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The Theory of Classification 
Part 10: Method Combination and 
Super-Reference 

Anthony J H Simons, Department of Computer Science, University of 
Sheffield, U.K. 

1 INTRODUCTION 

This is the tenth article in a regular series on object-oriented type theory, aimed 
specifically at non-theoreticians. Recent articles have presented a formal model of 
classification that differs from the conventional model of types and subtyping [1, 2]. The 
popular object-oriented languages fall into two groups – those based on simple types and 
subtyping, such as C++ and Java, and those based on polymorphic classes and 
subclassing, such as Smalltalk and Eiffel [2, 3]. A programmer’s class has a formal 
interpretation at the typeful level [2] and a concrete interpretation the implementation 
level [3]. In the theory, we have been careful to distinguish classification from 
inheritance. 

Classification is the hierarchical relationship between classes, whereby one class is 
judged to be a subclass of another, according to type rules governing subclassing [2]. 
Inheritance, on the other hand, is a short-hand mechanism for defining a new class in 
relation to an existing class1, specifying what is new or different, and otherwise inheriting 
all existing features [3]. This presents an interesting formal challenge. If inheritance is 
indeed merely a short-hand, we should be able to prove in our theory that a class 
constructed by inheritance is equivalent to a class defined as a whole, from first principles 
[3]. This challenge is made more complicated by the possibility of method combination, 
the merging of local and inherited versions of a method. Furthermore, Smalltalk and Java 
can invoke inherited versions of methods through a pseudo-variable called super. So, our 

                                                           
1 Popular books on object-oriented programming sometimes confuse these notions, referring to the 
hierarchical relationship as “inheritance”.  Strictly speaking, inheritance is just the extension mechanism.  
However, an inheriting class will typically be a subclass, but only by virtue of obeying the rules about 
classification [2]. 
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theory must be able to explain the meaning of super, and show how super-method 
invocations are eventually equivalent to ordinary method invocations. 

2 METHOD COMBINATION 

So far, our treatment of inheritance and method overriding has assumed that individual 
methods are always replaced as a whole. For example, in the previous article [3] we 
replaced an equal method of a two-dimensional point: 

 equal a λp.(self.x = p.x ∧ self.y = p.y) 

in which self refers to a Point2D instance, by an equal method of a three-dimensional 
point: 

equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) 

in which self refers to a Point3D instance. On the surface, the overriding method appears 
to be syntactically quite similar to the method that was replaced. In most object-oriented 
languages, programmers don’t have to write out such replacement methods long-hand; 
instead the languages offer a short-hand mechanism for adapting the inherited version of 
the method. The idea is that the overriding method may somehow reuse the code body of 
the inherited method and need only specify what additional computations take place. This 
is known as method combination. 

In C++ and Eiffel, method combination is achieved simply by naming the local and 
inherited versions of the method differently. In C++ it is always possible to qualify 
method names globally by their owning class, in the style: ParentClass::method and 
ChildClass::method. So, the redefined body of the Child’s method may invoke 
ParentClass::method explicitly, by referring to its global name. In Eiffel, the name of a 
method may be locally renamed when it is inherited, in the style: class Child inherit 
Parent rename method as old_method … end. Then, the body of Child’s method may 
invoke old_method. In both of these cases, invoking an inherited method inside a 
redefined version is no different from invoking any other differently-named method. 

Smalltalk and Java achieve method combination in a much more interesting way. 
These languages have a pseudo-variable called super, which somehow allows a 
programmer to invoke an inherited version of a method inside the redefined version of 
the same method, without renaming the method. In the theoretical model, we can express 
Point3D’s equal method more simply as: 

equal a λp.(super.equal(p) ∧ self.z = p.z) 

In this, super somehow stands for the current object in the context of the parent class. 
Whereas an invocation self.equal(…) would call the local version, super.equal(…) is 
deemed to call the inherited version of the same method. It is quite difficult to understand 
exactly what object super refers to! By the end of this article, we hope to answer this 



 
 
 
 
 
 

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 45 

important question. However, one consideration is that the sub-expression: 
super.equal(p) must eventually be shown to be equivalent to the portion of code in the 
long-hand version of the method:  self.x = p.x ∧ self.y = p.y. 

