
This is a repository copy of The theory of classification part 3: object encodings and
recursion.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79277/

Version: Published Version

Article:

Simons, A.J.H. (2002) The theory of classification part 3: object encodings and recursion.
Journal of Object Technology, 1 (4). 49 - 57. ISSN 1660-1769

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, no. 4, September-October 2002

Cite this column as follows: Anthony J.H. Simons: The Theory of Classification. Part 3: Object
Encodings and Recursion, in Journal of Object Technology, vol. 1, no. 4, September-October
2002, pages 49-57. http://www.jot.fm/issues/issue_2002_09/column4

The Theory of Classification
Part 3: Object Encodings and Recursion

Anthny J. H. Simons, Department of Computer Science, University of
Sheffield, UK

1 INTRODUCTION

This is the third article in a regular series on object-oriented type theory, aimed

specifically at non-theoreticians. Eventually, we aim to explain the behaviour of

languages such as Smalltalk, C++, Eiffel and Java in a consistent framework, modelling

features such as classes, inheritance, polymorphism, message passing, method

combination and templates or generic parameters. This will be the "Theory of

Classification" of the series title. Along the way, we shall look at some important

theoretical approaches, such as subtyping, F-bounds, matching and, in this article, the

primitive object calculus and the fixpoint theorem for recursion.

The first article [1] introduced the notion of type from both the practical and

mathematical points of view and the second article [2] introduced some examples of type

rules for constructing and checking simple expressions. Using a starter-kit containing

only set theory and boolean logic, we built models for pairs and functions, eventually

encoding objects as records, a kind of finite function mapping from labels to values.

However, this is only one of three fundamentally different approaches to encoding

objects in the primitive model [3, 4, 5]. The first two are based on set theory and the λ-

calculus [6], the calculus of primitive functions, and the last on the Ȣ-calculus [5], the

calculus of primitive objects. In this article, we investigate the benefits and disadvantages

of different object encodings.

2 EXISTENTIAL OBJECT ENCODING

The first encoding style is based on data abstraction [3, 4]. It represents an object as an

explicit pair of state and methods (rules for constructing pairs were given in the previous

article [2]). In this approach, a simple Cartesian Point type is defined as follows:

THE THEORY OF CLASSIFICATION, PART 3: OBJECT ENCODINGS AND RECURSION

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

Point = ∃ rep . (rep × {x : rep → Integer; y : rep → Integer;

 equal : rep × rep → Boolean})

This definition has the sense of "let there be some representation type rep, such that the

Point type is defined as a pair of rep × methods, where methods is a record of functions

that manipulate the rep-type." This clearly bears some similarity with abstract data types

(see article [1]), since the state of the Point, rep, is existentially quantified using ∃. This

has the effect of declaring the existence of state, but preventing any direct access to it.

The rep is some hidden concrete type (like a sort), about which nothing further is known.

The record of methods is visible by virtue of not being ∃-quantified.

An instance of a Point type may be defined with a particular concrete representation

(here, we assume that rep = Integer × Integer) as follows:

aPoint = <<2, 3>, { x a λ(s : rep).π1(s), y a λ(s : rep).π2(s),

 equal a λ(p : rep × rep).(π1(π1(p)) = (π1(π2(p)) ∧ π2(π1(p)) = π2(π2(p))) }>

As this looks rather dense, break it down as follows: aPoint is defined as a pair <r, m>,

where r is the concrete state, a pair of Integers <2, 3>, and m is a record of methods that

access different projections of the state. The x and y functions both accept a single rep

argument, whereas the equal function accepts an argument which is a pair of reps, hence

the nested use of projections to get at "the first of the first of p" and so on.

