
This is a repository copy of The theory of classification part 6: the subtyping inquisition.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79271/

Version: Published Version

Article:

Simons, A.J.H. (2003) The theory of classification part 6: the subtyping inquisition. Journal
of Object Technology, 2 (2). 17 - 26. ISSN 1660-1769

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 2, March-April 2003

Cite this column as follows: Anthony J.H. Simons: �The Theory of Classification. Part 6: The
Subtyping Inquisition�, in Journal of Object Technology, vol. 2, no. 2, March-April 2003, pp. 17-26.
http://www.jot.fm/issues/issue_2003_03/column2

The Theory of Classification
Part 6: The Subtyping Inquisition

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the sixth article in a regular series on object-oriented type theory, aimed

specifically at non-theoreticians. The series has been investigating the notion of simple

object types and has so far developed a theory of subtyping which judges object type

compatibility from both the syntactic point of view, that is, by the type signatures of an

object's methods [1] and from the semantic point of view, that is, by the logical axioms

asserted on an object's methods [2]. In terms of the dimensions of type checking in figure

1, we have considered the exact type correspondence of signatures (box 2) and behaviour

(box 3), and the subtype correspondence of modified signatures (box 5) and refined

behaviour (box 6).

Exact

Subtyping

Subclassing

Schemas Interfaces Algebras

1 2

5

8

4

7

3

6

9

Figure 1: Dimensions of Type Checking

This kind of theory provides a much-needed tool for analysing the type safety and

behavioural correctness of programming languages. In the late 1980s and early 1990s, the

possibility that object-oriented languages might be insecure in their type systems, when

judged according to subtyping [3], caused quite a stir, particularly in the software

engineering community. This led to the greater prominence of subtype-conformant

languages [4], but also sparked a new interest in the way object-oriented languages really

seemed to behave [5]. The debate swung between the desire to force languages into

obeying subtyping and the desire to develop more sophisticated formal models of object-

http://www.jot.fm
http://www.jot.fm/issue_2003_03/column2

THE THEORY OF CLASSIFICATION. PART 6: THE SUBTYPING INQUISITION

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

oriented classes and inheritance. In this article, we take the former side (as devil's

advocate, since we shall take the latter side in a subsequent article) and examine a

number of popular object-oriented languages for their type safety, asking of each

candidate subclass: "Are you, or have you ever been, a proper subtype?".

2 A PRACTICAL TEST FOR SUBTYPING

How well do popular object-oriented languages follow the rules of subtyping? How type

secure are they generally? A quick survey may reveal hidden weaknesses or

unappreciated strengths in your favourite language. Recall that our theory deals in terms

of objects and object types (so far, we have not used the term class in any formal sense).

Practical object-oriented languages have concrete classes which define the structure and

behaviour of objects created at runtime. A class in this sense has both an implementation

aspect and a typeful aspect, in that class names are usually also treated as type identifiers.

We shall assume the same correspondence when making typing judgements here.

The main syntactic type rules of interest derive from the record subtyping and

function subtyping rules [1]. These can be expressed informally for classes-viewed-as-

types in the following way:

• Where a class S is intended to be a subtype of a class T, it must obey the

extension rule: S may add to the methods of T, but never remove any methods

from T; and the overriding rule: S may replace some methods of T, so long as the

replacement methods Ri in S are subtypes of the corresponding methods Mi in T

that they replace.

• Where a method R is intended to be a subtype replacement for a method M, it

must obey the argument contravariance rule: any arguments of R may be more

general than corresponding arguments in M, but never more specific; and the

result covariance rule: the result of R may be more specific than the result of M,

but never more general.

The main semantic behavioural rules of interest derive from the addition of new

constraints and the generalisation of constraints [2], both of which are said to strengthen

an axiom. These are converted into the more familiar assertion format below:

• Where a class S is intended to be a behavioural subtype of a class T, it must obey

the invariant strengthening rule: S may have a stronger invariant than T, but never

weaker; and the behavioural conformance rule: any replacement methods Ri in S

must be behavioural subtypes of the corresponding methods Mi in T that they

replace.

• Where a method R is intended to be a behavioural subtype replacement for a

method M, it must obey the precondition weakening rule: R may weaken M's

precondition, but never strengthen it; and the postcondition strengthening rule: R

may strengthen M's postcondition, but never weaken it.