3 RENAMING METHODS 

To handle method combination in C++ and Eiffel, we must first consider how to rename 
methods in the theoretical model. In C++, we could either decide that the global names 
exist permanently as alternative, duplicate names for the same methods, or we could 
introduce them on demand, when we want to combine methods. In Eiffel, however, we 
must allow methods to be renamed locally, on demand, during inheritance. Recall that 
inheritance is modelled as record combination in the theoretical model [3], in which a 
base record is extended by combining it with a record of extra methods, to yield a derived 
record: 

derived = base ⊕ extra 

Intuitively, we now want to rename methods in the base record, then combine this with 
the extra record. For this, we need a renaming operator ®, and expect to use it in the 
following way: 

derived = (base ® renamings) ⊕ extra 

in which renamings is a map from original labels to revised labels. In the same style as 
the union with override operator [3], we may define the renaming operator to accept an 
object record (a map from labels to methods) and a record of renamings (a map from 
labels to labels) and return a new object record in which some labels have been replaced: 

∀α, β . ® : (α→β) × (α→α) → (α→β) 
® = λ(f:α→β).λ(g:α→ α). 
  { k a v | ∀h ∈ dom(f) . v = f(h) ∧ 
   (h ∈ dom(g) ⇒ k = g(h)) ∧ 
   (h ∉ dom(g) ⇒ k = h)  } 

The top line is a polymorphic type signature [1], saying that ® takes two maps with the 
individual type signatures (α→β) and (α→α), and returns a map with the signature (α→
β). The type α is the label-type, and β is the method-type in the object record. Note how 
the object-type of the result is unchanged, reflecting that methods have merely been 
renamed. 

The full definition follows. This says that ® takes two argument maps, f and g (with 
the given types) and produces a result map (the whole expression in braces). This result is 

the set of all those maplets k a v that satisfy the following conditions (after the vertical 
bar | ). For all original labels h in the domain of the base object f, if h is also listed in the 
domain of the renamings g, the resulting label k is equal to the translation g(h), otherwise 
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k is equal to the original label h. The corresponding values v are always equal to f(h), as 
in the original object map. Recall that f(h), g(h) denote range values by appealing to the 
functional interpretation of maps: f(h) “applies” the map f to the domain value h, yielding 
the corresponding range value. 

We can use this operator to rename methods of an object. Here is a simple Point2D 
instance: 

aPoint2D = µ self . { x a 3, y a 5, identity a self, 
  equal a λp.(self.x = p.x ∧ self.y = p.y) } 

in which we wish to rename the equal method with a longer, qualified name, old_equal: 

aPoint2D ® {equal a old_equal} 
 = µ self . { x a 3, y a 5, identity a self, 
  old_equal a λp.(self.x = p.x ∧ self.y = p.y) } 

The renaming operator ® takes, as its operands, the object and a map of renamings (see 
bold highlight), yielding an object in which the equal method has been renamed. 

4 METHOD COMBINATION WITH RENAMING 

This allows us to construct a model of inheritance with method combination supported 
through renaming. The following is an expression to derive aPoint3D from aPoint2D by 
renaming its equal method and then supplying a redefined version, which refers back to 
the old version: 

aPoint3D  =  µ self . ( (aPoint2D ® {equal a old_equal}) ⊕  
  { z a 2, equal a λq.(self.old_equal(q) ∧ self.z = q.z) } ) 

The left-hand operand of the record combination operator ⊕ is a renaming expression 
(see first bold highlight), in which the equal method is renamed before combination. The 
right-hand operand of ⊕ is a record of extra methods, in which the redefined equal 
method invokes the renamed method old_equal in its body (see second bold highlight), 
thereby benefiting from the more succinct syntax offered by method combination. 

We want to show that this method combination syntax is equivalent to a regular, 
wholesale method replacement. Simplifying the renaming expression yields a base record 
(see bold highlight): 

aPoint3D  =  µ self . ( { x a 3, y a 5, identity a aPoint2D,  
  old_equal a λp.( aPoint2D.x = p.x ∧ aPoint2D.y = p.y) } 
  ⊕ { z a 2, equal a λq.(self.old_equal(q) ∧ self.z = q.z) } ) 



 
 
 
 
 
 

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 47 

which in turn may be combined with the record of extra methods (see [3]) to yield the 
following unusual record, in which inherited self-references are resolved to aPoint2D, 
while the local self is bound over aPoint3D: 

aPoint3D  =  µ self . { x a 3, y a 5, z a 2, identity a aPoint2D, 
  old_equal a λp.( aPoint2D.x = p.x ∧ aPoint2D.y = p.y),  
   equal a λq.(self.old_equal(q) ∧ self.z = q.z) } 

