removal may be regarded as a special case of frequency weighting of estimates

through the use of prefilters.

Nonlinear systems however often exhibit harmonics or complex intermodulations
which transfer energy between frequencies, giving an output at some quite different
frequency to that of the input. Simple mean removal may therefore remove significant

dynamic information contained in those intermodulations which produce d.c. output

.
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components, and hence bias the resulting nonlinear model. In the same way, linear
prefiltering techniques may also be inappropriate in a nonlinear context.

Another approach employed in linear system identification is to estimate a constant
term explicitly. The term may then be discarded if it is regarded as an additive distur-
bance to the real system dynamics of interest, or incorporated without difficulty into
subsequent system analysis if it is regarded (by virtue of its unchanging nature) as part
of the system itself.

In the nonlinear case however, where superposition does not apply, neither of these
two perspectives is straightforward. If for example the estimated constant is regarded
as being caused by a pure additive disturbance at the output, then this same additive
disturbance will have become crossmultiplied with any nonlinear autoregressive terms.
Hence the system dynamics cannot be obtained just by discarding the estimated con-
stant, without also removing this crossmultiplicative bias from the system parameters.

Alternatively if the constant term is to be regarded as part of the system itself, then for
similar reasons it may have a significant effect on system behaviour and needs to be
incorporated in subsequent system analysis. Previous work for example has shown
that higher order frequency domain analysis of nonlinear systems can provide a useful
insight into system bchaw}iour, but these analysis methods are currently restricted to

models without constant components.

The aim of the present paper is to examine the effects of mean levels in nonlinear fre-
quency response analysis and system identification, and to address the problems out-
lined above. The paper begins in Section 2 with an introduction to the classes of non-
linear models which will be used in the development. In Section 3 the effects of
applying simple linear prefiltering techniques to nonlinear systems is investigated, and
it is shown that this fundamentally alters the nonlinear model structure.

Algebraic expressions which reveal the precise form of the changes introduced to the
system parameters of an input/output model through the presence of a purely additive
constant offset, are developed in Section 4. These expressions are used as the basis of
a method outlined in Section 5 whereby such effects may be removed from an

identified model, and the parameters of the original system recovered.



Although the work in previous sections is geared towards removing an unwanted con-
stant disturbance at the output, it is sometimes the case that the constant is regarded
not as a disturbance but as part of the system itself. In Section 6 therefore methods
for analysing nonlinear systems in the generalised frequency domain are extended to
accomodate models with constant terms, and it is shown that such terms may have a

significant effect on system behaviour.

2. Model Representations

2.1. The Volterra model

Most classical descriptions of nonlinear systems have been based on the Volterra
series, [Schetzen 1980; Volterra 1959],

N
y) = Xy.() (1)

n=0

where y, (t) the "n-th order output‘ is a homogenous functional of degree n,

]

3@ = [ [ b T HC-tT @
—oo i=1

-—00

Note that the Volterra model yields the familiar linear convolution integral for the case
N =1, and simply extends the linear system description to higher orders by introduc-
ing additional dimensions. Consequently h,(:) is termed the ‘n-th order impulse

response function’.

'Equation (1) may also be expressed in operator form, using the notation developed by
Brilliant and George,

N
y(@)=Hu@)] = 3 Hylu@)] (3)
n=0

where H_[] indicates the operator form of equation (2), i.e. Hy[u] = y,. The operator
notation will be used in the more axiomatic proofs, while the functional notation will

be used in the development of more algebraic relationships.

The Volterra model is important not only because it encompasses a wide class of non-
linear systems, but because it forms the basis for analysing such systems in the fre-

quency domain. For example, by analogy with linear systems, an n-th order transfer



function H,(-) can be defined as the Fourier pair of the n-th order impulse response

function of equation (2) giving,

w - 4)
1 , ) P
Bty = % ) = i [ [ HoGoy, - - jw,) /@5 doy - - - da,

Substituting (4) into (2) and carrying out the multiple integration on Ty, - - - ,T, gives,

. n : =5
o [ HpGoy, - 1jo,) TIUG @) /@ day (5)

i=1

1 -0
2n)"

yat) =

where U (j ;) represents the input spectrum.

It is also useful to "symmeterise” the n-th order transfer function so that its values are
independent of the order of the individual frequency arguments. This property is
obtained by summing an asymmetric function over all possible permutations of its
arguments and dividing by their number, according to,
. . 1 . ;
HY"(joy, =« +yjw,) = — Y HP(wg, L) 0,) (6)

!
* all permutations

I —
The generalised frequency response functions described above, though multi-
dimensional in form, can be interpreted to provide a revealing description of nonlinear
input/output behaviour [Peyton Jones, Billings 1990]. Although the description is
based on the Volterra model, algorithms have been developed which enable the higher
order transfer functions of other (perhaps more commonly used) model forms to be
computed [Peyton Jones, Billings 1989]. Unfortunately such algorithms do not
accomodate models which incorporate constant terms, and this issue will be addressed

in Section 6.