A PRACTICAL TEST FOR SUBTYPING

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 19

In Eiffel [6], strengthening is typically obtained by adding extra assertions in conjunction

(combined with logical AND) with the existing set, making the constraint harder to

satisfy. Weakening is obtained by providing alternative assertions in disjunction

(combined with logical OR) with the existing set, making the constraint easier to satisfy.

3 SMALLTALK AND OBJECTIVE C

Smalltalk [7] is an interesting language to evaluate against these rules, since it is

considered by some to be an untyped language. From a schema-based perspective (the

first column in figure 1), everything is implemented as a uniform object type. Further

than this, the static types of variables are not given, so they cannot be checked at all.

However, it is reasonable to think of objects at runtime as having a type, corresponding to

their class identifier. This type is used implicitly during method lookup to select from

method dispatch tables. Type checking is dynamic, in the sense that type errors only

appear as "message not understood" exceptions at runtime, after a search for a given

method in the class hierarchy has failed. Smalltalk is therefore usually considered to be

weakly type checked, since it cannot detect incorrect invocations at compile time.

Fundamentally, Smalltalk expects a subclass to add to the methods of its

superclass, which follows the extension rule, and method overriding is supported, on a

name-equivalence basis. A weakness is where a replacement method sometimes derails

the operation of the original version: for example, though all Collections may add:

elements, a FixedSizeCollection may not, so it redefines the add: method to raise an

exception. This is tantamount to removing a method in a subclass, which violates the

extension rule. Smalltalk's method overriding rule is slightly stronger than it first appears,

due to the syntactic checking that is carried out upon the distinctive infix message syntax.

For example, in the Smalltalk expression:

myArray at: 3 put: 42.

the at:put: message requires exactly two arguments, one inserted after each colon, though

the precise types of these arguments cannot be specified. If this method were overridden,

the replacement method would have exactly the same name and so it would expect

exactly the same number of arguments. This allows us to assert that Smalltalk has a

rudimentary interface check in its method overriding. However, we cannot say that the

arity of methods is statically checked against invocations, since a message with fewer

arguments would simply be considered a different method instead.

Objective C [8] allows the programmer to mix plain C code, which is statically

checked according to the rules of C, with dynamically checked object message

expressions, written in the same style as Smalltalk. By default, all objects have the static

type id, the base type of all object references. A variation on this is where the

programmer may assert that an object is of a more specific object type than id. This does

not affect the dynamic binding of methods, but does allow a compiler to check whether a

method of a given name exists for that type. Given the contrasting declarations:

THE THEORY OF CLASSIFICATION. PART 6: THE SUBTYPING INQUISITION

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

id squareOne;

Shape * squareTwo;

messages sent to squareOne will not be statically checked, but messages sent to

squareTwo can be checked to see if they are defined for objects of at least the type

Shape* (pointer to Shape). A further feature of Objective C is the ability to attach type

protocols (an early foreshadowing of Java interfaces) to any class, independent of its

position in the class hierarchy. Variables bearing a protocol-type may be checked in a

similar fashion. Smalltalk and Objective C ultimately have weak syntactic type checking.

It is possible in either language to write expressions which compile, but fail at runtime

due to type-related errors.

4 C++ AND JAVA

Two languages which come closer to following the syntactic rules of subtyping are C++

[9] and Java [10]. Variables are strongly typed in both languages, such that all

expressions may be checked against the declared types of methods. By default, C++

binds methods statically unless you request dynamic binding (with the virtual keyword).

Java's methods are dynamically bound, unless marked final, in which case compilers may

choose to bind them statically, since they will never be overridden.

Like Smalltalk, these languages expect a subclass to add to the methods of a

superclass. Although it is still possible to derail methods in C++ and Java, the temptation

to do this is much reduced. Smalltalk's dependence on derailment arises from having only

a single classification hierarchy in which to factor out all behaviours. As a result, some

generic methods are declared which do not strictly apply to every subclass. By contrast, it

is possible to apply multiple and overlapping classification schemes in C++ using

multiple inheritance; and in Java using interfaces. In any case, the C++ programming

culture tends to avoid large, monolithic class hierarchies.

A different threat to C++ comes through public, protected and private modes of

inheritance. Only in the public form of inheritance does a subclass inherit the method

interface of its superclass unchanged; in the other two forms, inherited methods become

secrets of the subclass. This is equivalent to withdrawing a method in a subclass;

however, the C++ compiler recognises that this violates subtyping and correctly disallows

aliasing through superclass variables. Friend-declarations in C++ are a different matter,

which we consider alongside selective exports in Eiffel, below.

