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The Theory of Classification 
Part 3: Object Encodings and Recursion 

 

Anthny J. H. Simons, Department of Computer Science, University of 
Sheffield, UK

1 INTRODUCTION 

This is the third article in a regular series on object-oriented type theory, aimed 

specifically at non-theoreticians. Eventually, we aim to explain the behaviour of 

languages such as Smalltalk, C++, Eiffel and Java in a consistent framework, modelling 

features such as classes, inheritance, polymorphism, message passing, method 

combination and templates or generic parameters. This will be the "Theory of 

Classification" of the series title. Along the way, we shall look at some important 

theoretical approaches, such as subtyping, F-bounds, matching and, in this article, the 

primitive object calculus and the fixpoint theorem for recursion. 

The first article [1] introduced the notion of type from both the practical and 

mathematical points of view and the second article [2] introduced some examples of type 

rules for constructing and checking simple expressions. Using a starter-kit containing 

only set theory and boolean logic, we built models for pairs and functions, eventually 

encoding objects as records, a kind of finite function mapping from labels to values. 

However, this is only one of three fundamentally different approaches to encoding 

objects in the primitive model [3, 4, 5]. The first two are based on set theory and the λ-

calculus [6], the calculus of primitive functions, and the last on the Ȣ-calculus [5], the 

calculus of primitive objects. In this article, we investigate the benefits and disadvantages 

of different object encodings. 

2 EXISTENTIAL OBJECT ENCODING 

The first encoding style is based on data abstraction [3, 4]. It represents an object as an 

explicit pair of state and methods (rules for constructing pairs were given in the previous 

article [2]). In this approach, a simple Cartesian Point type is defined as follows: 
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Point = ∃ rep . (rep × {x : rep → Integer;  y : rep → Integer; 

    equal : rep × rep → Boolean}) 

This definition has the sense of "let there be some representation type rep, such that the 

Point type is defined as a pair of rep × methods, where methods is a record of functions 

that manipulate the rep-type." This clearly bears some similarity with abstract data types 

(see article [1]), since the state of the Point, rep, is existentially quantified using ∃. This 

has the effect of declaring the existence of state, but preventing any direct access to it. 

The rep is some hidden concrete type (like a sort), about which nothing further is known. 

The record of methods is visible by virtue of not being ∃-quantified. 

An instance of a Point type may be defined with a particular concrete representation 

(here, we assume that rep = Integer × Integer) as follows: 

aPoint = <<2, 3>, { x a λ(s : rep).π1(s), y a λ(s : rep).π2(s),  

    equal a λ(p : rep × rep).(π1(π1(p)) = (π1(π2(p)) ∧ π2(π1(p)) = π2(π2(p))) }> 

As this looks rather dense, break it down as follows:  aPoint is defined as a pair <r, m>, 

where r is the concrete state, a pair of Integers <2, 3>, and m is a record of methods that 

access different projections of the state. The x and y functions both accept a single rep 

argument, whereas the equal function accepts an argument which is a pair of reps, hence 

the nested use of projections to get at "the first of the first of p" and so on. 

Existential encoding models the hiding of state, rather like the use of private 

declarations in C++ and Java. It can be used to model packages, whose contents are only 

revealed within certain scopes [7]. The other advantage of this approach is that types, 

such as Point, are non-recursive, since all its methods are defined to accept a rep, rather 

than the Point type itself. A disadvantage of this approach is the inelegance of method 

invocation. Recall that a Point p is a pair, so to invoke one of its methods requires 

accessing the first projection π1(p) to get at its state and second projection π2(p) to get at 

its methods. Simply to invoke the x-method requires the complicated construction:  

 π2(p).x(π1(p)) in the calculus. Instead, we would like the model to reflect more directly 

the natural syntax of object-oriented languages. 

One way would be to define a special method invocation operator "•" to hide the 

ungainly syntax, such that the expression:  

obj • msg(arg)  ⇔  π2(obj).msg(π1(obj), π1(arg)).  