Existential encoding models the hiding of state, rather like the use of private

declarations in C++ and Java. It can be used to model packages, whose contents are only

revealed within certain scopes [7]. The other advantage of this approach is that types,

such as Point, are non-recursive, since all its methods are defined to accept a rep, rather

than the Point type itself. A disadvantage of this approach is the inelegance of method

invocation. Recall that a Point p is a pair, so to invoke one of its methods requires

accessing the first projection π1(p) to get at its state and second projection π2(p) to get at

its methods. Simply to invoke the x-method requires the complicated construction:

 π2(p).x(π1(p)) in the calculus. Instead, we would like the model to reflect more directly

the natural syntax of object-oriented languages.

One way would be to define a special method invocation operator "•" to hide the

ungainly syntax, such that the expression:

obj • msg(arg) ⇔ π2(obj).msg(π1(obj), π1(arg)).

However, this has several drawbacks. Firstly, separate versions of "•" would be

needed for methods accepting zero, or more arguments. Secondly, "•" would have to

accept objects, messages and arguments of all types, requiring a much more complicated

higher-order type system to express well-typed messages.

Functional Object Encoding

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 51

3 FUNCTIONAL OBJECT ENCODING

For this reason, we prefer the second encoding, in which objects are represented as

functional closures [3, 4]. A closure is essentially a function with an implicit state. A

function can acquire hidden state variables due to the way in which it was defined. For

example:

let y = 3 in

 inc = λx.(x + y)

defines inc inside the scope of y. The function
1
 accepts x as an argument (x is a bound

variable), but y is a free variable in the body of inc, with the value 3. Applications of inc

produce results that depend on more than the argument x: inc(2) ⇒ 5; inc(4) ⇒ 7;

showing how the function has "remembered" some state. In pure functional languages,

this state cannot be modified (free variables have static binding, as in Common Lisp).

Using this encoding, objects can be modelled directly as functions. This may sound

strange, but recall how a record is really a finite set of label-to-value mappings, while a

function is a general set of value-to-value mappings [2]. Records are clearly a subset of

functions. In this view, any object is a function: λ(a : A).e, where the argument a : A is a

label and the function body e is a multibranch if-statement, returning different values for

different labels. We can model method invocation directly as function application, for

example if we have Point p, then p.x in the program may be interpreted as: p(x) in the

calculus. In an untyped universe, untyped functions are sufficient to model objects.

However, in a typed universe, records are subtly different from functions, in that

each field may hold a value of a different type. For this reason, we use a special syntax

for records and record selection [2], which allows us to determine the types of particular

fields. In this approach, a simple Cartesian Point type is defined as follows:

Point = µ pnt . {x : → Integer; y : → Integer; equal : pnt → Boolean}

This definition has the sense of "let pnt be a placeholder standing for the eventual

definition of the Point type, which is defined as a record type whose methods may

recursively manipulate values of this pnt-type." In this style, "µ pnt" (sometimes notated

as "rec pnt") indicates that the following definition is recursive. We explore the issue of

recursion below.

An instance of this Point type may be defined as follows:

let xv = 2, yv = 3 in

 aPoint = { x a xv, y a yv, equal a λ(p : Point).(xv = p.x ∧ yv = p.y) }

1 If the λ-calculus syntax still puzzles you, consider that: inc = λx.(x + y) is saying the same thing as the

engineer's informal notation: inc(x) = (x + y). The λx simply identifies the formal argument x and the dot

"." separates this from the body expression.

THE THEORY OF CLASSIFICATION, PART 3: OBJECT ENCODINGS AND RECURSION

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

in which xv and yv are state variables in whose scope aPoint is defined. The constructor

function make-point from the previous article [2] serves exactly the same purpose as the

let...in syntax, by establishing a scope within which aPoint is defined.

In this encoding, method invocation has a direct interpretation. In the program, we

may have a Point p and invoke p.x; the model uses exactly the same syntax and

furthermore, we can determine the types of selection expressions using the dot "."

operator from the record elimination rule [2]. Note how, in this encoding, the functions

representing methods have one fewer argument each. This is because we no longer have

to supply the rep as the first argument to each method. Instead, variables such as xv and

yv are directly accessible, as all of aPoint's methods are defined within their scope. This

exactly reflects the behaviour of methods in Smalltalk, Java, C++ and Eiffel, which have

direct access to attributes declared in the surrounding class-scope. A disadvantage of the

functional closure encoding is the need for recursive definitions, which requires a full

theoretical explanation.