2.2. The NARX Model

The Volterra system representation of the previous section, provides a black box
description for a wide class of nonlinear systems. Unfortunately direct estimation of
the system parameters is both computationally burdensome, and results in inordinately
large system descriptions [Billings 1980].

An alternative, and more compact parametric model form, is given by the Nonlinear
AutoRegressive with eXogeneous inputs (NARX) representation, [Leontaritis,Billings
1985]. In this case the system is described by some discrete time nonlinear operator



F[-] of lagged input signals u(sr—k,), and outputs y(r—k,), with ¢ used to enumerate
the sampling intervals, and k the lags:

y () = Flu@=k;), y (1-k;)] i=12,.. @)

In the present study a polynomial form will be assumed for the operator F[‘], and the
NARX model can then be expressed as,
K

M m
=% B3 oot ki) Tk TLutk)  ®
i=1

m=1 p=0 ky k=1 i=p+1

Each term is seen to contain a p-th order factor in y (t—k;) and a ¢-th order factor in
u(t—k;) (such that p +q =m), and each is multdplied by a coefficient
Cpg (k1 ™" " sKkpag)- The multiple summation over the k;, (k; =1, - - - ,K'), generates
all the possible permutations of lags which might appear in these terms.

In the development below it will be notationally convenient to specify more explicitly
which lags are associated with the input, and which with the output. Equation (8) will
therefore be rewritten as,

m K K

M
MO0 NS S Ry IR § (ICE Y § CIC R
i=1

m=1 pﬂ k’l'k’p_:] k-llku'=1 i=1

These equations represent the general algebraic form of the NARX model, and encom-
pass all possible terms. In practice however a physical system can generally be
described using only a few NARX parameters. Thus for example a specific instance
of the NARX model such as,

y(t) = agy(t=1)+ au@-1) +azy ¢-u(-1) + azu(t-1)* (10)

may be obtained from the general form (9) with
cio) =ag  coul) =ay | 1)
€11(%1) = ay, Coa(1,1) = aj,. else cp'q(-) = i) (11

Practical NARX models have this comparatively modest parameter set because they
encode information from past outputs as well as past inputs, and it is this recursive
property which fundamentally distinguishes the NARX from the Volterra model.



2.3. The NARMAX model

The NARMAX model extends the NARX system description to include a characterisa-
tion of the disturbance process. Unlike linear systems however the disturbance terms
are often multiplicative with the system inputs and outputs, and it is this fact that can
introduce bias in the system parameters if the disturbance contains constant com-

ponents (c.f. Section 4).

Consider for example the inclusion of a disturbance process v(r) in the NARX equa-
tion,
y(t) = Flu(=k;), y@=k))] + v (1) i=12,. (12)

At first sight the additional terms seem to be explicit, and independent of the nonlinear
model. On closer inspection however, it is seen that the disturbance process appears
also in all the recursive variables y (r—k;) of the system model, and the two are there-
fore closely inter-related. Indeed a less deceptive form of equation (12) is given by
the the NARMAX representation,

y(t) = Flu(—=k;), y(@=k;), e(t=k;)] =12 . 13

Expanding (13) to its polynomial form gives,
K K K

M m m-—
TORD N5 Y6 SN VD YD R WA Y SE S S S S ¢

m=0 p=0 ¢=0 k,l.k,’=1 k.l.k.‘ﬂ k.l-k."—‘l

r
x 1Ty (t—k,) TTu(e—k, )] Te (t—k, )

i=l i=1 i=1
where r is used to denote the degree of nonlinearity in the noise signal e (r), such that

p+q+r =m.

Notice also that an initial constant cggq is included in the model (14), corresponding
to the case m=0 in the first summation. This additional term is straightforward to esti-
mate, but can have a considerable effect on the system behaviour because it enters
internally and appears in all the recursive variables y(r—k;). It might be expected
therefore that constant parameters or mean levels may have a significant effect in non-
linear system identification or frequency response analysis, and indeed this will be

shown to be the case.



3. Mean Levels and Prefiltering of Nonlinear systems

The characteristics of input/output data used for system identification, fundamentally
determines the final model obtained. It is common practice therefore to pretreat the
data or weight the identification algorithm, so as to reflect in some way the intended
model application and structural form.

In many cases this predisposition is expressed in the frequency domain,
[Wahlberg,Ljung, 1986], though amplitude criteria may also be introduced [Huber
1981].

Such methods however, being designed for linear system identification, do not neces-

sarily carry over to the nonlinear case.

A particularly common special case of frequency weighting of estimates lies in the
treatment of d.c. levels in input/output data, where the d.c. component is often
removed entirely, either by subtracting mean levels from the data, or by methods
equivalent to differencing (high pass filtering) the data, [Isermann 1980].

Consider for example a system described by the Volterra model (3), acted on by an
input cu (z). The (constant) dummy variable ¢ has been included to keep track of the
various order terms. This yields,
N N
y@)= "Zl Hpleu ()] = n};l c” Hylu(n)] (15)
where the second equality follows from the fact that Hy[-] is homogeneous of degree

n.