However, this has several drawbacks. Firstly, separate versions of "•" would be 

needed for methods accepting zero, or more arguments. Secondly, "•" would have to 

accept objects, messages and arguments of all types, requiring a much more complicated 

higher-order type system to express well-typed messages. 
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3 FUNCTIONAL OBJECT ENCODING 

For this reason, we prefer the second encoding, in which objects are represented as 

functional closures [3, 4]. A closure is essentially a function with an implicit state. A 

function can acquire hidden state variables due to the way in which it was defined. For 

example: 

let y = 3 in 

 inc = λx.(x + y) 

defines inc inside the scope of y. The function
1
 accepts x as an argument (x is a bound 

variable), but y is a free variable in the body of inc, with the value 3.  Applications of inc 

produce results that depend on more than the argument x: inc(2) ⇒ 5;  inc(4) ⇒ 7; 

showing how the function has "remembered" some state. In pure functional languages, 

this state cannot be modified (free variables have static binding, as in Common Lisp). 

Using this encoding, objects can be modelled directly as functions. This may sound 

strange, but recall how a record is really a finite set of label-to-value mappings, while a 

function is a general set of value-to-value mappings [2]. Records are clearly a subset of 

functions. In this view, any object is a function:  λ(a : A).e, where the argument a : A is a 

label and the function body e is a multibranch if-statement, returning different values for 

different labels. We can model method invocation directly as function application, for 

example if we have Point p, then p.x in the program may be interpreted as:  p(x)  in the 

calculus.  In an untyped universe, untyped functions are sufficient to model objects. 

However, in a typed universe, records are subtly different from functions, in that 

each field may hold a value of a different type. For this reason, we use a special syntax 

for records and record selection [2], which allows us to determine the types of particular 

fields. In this approach, a simple Cartesian Point type is defined as follows: 

Point = µ pnt . {x : → Integer;  y : → Integer;  equal : pnt → Boolean} 

This definition has the sense of "let pnt be a placeholder standing for the eventual 

definition of the Point type, which is defined as a record type whose methods may 

recursively manipulate values of this pnt-type."  In this style, "µ pnt" (sometimes notated 

as "rec pnt") indicates that the following definition is recursive. We explore the issue of 

recursion below.   

An instance of this Point type may be defined as follows: 

let xv = 2, yv = 3 in 

 aPoint = { x a xv, y a yv, equal a λ(p : Point).(xv = p.x ∧ yv = p.y) }   

                                                           
1 If the λ-calculus syntax still puzzles you, consider that: inc = λx.(x + y)  is saying the same thing as the 

engineer's informal notation:  inc(x) = (x + y).  The λx simply identifies the formal argument x and the dot 

"." separates this from the body expression. 
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in which xv and yv are state variables in whose scope aPoint is defined. The constructor 

function make-point from the previous article [2] serves exactly the same purpose as the 

let...in syntax, by establishing a scope within which aPoint is defined. 

In this encoding, method invocation has a direct interpretation. In the program, we 

may have a Point p and invoke p.x; the model uses exactly the same syntax and 

furthermore, we can determine the types of selection expressions using the dot "." 

operator from the record elimination rule [2]. Note how, in this encoding, the functions 

representing methods have one fewer argument each. This is because we no longer have 

to supply the rep as the first argument to each method. Instead, variables such as xv and 

yv are directly accessible, as all of aPoint's methods are defined within their scope. This 

exactly reflects the behaviour of methods in Smalltalk, Java, C++ and Eiffel, which have 

direct access to attributes declared in the surrounding class-scope. A disadvantage of the 

functional closure encoding is the need for recursive definitions, which requires a full 

theoretical explanation. 

4 RECURSION EVERYWHERE 

Objects are naturally recursive things. The methods of an object frequently invoke other 

methods in the same object. To model this effectively, we need to keep a handle on self, 

the current object. Using the µ-convention, we may define aPoint's equal method in terms 

of its other x and y methods (rather than directly in terms of variables xv, yv), as follows: 

let xv = 2, yv = 3 in 

 aPoint = µ self . { x a xv, y a yv,  

  equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y) }   

This declares self as the placeholder variable, equivalent to the eventual definition of the 

object aPoint, which contains embedded references to self (technically, we say that µ 

binds self to the resulting definition). This is exactly the same concept as the pseudo-

variable self in Smalltalk, also known as this in Java and C++, or Current in Eiffel. In the 

formal model, all nested method invocations on the current object must be selected from 

self. 

An object is recursive if it calls its own methods, or passes itself as an argument or 

result of a method. Above, we saw that the Point type is also recursive, because equal 

accepts another Point object. Object types are typically recursive, because their methods 

frequently deal in objects of the same type. Object-recursion and type-recursion are 

essentially independent, but related (for example, a method returning self will have the 

self-type as its result type). 