The method overriding rule in C++ and Java expects a replacement method to

have exactly the same type signature as the original. This is actually more restrictive than

the function subtyping rule requires - more general argument types and more specific

result types are allowed in a subtype method, even if accepting more general arguments

has limited practical application [3]. Another reason lies behind the choice of this

simpler, but stricter rule.

C++ AND JAVA

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 21

In both languages, method names are not unique within a class, but overloaded

versions may exist, so long as they can be distinguished by the types of their arguments:

void setDate(int, int, int); // set using day, month, year

void setDate(String); // set using "dd/mm/yy" string

A compiler must be able to resolve the most specific type of an expression to select a

unique overload. In C++, this requires a complex series of type conversions. It is difficult

to combine this with a mechanism for inferring which of several overloaded versions

should be replaced by a more specialised method type (the same replacement might

apparently override more than one original version). So, for this pragmatic reason,

overriding is restricted to methods having exactly the same type. Some recent C++

compilers allow the returned self-type (the type of this, the current object) to be

specialised during method overriding, since overloading is resolved using argument types

alone.

In terms of the syntactic rules of subtyping, Java and C++ are fairly secure. The

weakness in C++ comes from the ease with which a programmer can override the type

system and convert one type into another, even when this is not suitable. C++ allows both

explicit and implicit type coercions between its numeric, character and boolean types,

often losing information in the process (eg a long int converted up to a float). The most

potentially damaging use of typecasting is where the type information attached to a

pointer is thrown away ("casting to void*") or the pointer is converted arbitrarily into

another pointer type. For example:

Square* mySquare = (Square*) myShape;

is only safe if myShape holds an object pointer of at least the type Square*, but in

practice it could hold any type of pointer. The typecast (Square*) is not checked in C++,

such that a program could continue to run with an unsuitable value in mySquare, leading

to a system crash. In Java, this kind of type conversion is checked at runtime, rasing an

exception if myShape does not refer to an object of at least the Square type. Modern C++

has tried to address this problem by advising programmers to use the similarly-checked

type-conversion operators static_cast, dynamic_cast and const_cast, instead of simply

retyping variables.

C++ promotes the use of both value and reference types (here, we mean pointers),

which has extra implications for the implementation schema. Exact typing (box 1 in

figure 1) allows the compiler to reserve the exact amount of storage required for an

object, or a pointer. Subtyping (box 2 in figure 1) is subject to different physical

constraints for values and pointers. A pointer can be coerced to a supertype without

difficulty and the primary data is preserved via one level of indirection, though access is

limited to those fields declared in the supertype. A value can be coerced to a supertype,

but any additional subclass fields are truncated, since storage is allocated in the variable

itself, rather than via one level of indirection. For this reason, no dynamic binding can be

applied to value-types.

THE THEORY OF CLASSIFICATION. PART 6: THE SUBTYPING INQUISITION

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

C++ also has a parametric type mechanism, known as templates. Our theory does

not yet include a treatment of parametric types. However, C++ does not check template

class definitions; instead, the compiler only checks fully instantiated templates, which are

no different from regular classes. Our existing rules may handle these.

5 EIFFEL AND TRELLIS

Eiffel [6] is one language that can be evaluated against both the syntactic and semantic

subtyping rules, since it supports object and method specification using executable

assertions. Checking Eiffel's syntactic type system is still a challenge, as it offers three

different type mechanisms, known as conformance, constrained genericity and type

anchoring:

• conformance is the regular class-subclass type compatibility relationship;

• constrained genericity is a parametric typing mechanism with class constraints;

• type anchoring is an entirely novel mechanism linking the types of variables.

We only have space to consider the first of these mechanisms in the current article; the

other two mechanisms are based on insights that will form the basis for a complete re-

appraisal of the formal notion of class and classification in a later article.

Like other languages, Eiffel expects a subclass to add to the methods of its

superclasses and possibly redefine some. Early versions of the language ran into

problems over selective inheritance, whereby a subclass could withdraw a method that

was exported (ie declared public) in a superclass. From version 3.0 this was fixed and the

default behaviour is to inherit all export declarations unchanged. However, selective

inheritance crept in via the back door with the undefinition mechanism, whereby a

method's effective implementation could be suspended in a subclass, turning it back into

a deferred (ie abstract) method. While this appears to obey the letter of the law (the

method remains in the subclass's public interface), it breaks the spirit of the law (it is

illegal to invoke non-implemented methods) and we cite method derailment as a

precedent!