If a linear weighting filter L(-) were to be applied to both input and output, then a
similar expression could be used to describe the relationship between the filtered quan-

tities u* (r),y" (1), namely,

N
y ()= Hylu" ()] (16)
n=1
where,
u'(t)=Lcu@)=c L) - y (t)=Ly@)) (17)

Notice the filtered system is described by the operators H,[], where the star is used to
indicate that these may be different from the Hy[] of the original system (15). Indeed



substituting for u®(t)y" () from (17) in (16) and rearranging slightly gives,
N N .
y@)=L"" ¥ Hple L(u())) =L 3 " HalL(u())] (18)
n=1 n=l

Hence by equating coefficients of ¢ across equations (15) and (18), the relationship
between H[] and H,[-] is seen to be,

H] = LTHJLOl  or  Hill = L HL7()] (19)
It is clear therefore that the process of prefiltering the data leaves the transfer function

estimate unchanged only in the linear case, where by the special commutativity pro-
perty of linear convolution (18) reduces to,

H{[] =H,[] (20)

For the nonlinear case the very act of filtering will introduce bias into the estimates
even in the ideal noise free case considered here.

3.1. Example: difference prefilter

It is important to emphasise that the continuous time Volterra series model is chosen
as a convenient representation for a wide class of nonlinear systems. The fact that the
derivation above is based on this model does not constrain the applicability of the
result to Volterra models only. Consider for example the NARX model,

y(@) = 0.7y(t—1) + 0.3u@-1) + 0.2u (z-1)? @1

Applying a simple difference filter L(g) =1 - g~! to both input and output, gives the
filtered quantities u” (t),y* (1) as,

ut () = A1-qHuw); y'@) = A-g7hHyw) (22)

where g is used to represent the backwards shift operator. The new relationship
between the filtered quantities can be found by eliminating u (¢),y (1) between(21),(22)
and rearranging to give,

- (23)
(1-¢7h

Notice that the linear structure of this model is identical to that of (21), and is
unaffected by the filtering process. Conversely the nonlinear term has been changed

y (@) = 07y (t=1) + 0.3u" (t-1) +

quite considerably, and parameter estimates based on the filtered data will therefore
yield quite different results to those obtained without applying a prefilter.



4. Mean Level Induced Bias in Nonlinear Parameter Estimation

In linear system identification an alternative approach to the treatment of mean levels
and unknown measurement offsets in data, is to include a constant term explicitly in
the estimation process. In this way bias is avoided, and the additional (constant) dis-
turbance term can then be discarded to leave the system parameters of interest.

This approach however, is only valid if the constant term is purely additive in the sys-
tem description. Physically such an assumption is reasonable since disturbances often
enter the system through the measurement process itself, giving a systern description of

the form,
z(1)

y (@)

Here z (¢) is used to denote the disturbance free, (unmeasured), ouput from the system.

Flu(t—k;), z(t—k;)] I =12 (24)

n

z2(t) +v(); (25)

Typically the disturbance v(r) is a linear moving average process, but this may often
contain a d.c. component as for example when mean signal levels are deliberately
adjusted to enable the maximum range of an A/D converter to be utilised.

Unfortunately the additive disturbance, (and the mean level in particular), cannot be
estimated directly. Instead equations (24),(25) must first be reduced to a difference
equation in terms of the measured input/output signals u(¢),y (1) alone, i.e. a model in
the NARMAX form. The task then is to see whether identification applied to a model
in this form still yields correct system parameter estimates for the model in its output
additive form, - or whether the latter are biased by utilising the NARMAX structure
during the identification phase.

Eliminating z (r) between (24) and (25) yields the input/output relation,

y(t) = v(t) + Flu@=k;), &0 (t=k;)=v (1=k;))] i=1,2,. (26)
with the corresponding polynomial expansion,
M m K K ,
yn)y=vie)+ 3y Y X 2 Cpglhyky s ky ek, ) 27)

m=1 p=0 k k =1 k k, =1

x TI(r@=k,) - v—k,)) TTu ()

i=l i=]

Notice a prime appears on the coefficients ¢, o () which describe the physical (output

-9.



additive) system, since these are not necessarily identical to the esfimated parameters
Cp ¢ () of the NARMAX model. Indeed if the NARMAX estimation techniques are to
be applied to data from systems with output additive disturbances, it is important to
determine exactly how the estimated NARMAX parameters are related to those of the
original physical system.

To this end, consider the expansion of the first product in (27) into a sum of nonlinear

product terms,

. .
A a—k) -ve-k)) = $ > TIve-k) I ve-k) @8
i=1 r'=0 all combinations i=1 i=p—r'+1

An immediate result follows by extracting the first term of (28) which has r'=0 (i.e. a
pure output nonlinearity with no disturbance factors). Providing the disturbance v (r)
contains no constant/d.c component, this gives,

lE,I . ]P_[ sum of product terms containing
H()’ (t—ky) —v(t=ky)) = £=1y =%+ | 4t least one factor in v(1-k;,) (29)

Substituting (29) in (27) and comparing with (14) shows by inspection that,
Cpq 'o(k ],..-,kp.g.q } = c’p,q (k 1,...,kp +q) (30)

This is an important result for it shows that the physical system parameters are identi-
cal to those estimated using the NARMAX model structure, (providing there is no
constant/d.c component in the disturbance).