The resulting object has both the renamed method old_equal and the redefined version 
equal. This is quite normal in languages with renaming. Note that we have deliberately 
given these two functions different formal argument names, p and q, in order to observe 
what happens to object references in the next stage. We now want to understand the 
precise meaning of the redefined equal in detail. To do this, we may simplify the 
embedded call to the old version of the method (see bold highlight above). This 
simplification is equivalent to replacing the call by the inlined body of the old_equal 
method, after substituting the argument {q/p}, viz the evaluation: 

self.old_equal(q) ⇒ (aPoint2D.x = q.x ∧ aPoint2D.y = q.y) 

This internal simplification is performed exactly like any other function simplification; 
and may be thought of as an evaluation in which the call is replaced by the body after 
arguments have been substituted. In this case, the actual argument q (a Point3D instance) 
is substituted in place of the formal argument p (a Point2D variable) yielding the 
simplified form: 

aPoint3D  =  µ self . { x a 3, y a 5, z a 2, identity a aPoint2D, 
  old_equal a λp.( aPoint2D.x = p.x ∧ aPoint2D.y = p.y),  
   equal a λq.(aPoint2D.x = q.x ∧ aPoint2D.y = q.y ∧ self.z = q.z) 
} 

This demonstrates formally how the derived equal method does indeed compare all of the 
x, y and z dimensions of the Point3D instance q. However, note how the body of this 
method suffers from the same kind of schizophrenia that we have noted before [2, 3] 
when dealing with simple object types. The local binding is self ← aPoint3D, whereas 
the inherited self ← aPoint2D.  After the internal simplification, the combined method is 
comparing mixtures of 2D and 3D points for the equality of their x and y fields! For this 
reason, we cannot yet regard this kind of method combination as wholly equivalent to 
defining a replacement method wholesale. 

5 FLEXIBLE METHOD COMBINATION WITH RENAMING 

The problem is one of ensuring uniform self-reference in both local and inherited 
methods. Recall that in Eiffel, self-reference is flexible, such that inherited occurrences of 
self (known as current in Eiffel) are redirected to refer to the derived object. In the formal 
model, this requires the use of an object generator to express the object definition [3]: 
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genAPoint2D = λ self . { x a 3, y a 5, identity a self, 
  equal a λp.(self.x = p.x ∧ self.y = p.y) } 

This is different from a plain object in that self is a formal argument of the generator. As 
such, we can bind it to different values, representing the different objects that self may 
range over. Inheritance is modelled as an adaptation on generators [3]. We now add the 
renaming scheme to this model: 

genAPoint3D  =  λ self . ( (genAPoint2D(self) ® {equal a old_equal}) 
 ⊕  { z a 2, equal a λq.(self.old_equal(q) ∧ self.z = q.z) } ) 

The critical difference is in the way self-reference is modified, through the generator 
application: genAPoint2D(self), yielding an adapted record in which self refers to the new 
object. After simplifying the renaming-expression (see bold highlights above and below), 
this yields: 

genAPoint3D  =  λ self . ( { x a 3, y a 5, identity a self, 
   old_equal a λp.(self.x = p.x ∧ self.y = p.y) }  
 ⊕  { z a 2, equal a λq.(self.old_equal(q) ∧ self.z = q.z) } ) 

and after record combination, this yields a result in which both equal and old_equal 
methods co-exist, but all self-reference is now uniform: 

genAPoint3D  =  λ self . { x a 3, y a 5, z a 2, identity a self, 
   old_equal a λp.(self.x = p.x ∧ self.y = p.y)  
   equal a λq.(self.old_equal(q) ∧ self.z = q.z) } 

We now simplify the body of the equal method, by expanding inline the call to 
old_equal: 

genAPoint3D  =  λ self . { x a 3, y a 5, z a 2, identity a self, 
   old_equal a λp.(self.x = p.x ∧ self.y = p.y)  
   equal a λq.(self.x = q.x ∧ self.y = q.y ∧ self.z = q.z) } 

This yields the final result (see highlights) in which self refers uniformly to the current 
object. This is a satisfactory outcome, in that it meets our requirement that method 
combination should be provably equivalent to redefining the method wholesale. Because 
of its special treatment of current, Eiffel’s method combination with renaming follows 
this semantics. 