4 RECURSION EVERYWHERE

Objects are naturally recursive things. The methods of an object frequently invoke other

methods in the same object. To model this effectively, we need to keep a handle on self,

the current object. Using the µ-convention, we may define aPoint's equal method in terms

of its other x and y methods (rather than directly in terms of variables xv, yv), as follows:

let xv = 2, yv = 3 in

 aPoint = µ self . { x a xv, y a yv,

 equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y) }

This declares self as the placeholder variable, equivalent to the eventual definition of the

object aPoint, which contains embedded references to self (technically, we say that µ

binds self to the resulting definition). This is exactly the same concept as the pseudo-

variable self in Smalltalk, also known as this in Java and C++, or Current in Eiffel. In the

formal model, all nested method invocations on the current object must be selected from

self.

An object is recursive if it calls its own methods, or passes itself as an argument or

result of a method. Above, we saw that the Point type is also recursive, because equal

accepts another Point object. Object types are typically recursive, because their methods

frequently deal in objects of the same type. Object-recursion and type-recursion are

essentially independent, but related (for example, a method returning self will have the

self-type as its result type).

As programmers, we take recursion for granted. However, it is a considerable

problem from a theoretical point of view. So far, we have not demonstrated that recursion

exists in the model, nor have we constructed it from first principles. Consider that the so-

called "definition" of a recursive Point type in the (deliberately faulty) style:

Recursion Everywhere

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 53

Point = {x : → Integer; y : → Integer; equal : Point → Boolean}

is not actually a definition, but rather an equation to which we must find a solution, since

Point appears on both left- and right-hand sides. It is exactly like the form of an equation

in high school algebra: x = x2/3. This is not a definition of x, but an equation to be solved

for x. Note that, for some equations, there may be more than one solution, or no solutions

at all! So, does recursion really exist, and is there a unique solution?

5 THE FIXPOINT THEOREM

In high school algebra, the trick is to isolate the variable x: the above becomes: x2 - 3x =

0, which we can factorize to obtain: x (x - 3) = 0, and from this the two solutions: x = 0,

x = 3. Exactly the same kind of trick is used to deal with recursion. We try to isolate the

recursion in the definition and replace this by a variable. Rather than define recursive

Point outright, we define a function GenPoint with a single parameter in place of the

recursion:

GenPoint = λ pnt . {x : → Integer; y : → Integer; equal : pnt → Boolean}

Note that GenPoint is not recursive. GenPoint is a type function - it accepts one type

argument, pnt, and returns a record type, in which pnt is bound to the supplied argument.

We can think of GenPoint as a type generator (hence the name). We may apply GenPoint

to any type we like, and so construct a record type that looks something like a Point.

However to obtain exactly the Point record type we desire, we must substitute Point/pnt:

GenPoint[Point] = {x : → Integer; y : → Integer; equal : Point → Boolean}

which is fine, except that it doesn't solve the recursion problem. All we have managed to

do is rephrase it as: Point = GenPoint[Point], with Point still on both sides of the

equation.

This is nonetheless interesting, in that Point is unchanged by the application of

GenPoint to itself, hence it is called a fixpoint of the generator GenPoint. The fixpoint

theorem in the λ-calculus states that a recursive function is equivalent to the limit of the

self-application of its corresponding generator. To understand this, we shall apply

GenPoint to successive types and gradually approximate the Point type we desire. Let the

first approximation be defined as: Point0 = ⊥. In this, ⊥ stands for the undefined type
2
,

meaning that we know nothing at all about it. The next approximation is:

Point1 = GenPoint[Point0] = {x : → Integer; y : → Integer; equal : ⊥ →

Boolean}

2 The symbol ⊥ has the name "bottom" (seriously). It is typically used to denote the "least defined"

element.