Eiffel's overriding rules are ambitious. Not only can you replace methods with

retyped versions, but you can also redefine attribute types in a subclass. Unfortunately,

Eiffel's overriding rules are faulty from the viewpoint of subtyping. This was the

infamous "Eiffel type failure" headline in 1989 [3]. Eiffel assumes that everything may be

uniformly specialised in a subclass: attributes, method arguments and method results.

This rubs up against strict subtyping in two places. Firstly, it is incorrect to

specialise method arguments in an overriding method. This violates the contravariant

requirement for argument-types, which asserts that these can only be more general in a

subtype method [1]. Secondly, the specialisation of attributes only works for attribute

access. At some point, an attribute must also be initialised by assignment. The assignment

operation may formally be considered to have the type signature: assign : τ → void,

where τ is the type of the value being assigned to the attribute. It is clear that

EIFFEL AND TRELLIS

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 23

contravariance is violated if a more specialised value of type σ is assigned: assign : σ →

void. Figure 2 shows how breaking contravariance may potentially lead to a runtime

crash (this example uses Eiffel 5.0 syntax):

class POINT

create make -- declare initialiser-method for a point

feature {ANY} -- public read-only access to attributes and methods

 x, y : INTEGER; -- coordinates of a point, initially 0 by default

 make(nx, ny : INTEGER) is do x := nx; y := ny end;

 equal(other : POINT) : BOOLEAN is

 do Result := (x = other.x and y = other.y) end

end -- POINT

class HOTPOINT inherit POINT

 redefine equal -- with unsafe covariant argument specialisation

feature {ANY}

 on : BOOLEAN; -- currently selected, initially false by default

 toggle is do on := not on end;

 equal(other : HOTPOINT) : BOOLEAN is

 do Result := (x = other.x and y = other.y and on = other.on) end

end -- HOTPOINT

genpt, point : POINT; -- declarations

hotpt : HOTPOINT;

same : BOOLEAN;

create point.make(3, 5); -- create standard point at (3, 5)

create hotpt.make(3, 5); -- create hotpt at (3, 5) with on = false by default

genpt := hotpt; -- alias hotpt through genpt variable

same := genpt.equal(point); -- invoke hotpt's equal, with only a point arg!!

Figure 2: Eiffel Covariant Type Failure Example

The salient issue is that equal : POINT → BOOLEAN is replaced by equal : HOTPOINT

→ BOOLEAN, incorrectly specialising the argument type. When the replacement method

is invoked through the general variable genpt : POINT, statically it appears to be safe to

supply point : POINT as its argument. However, when HOTPOINT's equal method

executes by dynamic binding, it tries to access the non-existent on attribute of this plain

POINT argument. If unchecked, this will cause a memory segmentation fault.

Eiffel's designer eventually decided to fix both of these problems in a non-

standard way [11]. Rather than change the type rules to obey strict subtyping, covariant

argument-type redefinitions are flagged, such that unsafe combinations of aliasing and

polymorphic invocation are detected immediately. The same technique is used to trap the

polymorphic invocation of methods which have been suspended in descendent classes

(both are known as polymorphic CAT-calls, standing for change in availability or type).

Technically, this solution works, although mathematically it does not address the basic

soundess issue.

THE THEORY OF CLASSIFICATION. PART 6: THE SUBTYPING INQUISITION

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

By contrast, Eiffel's semantic redefintion rules follow exactly the semantic

subtyping requirements as stated in section 2 above. This means there is an inconsistency

between Eiffel's syntactic and semantic redefinition rules: the conflict is over redefined

method arguments, between the precondition weakening rule and the (incorrect)

argument specialisation rule. One accepts more, the other less. Paradoxically, the correct

semantic rules were derived by thinking about contracts between client and supplier

objects. The language Trellis [4] applies the same thinking to its syntactic type rules, in

which redefined method arguments may only become more general. Trellis is the only

language in our survey whose syntactic type rules follow exactly the subtyping

requirements in section 2.

A different type-related issue is raised by Eiffel's selective export mechanism. A

class may export separate lists of features to ANY (public visibility), to NONE (protected

visibility) or to an arbitrary set of client classes. This has the curious consequence that the

public interface of a class may appear to change, depending on who its client is! Types

are no longer fixed, but are chameleon-like interfaces that change colour according to

context. C++ raises similar issues with its friend declarations. Arbitrary functions, or

whole classes, may be declared a friend of another class, in which case the friends have

total freedom of access. So, the public interface of a class may appear different to its

friends than to other clients. Friendship declarations are not inherited. So, aliasing an

object through a superclass variable offering extra friendship privileges may break its

intended encapsulation. Eiffel's selective exports are inherited unchanged, which is better.