Although it is possible to derive a complete expansion of equation (29) assuming v (¢)
to be some zero-mean moving average process, the only additional information this
reveals is the structure of the noise model. If however the disturbance v(¢) contains a
constant or d.c. component, the same conclusion does not necessarily hold. Unlike
linear systems where such a disturbance would have no effect on the system parame-
ters, the system parameters in the nonlinear case are likely to be influenced by the
presence of the output additive constant component.

Consider for example the case where the additive disturbance consists of a constant
offset v alone. Such restrictions will not limit the generality of the result, since it has
already been observed that the dynamic noise terms do not affect the identified system

parameters. Equation (28) then becomes,

- 10 -



[+, - vi-k)) = § ) [—vo]" ﬁy(r—ky,.) 31)

i=1 r'=0  all combinations

of o ik, )

P
laken p” al a time

where p’ = p-r’ has been introduced to represent the degree of nonlinearity of the

output factor.

Notice that cross-products between the input and the constant disturbance v, are now
structurally indistinguishable from a pure output nonlinearity multiplied by some fac-
tor. Indeed the constant disturbance, acting on a p -th order nonlinearity in the output,
contributes to all the lower p *-th order input terms of the NARMAX system model.

Notice also that the second summation of equation (31) generates many terms which
share the same degree of nonlinearity, but which are associated with different lags.
However the lags in the set {k,, . .. ,kyp,ﬂ,} are not necessarily all unique, and conse-

quently the summation could contain a number of repeated terms. Such terms may be
collected together, thereby introducing a factor C,-, (") given by,

N;

n;

=t

CP"r'(ky:*“"ky,-w-) = 4
(32)

where the term in large brackets represents the binomial coefficient, and the other
quantities are given by,

N. = number of repetitions of the i-th distinct lag in {kyl,...,kyp,",}

n; = number of repetitions of the i-th distinct lag in {k 1,...,kyp,}

n. = number of distinct lags in {kyl,...,kyp,]

c

Equation (31) can therefore be rewritten as a sum of unique terms, each multiplied by

the appropriate factor C,-, (), so that,

[y a—+k,) -va—+)) = $ Y Cplhyky.) [—vo]" ﬁy(t—kyi)

i=1 r'=0 all unique combs = (33)
of Uy v L

P4
taken p’ at a time

Hence a direct expression for the expansion of any given term of the true system

description into NARMAX form is given by,

- 11 -



¢y g Uik Kook 1‘3( y(t—k,) = v(t—k,)) If[lu(r—k“.,) = (34)

& T Cpoplhy k) Cpragrg Uy i Kk (34)

r'=0 all unique combs
of e o)

taken p’ at a time

<[] FIy (k) TTue4,) (34)
i=1 i=1

Equation (34) means that a single term of the true (output additive) system description,
containing a p-th degree nonlinearity in the input, when expanded to the NARMAX
form, will contribute to all similar but lower order terms of the NARMAX model hav-
ing only a p’-th degree output nonlinearity.

By the same token a given NARMAX parameter will receive contributions from a
number of different terms in the original system description. Hence system parameters
estimated using the NARMAX model are no longer identical to those of the true sys-
tem, but are modified by the action of the additive constant. The precise relationship
between the two is therefore of considerable interest so that this bias could be removed
where appropriate. Substituting then from (34) gives the NARMAX form of equation

(27) as,

M m
y)y=vo+ ¥ X

m=1 p=0 r's0 k’1

K K
Z Z C P'+f'.q (kyi,...,kyp,",; kulv--.,k“')
=1 k, ‘41'k-’p'+r'=l k't'k'qzl

P

m—p

T M=

X ¥ Cprprlhypniky,.,,) [—vo]r'ﬁy (t—ky,) ﬂu S W (35)

all unique combs i=1
of Qg ]

taken p’ at a time
where the multiple summation over the lags k,, in (35) has been broken into two parts,
to facilitate direct comparison with the NARMAX expression (14). Indeed for the spe-
cial case disturbance under consideration, equation (14) reduces to the NARX-like sub-

set,

M m K K
YO=3 5 5 X cpaallypky kek) TTy =k,
i=1]

m=0 p=0 le,k’le k.l.k.'zl

u(t-k,) (36)
=1

Equating now the coefficients of like terms across these two equations yields (for

-12 -



p,q # 0) the relation between the coefficients ¢’(*), and the NARMAX parameters
c(),