THE THEORY OF CLASSIFICATION, PART 3: OBJECT ENCODINGS AND RECURSION

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

Point1 can be used as the type of points whose x and y methods are well-typed, but equal

is not well-typed, so we cannot use it safely. The next approximation is:

Point2 = GenPoint[Point1] = {x : → Integer; y : → Integer;

 equal : Point1 → Boolean}

Point2 can be used as the type of points whose equal method is also well-typed, because

although its argument type is the inadequate Point1, we only access the x and y methods

in the body of equal, for which Point1 gives sufficient type information. The Point2

approximation is therefore adequate here, because the equal method only "digs down"

through one level of recursion. In general, methods may "dig down" an arbitrary number

of levels. What we need therefore is the infinitely-long approximation (the limit of the

self-application of GenPoint):

Point = GenPoint[GenPoint[GenPoint[GenPoint[GenPoint[...]]]]]

which, finally, is a non-recursive definition of Point. Point is called the least fixed point

of the generator GenPoint, and fortunately there is a unique solution. In λ-calculus [6]

recursion is not a primitive notion, but infinitely-long expressions are allowed; so

recursion can be constructed from first principles. To save writing infinitely-nested

generator expressions, a special combinator function Y, known as the fixpoint finder, can

be used to construct these from generators on the fly. One suitable definition of Y is:

Y = λf.(λs.(f (s s)) λs.(f (s s)))

and, for readers prepared to attempt the following exercise, you can show that:

Y [GenPoint] ⇒ GenPoint[GenPoint[GenPoint[GenPoint[GenPoint[...]]]]]

6 THE OBJECT CALCULUS

The third and most radical encoding changes the underlying calculus on which the model

is based. To appreciate this contrast, we must understand something of the λ-calculus [6],

which was invented by Church in the late 1930s as a primitive model of computation.

There are only two fundamental rules of the calculus: function definition (known as λ-

abstraction):

λx.e denotes a function of x, with body e, in which x is bound;

and function application (known as β-reduction):

λx.e v ⇒ e{v/x} denotes application of λx.e to v, yielding e{v/x}.

These notions are familiar to anyone who has ever programmed in a language with

functions. The β-reduction rule has the sense: "a function of x with body e, when applied

to a value v, is simplified to yield a result, which is the body e in which all occurrences of

The Object Calculus

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 55

the variable x have been replaced by v". As programmers, we like to think in terms of

passing actual argument v to formal argument x and then evaluating body e. From the

point of view of the calculus, this is simply a mechanical substitution, written e{v/x} and

meaning "v substituted for x in e"; and "evaluation" simply corresponds to further

symbolic simplification.

Abadi and Cardelli's theory of primitive objects [5] introduced the Ȣ-calculus in

which the fundamental operations are the construction of objects, the invocation of

methods, and the replacement of methods (useful for explaining field updates and

overriding):

[m = Ȣ(x) e] denotes an object with a method labelled m

o.m invokes (the value of) method m on object o

o.m ⇐ Ȣ(x) f replaces the value of m in o with Ȣ(x) f

Primitive operators include brackets [], the sigma-binder Ȣ, the dot selector "." and the ⇐

override operator. In particular, the behaviour of Ȣ(x) is different from that of λx in the λ-

calculus, in that it automatically binds the argument x to the object from which the

method is selected. In the expression: o.m, the value of m is selected and applied to the

object o, such that we obtain e{o/x} in the method's body. This is an extremely clever

trick, as it completely side-steps all the recursive problems to do with self-invocation
3
. To

illustrate, a simple point object may be defined as:

aPoint = [x = Ȣ(self) 2, y = Ȣ (self) 3, equal = Ȣ (self) λ(p) self.x = p.x ∧ self.y =

p.y]

in which all methods bind the self-argument, by definition of the calculus. The x and y

methods simply return suitable values. The equal method, after binding self, returns a

normal function, expecting another Point p. Although we use non-primitive λ(p) and

boolean operations in the body of equal, these notions can all be defined from scratch in

the Ȣ-calculus. For example, a Boolean object may provide suitable logical operations as

its methods; and even a λ-abstraction can be defined as an object that looks like a

program stack frame, with methods returning its argument value and code-body [5].