6 THE MEANING OF SUPER 

However, it may be considered inelegant for objects to keep both the old and new 
versions of a method. Having to rename methods is irksome and keeping both versions is 
redundant, especially if you only want the old version once, during method combination. 
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For this reason, languages like Smalltalk and Java provide “one time access” to the 
inherited versions of methods, when redefining the same methods, through a special 
pseudo-variable called super: 

equal a λp.(super.equal(p) ∧ self.z = p.z) 

It is clear that super must refer in some sense to the current object, somewhat like self, yet 
different from the point of view of method lookup. The operational explanation of super-
method invocation is typically that “the search for a method starts in the immediate 
superclass of the class of self” [4]. Other attempts at describing super sometimes say that 
it is “the inherited object” or “the embedded parent-part of the current object”. In fact, the 
meaning of super is subtle and varies from language to language, as we shall show below. 

We may construct a model of super from the operational description of method 
lookup. The most obvious way of invoking the “next most general” version of a method 
in our theory is to ensure that we select it from the “next most general” version of the 
object-instance with which we are dealing. In other words, if our most recently derived 
object is expressed as: 

derived = base ⊕ extra 

such that we would expect derived.method to invoke the latest version of some method, 
then base.method should be the expression that invokes the next most general version of 
the same method, skipping over any redefinition supplied in the extra record. From this 
analysis, it seems clear that super is equivalent to the base object record, in a record 
combination expression. 

In the theory, this object is always supplied as the left-hand operand to the record 
combination operator ⊕ (see bold highlights below). Recall that in record combination 
with simple object records (see section 6 in [3]) we have: 

aPoint3D  =  µ self . (aPoint2D ⊕ { z a 2,  
 equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) } ) 

which indicates that this operand is in fact equivalent to an instance of the base type. This 
gives the meaning of super in Java, a language based on simple types and subtyping in 
our theory. The variable super corresponds to the embedded parent-part of the current 
object, self, or more exactly to the inherited parent-part before any fields are replaced 
during record combination. It has the type super : Point2D and behaves exactly like an 
instance of the base type, in that self-references in super-methods refer back to super. 

On the other hand, in flexible record combination with object generators (see section 
7 in [3]) we have the completely different left-hand operand: 

genAPoint3D  =  λ self . (genAPoint2D(self)  ⊕  { z a 2,  
   equal a λp.( self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) } ) 

which is an adapted record, obtained by applying the base generator to the new self 
reference (of the derived generator). This gives the exact meaning of super in Smalltalk, a 
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language based on classes and subclassing in our theory. The variable super is like an 
adapted instance of the parent type, in which self-reference is redirected to refer to the 
current, derived object. It has an adapted type given by the application of a type generator 
super : GenPoint3D[Point2D] and behaves differently from an instance of the base type, 
in that self-references in super-methods refer to the whole of the current, derived object, 
rather than to an embedded parent instance. 

7 METHOD COMBINATION WITH SUPER-REFERENCE 

In order to model method combination with super-reference in our theory, we need to 
introduce the super variable, and bind it to a value standing for the (possibly adapted) 
parent instance, such that we may refer to super throughout the record combination 
expression, in the style: 

super  ⊕  { z a 2, equal a λq.(super.equal(q) ∧ self.z = q.z) } 

The variable may be introduced as the formal argument of a function: λsuper.(…) which 
is later bound to a suitable value. The order of variable introduction is dictated by the 
need for super to be bound outside the scope of record combination, but inside the scope 
of self: 

aPoint3D  =  µ self . (λsuper . (super ⊕ { z a 2,  
   equal a λq.(super.equal(q) ∧ self.z = q.z) } ) 
   aPoint2D) 

Here, the expression λsuper.(…) is a function, binding super, whose body is a record 
combination expression that contains free references to super as intended. This super-
function is then applied to the value:  aPoint2D. To verify that this is equivalent to 
regular record combination, we may simplify the super-function application internally, 
with the binding super ← aPoint2D, to obtain: 

aPoint3D  =  µ self . ( aPoint2D ⊕ { z a 2,  
 equal a λq.(aPoint2D.equal(q) ∧ self.z = q.z) } ) 

Firstly, we see that super is replaced by the desired parent object on the left-hand side of 
the combination operator. Secondly, we find that super.equal(…) translates exactly into 
an expression invoking the equal method of a parent instance, which is promising, since 
it clearly skips the current version. To simplify this internally, we replace the call by the 
inlined body of the parent’s method, after substituting the argument {q/p} as before. 
After record combination: 

aPoint3D  =  µ self . { x a 3, y a 5, z a 2, identity a aPoint2D, 
   equal a λq.(aPoint2D.x = q.x ∧ aPoint2D.y = q.y ∧ self.z = q.z) 
} 
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this yields a non-uniform solution similar to that in section 4 above, but without duplicate 
versions of the equal method. This model of method combination explains the behaviour 
of languages like Java, in which super always resolves to an instance of the immediate 
parent type. 