€y g 0l s Kuyrk) =
M—q

r K
b [—vo] > G kK w)c'pw.q(kh""'ky o k"‘,._,,ku') 37)
kb =1 ’ r

r=0
p+l Tpar

Notice however the special case of the estimated NARMAX constant term ¢ o Which
receives a contribution from the initial term v of (35), in addition to those from all
the higher order c’p.q () coefficients. In this case also the factor Cp', (*) reduces to
unity by definition. Hence the NARMAX constant term is given by,

M F K
CO.O,O = V0+ E [—Vo] E [ 4 r.O(kh-"’kr) (38)
r=0 kl.k; =1

From these relationships it can be seen that the system parameters of the identified
NARMAX model are no longer identical to those of the physical plant, but are related
through the action of the output additive constant. However equations (34) and (37)
reveal the form of this mapping, in which case it may be possible to recover the origi-
nal parameters. This approach is adopted in the following section.

5. An Unravelling Algorithm for Systems with Constant Qutput Disturbances

Although equations (34) and (37) show exactly how system parameters estimated using
a NARMAX structure are altered from those of a given "output additive” system, the
inverse relation whereby the original system parameters may be recovered from the
(identified) system estimates is not immediately apparent.

Consider then the expansion of (37), which represents a set of simultaneous equations
between the parameters of the two model forms. The estimated system parameters for
example are expressed by equations of the form, (39)

K K K
Cp,q,{](') = c’p,q(') = Vo E Cp ,I(')C ’p+l,q(.) + vﬂz Z Cp.!(')c 'p+2.q () - vf? E Cp}(')c 'p+3,q ) # 4%
k

k’pﬂ Tps2 k’pd
K K
cpﬂ.q,ﬂ(') = C‘p+l,q () = Vo E Cp+l.i(')c ,p+2,q )+ vé z Cp+‘l.2(')c ’p+3,q - -
t«“pez Spﬂ

Cpi2g O() g
p+3

- 13 -
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The original system parameters however have to be recovered by solving such equa-
tions for the coefficients ¢, ,("). Using the equations (39) for example the first few

terms in the solution for c'p 7 (-) are given by,

K K K
Cp,q,O('} + Vv E Cp.l(') Cp+1.q.0(') == V& E Cp,z(') = Z Cp,](') Cp+],l(') cp+2.q,0(') +
k,

- ; | : @0)
[C,30) = X Cpa()Cpir 0] -
K ’7p+1
Vg E K K Cp+3.q.0(') -t = C’p'q ()
k’p+3 k? [Cp.2(') - k,z Cp,l(') Cp+1.1(')]cp+2.1

In general c'p ¢ () 1s a function of all the higher degree estimated parameters c,,; o (")
cross-multiplied by —vé. Hence the desired system coefficients can be expressed more

concisely by, 41)

, M-q i K
C Pa (kyl""’ky,,) = CP q .O(k)’l""’k}’p) —_ E [—Vo] E ap i (k}'l""’k)'pﬁ') CP_H' 'q'o(kyl,...,kypﬁ)
i=1 k,l....,k,’ﬂ_-:l

where by inspection of (40) the o, ; (") are cast in recursive form according to,

Y Ky

i-1
ap'i(k k ) = CP.i(k_)'l""’k)’pﬁ) = ZlCp+j‘[—j(ky1v"1kyp“-)ap'j(kylv---vkyp+j) (42)
Jj=

Equation (41) however still contains the unknown constant v, which must first be
determined. The additional relation required is obtained by including equation (38) in
the set of simultaneous equations (39), and solving to give,

M-q i K
vo = cooo= B (o] T Gulyek)cioolk)  @3)
i=1 s

Thus equations (41),(43), together with the recursive relation (42), define an algorithm
for recovering the original parameters of an “output additive” model from a set of
estimated parameters in difference equation form. The algorithm is perhaps best
demonstrated by considering a simple example.

5.1. Example: heat exchanger system

Consider then the model of a real heat exchanger identified by Billings and Fadzil,
y(@) = 2072+ 09158y(t—1) + 04788 u(r-1) - 0.01572y2(r—-1) (44)
- 0.01133u2(r-1) - 0.002244 y2(r —1)u (1) — 0.002239 u>(r-1) (44)
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so that the estimated parameters are given by the set,

€0,0,0 = 2072 c1G1) = 04788 (45)
c100(1) = 0.9158 coaGL1) = —0.01133

cq0(1,1) = —0.01572 co3G1,1,1) = -0.002239

c21(1,1;1) = -0.002244

Although in this case the model may be perfectly adequate for the purpose, suppose
the physical system was known to have a d.c. additive disturbance at the output. This
would have altered the estimated NARMAX parameters away from the correct physi-
cal values. Hence it may be desirable to use the relationships developed above to cast
the identifitd NARMAX model back into the form of equations (24),(25).

Using equations (43),(42) the unknown additive constant v is first determined accord-

ing to,

vo = €00 + Vologi(DerooD] ~ vé [oga(1,1) cz00(1,1)] (46)

coo0 + Vociooll) - v& ca00(11) [1 - Cp(1,D)]
Hence,
, 9.11082
001572vZ + (1 -09158)vy — 2072 = 0 => Vo= _14467

Notice in this case that there are in fact two possible solutions, of which we will
choose the positive one for the evaluation of the other terms.