As programmers, we take recursion for granted. However, it is a considerable 

problem from a theoretical point of view. So far, we have not demonstrated that recursion 

exists in the model, nor have we constructed it from first principles. Consider that the so-

called "definition" of a recursive Point type in the (deliberately faulty) style: 
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Point = {x : → Integer;  y : → Integer;  equal : Point → Boolean} 

is not actually a definition, but rather an equation to which we must find a solution, since 

Point appears on both left- and right-hand sides. It is exactly like the form of an equation 

in high school algebra:  x = x2/3. This is not a definition of x, but an equation to be solved 

for x. Note that, for some equations, there may be more than one solution, or no solutions 

at all! So, does recursion really exist, and is there a unique solution? 

5 THE FIXPOINT THEOREM 

In high school algebra, the trick is to isolate the variable x:  the above becomes:  x2 - 3x = 

0, which we can factorize to obtain:  x (x - 3) = 0, and from this the two solutions:  x = 0, 

x = 3. Exactly the same kind of trick is used to deal with recursion. We try to isolate the 

recursion in the definition and replace this by a variable. Rather than define recursive 

Point outright, we define a function GenPoint with a single parameter in place of the 

recursion: 

GenPoint = λ pnt . {x : → Integer;  y : → Integer;  equal : pnt → Boolean} 

Note that GenPoint is not recursive. GenPoint is a type function - it accepts one type 

argument, pnt, and returns a record type, in which pnt is bound to the supplied argument. 

We can think of GenPoint as a type generator (hence the name). We may apply GenPoint 

to any type we like, and so construct a record type that looks something like a Point. 

However to obtain exactly the Point record type we desire, we must substitute Point/pnt: 

GenPoint[Point] = {x : → Integer;  y : → Integer;  equal : Point → Boolean} 

which is fine, except that it doesn't solve the recursion problem. All we have managed to 

do is rephrase it as: Point = GenPoint[Point], with Point still on both sides of the 

equation. 

This is nonetheless interesting, in that Point is unchanged by the application of 

GenPoint to itself, hence it is called a fixpoint of the generator GenPoint. The fixpoint 

theorem in the λ-calculus states that a recursive function is equivalent to the limit of the 

self-application of its corresponding generator. To understand this, we shall apply 

GenPoint to successive types and gradually approximate the Point type we desire. Let the 

first approximation be defined as: Point0 = ⊥. In this, ⊥ stands for the undefined type
2
, 

meaning that we know nothing at all about it. The next approximation is: 

Point1 = GenPoint[Point0] = {x : → Integer;  y : → Integer;  equal : ⊥ → 

Boolean} 

                                                           
2 The symbol ⊥ has the name "bottom" (seriously).  It is typically used to denote the "least defined" 

element. 
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Point1 can be used as the type of points whose x and y methods are well-typed, but equal 

is not well-typed, so we cannot use it safely. The next approximation is: 

Point2 = GenPoint[Point1] = {x : → Integer;  y : → Integer;   

     equal : Point1 → Boolean} 

Point2 can be used as the type of points whose equal method is also well-typed, because 

although its argument type is the inadequate Point1, we only access the x and y methods 

in the body of equal, for which Point1 gives sufficient type information. The Point2 

approximation is therefore adequate here, because the equal method only "digs down" 

through one level of recursion. In general, methods may "dig down" an arbitrary number 

of levels. What we need therefore is the infinitely-long approximation (the limit of the 

self-application of GenPoint): 

Point = GenPoint[GenPoint[GenPoint[GenPoint[GenPoint[ ... ]]]]] 

which, finally, is a non-recursive definition of Point. Point is called the least fixed point 

of the generator GenPoint, and fortunately there is a unique solution. In λ-calculus [6] 

recursion is not a primitive notion, but infinitely-long expressions are allowed; so 

recursion can be constructed from first principles. To save writing infinitely-nested 

generator expressions, a special combinator function Y, known as the fixpoint finder, can 

be used to construct these from generators on the fly. One suitable definition of Y is: 

Y = λf.( λs.(f (s s)) λs.(f (s s)) ) 

and, for readers prepared to attempt the following exercise, you can show that: 

Y [GenPoint]  ⇒  GenPoint[GenPoint[GenPoint[GenPoint[GenPoint[ ... ]]]]] 

6 THE OBJECT CALCULUS 

The third and most radical encoding changes the underlying calculus on which the model 

is based. To appreciate this contrast, we must understand something of the λ-calculus [6], 

which was invented by Church in the late 1930s as a primitive model of computation. 