6 CONCLUSION

The subtyping inquisition has bared the type systems of several popular object-oriented

languages and found most of them guilty of violating subtyping in one way or another.

Syntactically sound subtyping is exhibited by Trellis and Java, although Java is less

flexible in its redefinition rule. C++ would be as good as Java, were it not for unchecked

typecasting. Eiffel is retrospectively type-safe, due to the polymorphic CAT-call rule,

even though it strictly violates soundness. None of the surveyed languages apart from

Eiffel seriously promote verifying the behaviour of a class. Where full use is made of

Eiffel's assertion mechanism, then a subclass may be shown to conform to the behaviour

of its parent class. However, in all these languages, it is still possible to redefine methods

to execute in arbitrary ways, resulting in unpredictable behaviour in substitutable

components.

The fact that these faults do not give rise to system crashes more often than they

do is explained mostly by the fact that programmers strive to write code in a consistent

way, adopting style guidelines over and above what the type systems are capable of

checking. It typically takes more than one unusual circumstance to trigger a type-related

fault - for example, the Eiffel type-failure examples [3] were manufactured

retrospectively by theoreticians, working backwards from the formal rules of subtyping.

Up until that point, no system failures had been reported as being due to this particular

Conclusion

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 25

fault. In practice, you are less likely to want to compare a HOTPOINT with a more

general POINT than you are with another object of the same type. So, how is it that

subtyping cannot express this? Such will be the focus of the next article in the series.

REFERENCES

[1] A J H Simons. �The theory of classification, part 4: Object types and subtyping�,

Journal of Object Technology, vol. 1, no. 5, November-December 2002, pp. 27-

35. http://www.jot.fm/issues/issue_2002_11/column2

[2] A J H Simons. �The theory of classification, part 5: Axioms, assertions and

subtyping�, Journal of Object Technology,vol. 2, no. 1, January-February 2003,

pp. 13-21. http://www.jot.fm/issues/issue_2003_01/column2

[3] W Cook. �A proposal for making Eiffel type safe�, Proc. 3rd European Conf.

Object-Oriented Prog., 1989, 57-70; reprinted in Computer Journal 32(4), 1989,

305-311.

[4] C Schaffert, T Cooper, B Bullis, M Kilian and C Wilpolt. �An introduction to

Trellis/Owl�, Proc. 1st ACM Conf. Object-Oriented Prog. Sys., Lang. and Appl.,

pub. ACM Sigplan Notices, 21(11), 1986, 9-16.

[5] W Cook and J Palsberg. �A denotational semantics of inheritance and its

correctness�, Proc. 4th ACM Conf. Object-Oriented Prog. Sys., Lang. and Appl.,

pub. ACM Sigplan Notices, 24(10), 1989, 433-443.

[6] B Meyer. Object-Oriented Software Construction, 2nd edn., Prentice Hall, 1995.

[7] A Goldberg and D Robson. Smalltalk-80: The Language and its Implementation,

Addison Wesley, 1983.

[8] B J Cox and A J Novobilski. Object-Oriented Programming: an Evolutionary

Approach, 2nd edn., Addison Wesley, 1991.

[9] B Stroustrup. The C++ Programming Language, 3rd edn., Addison Wesley,

1997.

[10] C S Horstmann and G Cornell. Core Java 2, Volume 1 - Fundamentals, Sun

Microsystems Press, 2003.

[11] B Meyer. �Beware polymorphic cat-calls�, Eiffel forum at 18th Conf. Tech.

Object-Oriented Lang. and Sys. (TOOLS Pacific), Melbourne, 1995; also

available through:

http://archive.eiffel.com/doc/manuals/technology/typing/cat.html.

http://www.jot.fm/issues/issue_2002_11/column2
http://www.jot.fm/issues/issue_2003_01/column2
http://archive.eiffel.com/doc/manuals/technology/typing/cat.html

THE THEORY OF CLASSIFICATION. PART 6: THE SUBTYPING INQUISITION

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the

Department of Computer Science, University of Sheffield, where he

leads object-oriented research in verification and testing, type theory

and language design, development methods and precise notations. He

can be reached at a.simons@dcs.shef.ac.uk.

mailto:a.simons@dcs.shef.ac.uk