Applying now the relations (41),(42) yields expressions for each of the unknown sys-
tem parameters ¢’p o () in terms of the known estimated parameters ¢, o o(*) and the

additive output constant v above. Thus, (48)

c 1.0_0(1) + ZVO Cz‘o'o(l,l)
ZVOCQ.LO(l,l;])

¢’1.0(1) c100() + volay1(1,1) c200(1.1)]
6'1.1(1;1) =0 + Volﬂl'](l,l)Cz‘]‘o(l,l;])]

cor() = coro() +0—vE [oga(1,Dcapo1L.D] = copo) + v ca10L,1i1)
c’21(1,1;1) = cg10(L.131); c'a0(1,1) = €y0,0(1,1)
c’02G11) = coao(l1) c'0aGLLY) = cozp(l,1,1)

Substituting the known values from (45) and (47) therefore gives,

vo = 9.1108 ¢'11(L1) = -0.0409
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¢'1.0(1) = 0.6294 ¢01(1) =  0.2925 (49)
¢20(1,1) = -0.01572 c’02G1,1) = -0.01133
Cc '2’1(1,1; 1) = -(0.002244 c ’0'3(;1,] .1) = -0.002239

Hence an equivalent form of the NARMAX description (39) is given by the output
additive equation pair,

2(t) = 0.2925u(t-1) + 0.6293z (r-1) — 0.01572 z%(t-1) — 0.0133 u?(z-1) (50)
- 0.0409z (t=Du (1-1) — 0.002244:2(:—15u (r=1) — 0.002239 u3(r-1)
y(t) = z(t) +9.1108 (50)

6. Frequency Domain Analysis of Systems with Constant Terms

Frequency domain techniques have proved to be an invaluable tool in linear system
analysis and design, so recent work has been aimed at extending this approach to the
nonlinear case. In particular algorithms for deriving and interpreting the higher order
transfer functions of practical representations such as the discrete time NARX model,
or continuous time Nonlinear Integro-Differential Equation (NIDE), have been
developed [Peyton Jones, Billings 1990].

Unfortunately the existing algorithms do not accomodate models with internal con-
stants. One approach therefore is to remove the constant term from the model prior to
analysis. Notice however, if the model is nonlinear in the output, that this is not sim-
ply a matter of discarding the constant term along with any other unwanted disturbance
terms, but requires the use of the algorithms developed above.

However in some cases it may be possible to regard the constant disturbance, by virtue
of its unchanging nature, as part of the system itself, i.e. to redraw the black box so as
to encompass the constant within the system, rather than regarding it as some external
disturbance whose effects must be removed. If this approach is to be adopted, then
there is a need to extend the time to frequency domain mappings to accomodate a

model complete with constant term.
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6.1. The frequency response of NARX models with internal constants

Computation of higher order frequency response functions is based on the probing
method [Bedrosian, Rice, 1971] whereby the output of both the Volterra model and
that of some other nonlinear representation are expanded for a fictional harmonic input
given by,

R .
u@) = Y™ (51)

r=1 -
In the Volterra case applying this input to (2) and integrating yields the expression,

Jw, + - 4o, M

N R
ya) =% X H (o, ,jo,) e (52)

n=1 ryr.=l1
so that for R=n the n-th order transfer function appears as to the coefficient of
g/ @+ "+ ) The corresponding coefficient in the expansion of the other nonlinear
representation must therefore represent this same n-th order Volterra transfer function
only this time expressed in terms of its own parameters.

Thus to derive the higher order transfer functions of the NARX model (together with
internal constant term) for example, it is first necessary to expand the output in terms
of the harmonic input (51). An expression for the n-th order transfer function in terms

of the NARX parameters ¢, (") can then be found by extracting the coefficient of
I e

The working is broadly similar to that described by Peyton Jones and Billings (1989),
and indeed the contribution to the n-th order transfer function arising from pure non-

linearities in the input is unchanged, and is given by,

HEm @y, Jo) = % conlly, -+ k) @R TR (s

ky k=1 '
The effect of the additional constant term becomes apparent however when nonlineari-
ties in the output are considered. In order to expand the NARX model as a function
of the harmonic input alone, it is necessary to eliminate all the lagged recursive vari-
ables in y(r—k,) by substituting the corresponding Volterra expression from (52), so

that,

N R (@, + -+ —k
J’(I'k;‘) = E aT E HYU(D’I' e Jwr) e.’ m]"' m)(! kl) (54)
0 el

Here 7y is used to enumerate the various order terms, and each lagged variable can
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therefore be seen to contain the influence of the constant term when y=0. For conveni-
ence a dummy variable =1 has also been included to keep track of all terms homo-
genous to degree .