We cannot dispense with recursion altogether, for the Point type requires another

Point as the argument of the equal method. The Point type is defined as:

Point = µ pnt [x : Integer, y : Integer, equal : pnt → Boolean]

where µ is understood to bind pnt recursively, and the existence of recursion is justified

by the fixpoint theorem. When giving types to the methods, Ȣ(self) is not considered to

contribute anything to the type signature (the binding is internal); methods have the

3 Somewhat similar to finding out that a crafty accountant has redefined the meaning of death for tax

purposes. But seriously, a calculus may adopt any primitive rules it likes, within credible bounds of

minimality.

THE THEORY OF CLASSIFICATION, PART 3: OBJECT ENCODINGS AND RECURSION

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

public types of their released bodies. The resulting object type is quite similar in

appearance to a record type in the functional encoding scheme. The binding of self-

arguments in every method is also reminiscent of the existential encoding scheme.

Overall, the Ȣ-calculus uses more primitive operators and has a more sophisticated

binding rule than the λ-calculus.

7 CONCLUSION

We have compared three formal encodings for objects and their types. The existential

encoding avoided recursion but suffered from an ungainly method invocation syntax. The

functional encoding was more direct, but used recursion everywhere. The primitive object

encoding avoided recursion for self-invocation but needed it elsewhere. Choosing any of

these encoding schemes is largely a matter of personal taste. In later articles, we shall use

the functional closure encoding, partly because it has few initial primitives and reflects

the syntax of object-oriented languages directly, but also because the notion of generators

and fixpoints later proves crucial to understanding the distinct notions of class and type.

In presenting the fixpoint theorem for solving recursive definitions, we also gave a

notional meaning to the pseudo-variables standing for the current object in object-

oriented languages. In the next article, we shall develop a theory of types and subtyping,

seeing how recursion interacts with subtyping.

REFERENCES

[1] A J H Simons, The Theory of Classification, Part 1: Perspectives on Type

Compatibility, in Journal of Object Technology, vol. 1, no. 1, May-June 2002,

pages 55-61. http://www.jot.fm/issues/issue_2002_05/column7.

[2] A J H Simons, The Theory of Classification, Part 2: The Scratch-Built Typechecker,

in Journal of Object Technology, vol. 1, no. 2, July-August 2002, pages 47-54.

http://www.jot.fm/issues/issue_2002_07/column4.

[3] J C Reynolds, User defined types and procedural data structures as complementary

approaches to data abstraction, in: Programming Methodology: a Collection of

Articles by IFIP WG2.3, ed. D Gries, 1975, 309-317; reprinted from New Advances

in Algorithmic Languages, ed. S A Schuman, INRIA, 1975, 157-168.

[4] W Cook, Object-oriented programming versus abstract data types, in: Foundations

of Object-Oriented Languages, LNCS 489, eds. J de Bakker et al., Springer Verlag,

1991, 151-178.

[5] M Abadi and L Cardelli. A Theory of Objects. Monographs in Computer Science,

Springer-Verlag, 1996.

Conclusion

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 57

[6] A Church, A formulation of the simple theory of types, Journal of Symbolic Logic, 5

(1940), 56-68.

[7] L Cardelli and P Wegner, On understanding types, data abstraction and

polymorphism, ACM Computing Surveys, 17(4), 1985, 471-521.

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the

Department of Computer Science, University of Sheffield, where he

leads object-oriented research in verification and testing, type theory

and language design, development methods and precise notations. He

can be reached at a.simons@dcs.shef.ac.uk