The more flexible kind of method combination with object generators may be 
modelled as: 

genAPoint3D  =  λ self . (λsuper . (super ⊕ { z a 2,  
    equal a λq.(super.equal(q) ∧ self.z = q.z) } ) 
    genAPoint2D(self)) 

in which the super-function is bound differently with super ← genAPoint2D(self). Note 
in passing how self must be bound before we can bind super. This time, super does not 
denote a parent instance, but rather an adapted object, the result of applying the parent 
generator to self. To explore further what this means, we may simplify the super-function 
application internally, yielding: 

genAPoint3D  =  λ self. (genAPoint2D(self) ⊕ { z a 2,  
 equal a λq.(genAPoint2D(self).equal(q) ∧ self.z = q.z) } ) 

From this, it appears that the super.equal(…) invocation is equivalent to invoking equal 
on an adapted parent object. This is quite subtle, because self-reference is redirected in 
this object onto the new self of 3D points. We can illustrate this more graphically by 
expanding super: 

super = genAPoint2D(self3D)  
  = { x a 3, y a 5, identity a self3D, 
   equal a λp.( self3D.x = p.x ∧ self3D.y = p.y) } 

From this, it is clear that super.equal will select the inherited equal method body, in 
which self refers back to the local Point3D instance. Furthermore, super.equal(q) will 
produce the argument substitution {q/p}, where q is implicitly a variable of the type 
Point3D: 

super.equal(q)  ⇒  (self3D.x = q.x ∧ self3D.y = q.y) 

When this subexpression is replaced in the body of the local equal method, we obtain a 
combined equal method, which has consistent self-reference and an argument in the same 
type: 

equal a λq.( self3D.x = q.x ∧ self3D.y = q.y ∧ self3D.z = q.z)  

Method combination using super-reference is thereby proved to be equivalent to 
redefining the method wholesale. Note how the more subtle semantics of super is needed 
for this to work out fully. Cook et al. were the first to identify this formal interpretation of 
super in Smalltalk [5, 6], from the operational description of inheritance in that language. 
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8 CONCLUSION 

We have constructed four different models for inheritance with method combination. 
Two involve the renaming of methods, in the style of C++ and Eiffel.  Two involve the 
use of the pseudo-variable super, in the style of Java and Smalltalk. While C++ and Java 
have a simple model of inheritance, based on the extension of object records, Smalltalk 
and Eiffel have a more subtle model of inheritance, based on the extension of object 
generators. Hereafter in our theory, we shall refer to the simple extension model as 
derivation, to distinguish it from “genuine” inheritance, in which self-references are 
redirected to refer to more specific objects [3, 5]. 

Considering each approach to method combination individually, the first uses 
derivation and renaming. The second uses inheritance and renaming, of which Eiffel is 
the exemplar. The third uses derivation and super-reference, of which Java is the 
exemplar. The fourth uses inheritance and super-reference, of which Smalltalk is the 
exemplar. An even simpler model exists for C++, if we allow objects to have two names 
for each method, one local and one global: 

equal a λp.(self.x = p.x ∧ self.y = p.y) 
Point2D_equal a λp.(self.x = p.x ∧ self.y = p.y) 

and adopt the convention that only the local names are ever overridden. In this way, we 
can express the combined equal method for Point3D as: 

equal a λq.(self.Point2D_equal(q) ∧ self.z = q.z) 

which simplifies in accordance with our first model, above. The method combination 
strategies using inheritance were shown to be equivalent to wholesale method 
replacement, demonstrating again the usefulness of the theoretical model. The model also 
provided the pseudo-variable super with two semantic interpretations, corresponding to 
the meanings of this variable in Java and Smalltalk. We also provided an original 
renaming operator ® to account for Eiffel’s behaviour. 
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