Pure output nonlinearities may therefore be expressed as,

@+ -+, Xi-k)

N R ) . :
fye—4) =11 S 3 Hio, - Jjo,) e (55)
i=1 i=1 =0 rurel .
N R jo, + - - +o, )1—k;)
= Y ot IE[ p H'r.-(imr.' — 'jmr.,,) e 1 Y ;
N =0 i=l el ¥

By inspecting the power of the dummy variable &, (55) is seen to contain terms from
order 0 up to Np. This is in contrast to the result obtained if the constant component
(y=0) is not considered, in which case the terms run from order p up to Np. The
difference may be interpreted as follows. In the absence of a constant term a p-th
order nonlinearity in the output contributes only to the Volterra transfer functions of
order p and above. With the addition of a constant term however, the output non-
linearity contributes to all Volterra transfer functions including those of order less than
p. This consequence may be seen more clearly by dividing the leftmost summation of
equation (55) into terms of like order n, giving,

N n R . L3
flyek) =Y o 3 [ T HyGo, -Jjoe,) e
i=1 n=0 T],'yp=0 l=1 rl"ﬁl i

%

| Sy (56)

j - 4o, Y(E—ki)

where the constraint that Y y;=n also lowers the limit N to n.

jlot 40 chould now yield the contribution to the

Extracting the coefficient of e
n-th order frequency response function that is generated by a p -th degree of nonlinear-
ity in y(z). Thus,

—j(w,, +---+o, ki

n X+1 X +7,

HZ2"() = E=O IEII Hy(w, . " ’jm’xw,-) e ' (57)
MY -t =
| Ty=n

where the device X = Yy, , x =1..i-1 has been used to ensure that H,‘,‘:g"‘(-) is a func-

tion of the n different frequencies {w; - * * ®, }.

Equation (57) may be rewritten in recursive form by expanding the last term of the

product, and using a more convenient set of subscripts to give,
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neptd _— ;
Hi"O) = X HEGOy, - 0 H pra( iy, - -1 0,) 7% (5g) o
i=0 B '
A Y t;"

Note that the recursion finishes with p=1, and that H, 1wy, * - - ,j®,) has the pro-

perty,

Hn.l(jml! s Jjo)=H, (o, ,jo,) e-j(a)l+‘-.+m.)k1 (59)

Equation (58) however gives the contribution to the n-th order frequency response
function generated by a single p-th nonlinearity in y(r), whereas the actual output is
composed of many such terms. Their combined contribution to the n-th order fre-

quency response function is therefore,

HE™ oy, - - jo,) = Y S e oty k) Hyy(ioy, e ) (60)
p=1 kjk,=1

Notice that the uppermost limit on the first summation includes all pure output terms

of whatever order, whereas the corresponding result for systems with no constant com-

ponent only includes those of order less than or equal to n. This merely reiterates that

a p-th nonlinearity in y (¢) in the presence of a constant term contributes to all Volterra

kernels, and does not exclude those of order less than p.

In this context notice also that the right hand side of (60) may contain contributions to
the n-th order kernel H,,7 (-) itself, and these should be collected and brought over to

the left side of the equation. The terms concerned are most easily extracted by
expanding the uppermost limit of the summation in equation (58) to give,

» asym " i
HEM) = Hyp O+HY ' HyGop, - jo,) x § e@t ok gy

i=1

where,

x asym n-1 —_— . x| . . —j (o + - )k,
an () = X HF(ay, - Jma')Hn-i.p-lU(’)iH' e jw,) e
i=0
Thus (60) may be rewritten as, (62)

e

5 5 A P
1= X cpolky k) Ho @VMr@}x gralir rgl | grdamey

p=1 k=1 " =l

P
5 3 :
=, Z Cp.o(klv'..!kp)Hn‘p(lev...‘lJmn) (63)
p=1 kyk,=1
Having obtained expressions for the contributions to the n-th order frequency response
function generated by pure input and pure output nonlinearities, there remains the set
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of pure input/output cross product terms to be considered.

The multiplicative structure of these terms suggests that the n-th order response of a
single cross product term would be, > 2)

e @ittt t k) g oy, Oy (64)

where the exponential factor relates to the input part of the nonlinearity, and the recur-
sive factor H,_, , (") to the output part, (see equations (53),(08) respectively).

The NARX model however contains many cross product terms, so the response (64)
must be combined with the appropriate coefficient, and summed over appropriate limits
to cover all combinations of p,g for which (64) is non zero, giving,

H:;ym(.’.wl’ T Jw,) = (65)
. = = “J (@O gurkagu+ -0 4+ m}’ﬂkr*i) :
b 2 Cp.q(kl' e 'kp+q) ¢ —q.p(.lmlr T @, )

g=1 p=1 kk=1
This somewhat heuristic approach may be validated by applying the probing method
directly as in the case of the pure output nonlinear terms.