There are only two fundamental rules of the calculus: function definition (known as λ-

abstraction): 

λx.e   denotes a function of x, with body e, in which x is bound; 

and function application (known as β-reduction): 

λx.e  v  ⇒  e{v/x} denotes application of λx.e to v, yielding e{v/x}. 

These notions are familiar to anyone who has ever programmed in a language with 

functions. The β-reduction rule has the sense: "a function of x with body e, when applied 

to a value v, is simplified to yield a result, which is the body e in which all occurrences of 
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the variable x have been replaced by v". As programmers, we like to think in terms of 

passing actual argument v to formal argument x and then evaluating body e. From the 

point of view of the calculus, this is simply a mechanical substitution, written e{v/x} and 

meaning "v substituted for x in e"; and "evaluation" simply corresponds to further 

symbolic simplification. 

Abadi and Cardelli's theory of primitive objects [5] introduced the Ȣ-calculus in 

which the fundamental operations are the construction of objects, the invocation of 

methods, and the replacement of methods (useful for explaining field updates and 

overriding): 

[m = Ȣ(x) e]  denotes an object with a method labelled m 

o.m   invokes (the value of) method m on object o 

o.m ⇐ Ȣ(x) f  replaces the value of m in o with Ȣ(x) f 

Primitive operators include brackets [], the sigma-binder Ȣ, the dot selector "." and the ⇐ 

override operator. In particular, the behaviour of Ȣ(x) is different from that of λx in the λ-

calculus, in that it automatically binds the argument x to the object from which the 

method is selected. In the expression: o.m, the value of m is selected and applied to the 

object o, such that we obtain e{o/x} in the method's body. This is an extremely clever 

trick, as it completely side-steps all the recursive problems to do with self-invocation
3
. To 

illustrate, a simple point object may be defined as: 

aPoint = [x = Ȣ(self) 2, y = Ȣ (self) 3, equal = Ȣ (self) λ(p) self.x = p.x ∧ self.y = 

p.y] 

in which all methods bind the self-argument, by definition of the calculus. The x and y 

methods simply return suitable values. The equal method, after binding self, returns a 

normal function, expecting another Point p. Although we use non-primitive λ(p) and 

boolean operations in the body of equal, these notions can all be defined from scratch in 

the Ȣ-calculus. For example, a Boolean object may provide suitable logical operations as 

its methods; and even a λ-abstraction can be defined as an object that looks like a 

program stack frame, with methods returning its argument value and code-body [5]. 

We cannot dispense with recursion altogether, for the Point type requires another 

Point as the argument of the equal method. The Point type is defined as: 

Point = µ pnt [x : Integer, y : Integer, equal : pnt → Boolean] 

where µ is understood to bind pnt recursively, and the existence of recursion is justified 

by the fixpoint theorem. When giving types to the methods, Ȣ(self) is not considered to 

contribute anything to the type signature (the binding is internal); methods have the 
                                                           
3 Somewhat similar to finding out that a crafty accountant has redefined the meaning of death for tax 

purposes. But seriously, a calculus may adopt any primitive rules it likes, within credible bounds of 

minimality. 
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public types of their released bodies. The resulting object type is quite similar in 

appearance to a record type in the functional encoding scheme. The binding of self-

arguments in every method is also reminiscent of the existential encoding scheme. 

Overall, the Ȣ-calculus uses more primitive operators and has a more sophisticated 

binding rule than the λ-calculus. 

7 CONCLUSION 

We have compared three formal encodings for objects and their types. The existential 

encoding avoided recursion but suffered from an ungainly method invocation syntax. The 

functional encoding was more direct, but used recursion everywhere. The primitive object 

encoding avoided recursion for self-invocation but needed it elsewhere. Choosing any of 

these encoding schemes is largely a matter of personal taste.  In later articles, we shall use 

the functional closure encoding, partly because it has few initial primitives and reflects 

the syntax of object-oriented languages directly, but also because the notion of generators 

and fixpoints later proves crucial to understanding the distinct notions of class and type. 

In presenting the fixpoint theorem for solving recursive definitions, we also gave a 

notional meaning to the pseudo-variables standing for the current object in object-

oriented languages. In the next article, we shall develop a theory of types and subtyping, 

seeing how recursion interacts with subtyping. 
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