The total frequency response of the NARX model may now be found by summing the
contributions from the various sub-classes,

Ho(Gop, «+1jw,) = Hy () + H, () + Ho () (66)

Subsmuung (53) (63) and (65) in (66) gives the total frequency response (for n > 0) ,

M K '
[I”E cpaolkr, k)H@ Pk it ek | gaomie, . je,) =
p=1 k=1 ; i=1

.!L

K 4 ..
Y Conthkyy** kn) e-;(m.h+ + 0, k)
k;,k,.:l
n M-1 K : . '
o+ z:l Zi \ g 1 P q(ki' . ,kp+q) e J(mn—141kl—1‘+l+ +(Dp+tkp+t) Hn—q,p(.’ml’ e ?fﬂ)n—q)
q9= P= 1vfa
+ - E ]CP.O(k]g e 1kp) Hﬂp(.lmp T v.’wn) (67)
0 A=

together the recursive relations (58),(62). Note that (67) gives the asymmetric Volterra
transfer function, although it is a simple matter to obtain unique symmetric values by

applying (6).
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6.2. The frequency response of NIDE models with internal constants

Although the treatment of mean levels is primarily an issue in system identification, it
is equally important that constant terms are not ignored when a system modelling
approach is adopted. Such physical analysis is generally performed when there is con-
siderable knowledge about the components that make up the system, and results in
continuous time nonlinear integro-differential equation (NIDE) models. A polynomial
form for a wide class of these models may be represented as,

M m L +
2 X 3 aln ) TID'YO T Du@+co =0 (68)

m=1 p=0 I, =L i=1 i=p+l
where p +q =m, and where G5 (TR 'lp+q) denotes the coefficient associated
with a p-th order nonlinearity in Dl"y(t) and a g-th order nonlinearity in D"y ().
The D operator itself is defined by,

I
4x@®) ;59
dr’
! T2

J st Ix(Tl)dTl "'dT”[ I <0

—0

D'x() = 1 (69)

Note that the lower limits of integration in (69) may be raised to zero for causal sys-
tems where x (1)=0 forall 1<0.

Consider for example a specific instance of the NIDE model such as the well known
Duffings equation,

D2%y(r) + 20w, Dy (1) + 02y (1) + 02ey (t)* — u(1)=0 (70)

This may be obtained from the general form (68) with |
c102) =10,  cpol) =28w,; €100 =k (71)
c300) =0l ci0) =10; else c,,()=0; 71)

where { is the damping ratio, and , the natural frequency of the Duffings oscillator,

Once again the advantage of the NIDE model is its relatively small parameter set, and

its widespread usage in physical system modelling.

The n-th order frequency response of NIDE models, in the absence of a constant term,
has been derived previously [Billings, Peyton Jones 1989]. However the existing
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results may be extended to models incorporating a constant term in a manner similar to
that developed for the NARX model above. This yields,

X L p-1 g , I; T
- E E CP.O(II"'.’IP)HO Xi(}ﬂ)l""""{'jﬁ)n) H:.sy (Jmlv"’,jﬁ)n) =
i=]

=1 hh—L
= 2 o
Z cO.n(lll"°vln)(.’ml) "'(-’mn)‘l
ll.ll='-‘L
@ M-1 L _ ' l"jjil . L
+4~1 P§ ! IE=-LCP'4([1' T rg) ()R Upsg)™ Ho_y ey, - - -
= = Ioke . t\
P9 =G4,
M L i . - . Fam?
+ E > Cp.O([I' T 'Ip) an(’ml’ T @,) (72)
p-'-'d) ll"P}L

2
where H, » () is used to denote the contribution to the n-th order frcqucm:y response
function that is generated by the p-th degree of nonlinearity in the output,

n
H37) = ¥ HiGay, - - SO, 5 G Os+ f0,) Gog - - Hopk (73
i=0

and where H, » () is the subset of H, » () which does not contain any of the bracket-

ted terms in equation (72). Thus, (74)
% asym n-1 . ) * )
Hop () = ¥ HGoy, - - - SOy G0, -+ jw,) Gogt - - )b
i=0

7. Conclusion

The treatment of mean levels in linear system identification and analysis is greatly
eased by the superposition and commutative properties that apply in this case, For
nonlinear systems however these properties do not hold, and commonly used linear
techniques may give misleading results.

Data prefiltering methods for example have been shown to alter the model structure of
the system under analysis, and are therefore inappropriate in a nonlinear constext.

Another approach then, is to estimate the constant component explicitly with a view to

discarding it in subsequent analysis. Unfortunately the occurrence of a constant term

within a nonlinear difference equation is not so straightforward, and an it cannot sim-
ply be discarded without also removing the effects its presence may have induced upon

= 5
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the other system parameters. Algebraic relations which reveal the form of these effects
have therefore been derived, and an unravelling algorithm developed to recover the
original estimates.

Alternatively an estimated constant term may be regared as part of the system itself, in
which case is must be incorporated in the subsequent analysis. Previous results which
enabled the frequency response of nonlinear difference and differential equations to be
computed, have therefore been extended to encompass systems with constant terms.
These extended mappings are substantially different from those obtained when constant
terms are excluded, and therefore indicate the importance of correctly treating constant
components in nonlinear system analysis.
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