This is a repository copy of The theory of classification part 19: the proliferation of
parameters.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79262/

Version: Published Version

Article:
Simons, A.J.H. (2005) The theory of classification part 19: the proliferation of parameters.
Journal of Object Technology, 4 (5). 37 - 48. ISSN 1660-1769

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ff——

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 5, July - August 2005

The Theory of Classification Part 19:
The Proliferation of Parameters

Anthony J H Simons, Department of Computer Science, University of
Sheffield, UK

1 INTRODUCTION

The Theory of Classification is an informal series of articles considering the formal
notions of type and class in object-orientadguages. The seribggan by constructing
models of objects, types, anmtheritance, then branched ouiiinteresting areas such as
mixins, multiple inheritance and generic classes. Most recently, we returned to the core
argument that simple types and subtypiage formally different concepts from
polymorphic classes and subclassing. Thevipus article [1] described how object-
oriented languages were unclear aboutdiséinction between simple and polymorphic
types, so we described one possible appraaevhich class names (which are used like
type identifiers) were interpreted unambiguously eithesimple types, or polymorphic
classes, according to context.

In the current article, we consider more detail the kinds of manipulations
performed upon polymorphic class-types.e$é are expressed using function-bounded
type parameters of the form<: F[t], where F is a type function, describing the shape of
the interface that the typeis expected to satisfy [2ln the following, we motivate the
need for parameters and bounded parameters, then examine what happens when we
require a language to express all of itsypwrphism in this way. The result is a
proliferation of parameters and constraints, which has both good and bad consequences.
On the positive side, it is clear over witgtes the polymorphic viables may range. On
the negative side, the syntax of such langsdggromes inflated with parameters and is
therefore somewhat unwieldy.

Cite this column as follows:Anthony J H Simons: “The Theory of Classification Part 19: The
Proliferation of Parameters”, in Journal of Object Technology, vol. 4, no. 5, July-August 2005,
pp.37-48 http://www.jot.fm/issues/issue 2005 07/column4

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_07/column4

GVL_/THE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

2 POLYMORPHISM NEEDS PARAMETERS

Throughout this series, we have made it rctbat wherever polymorphism is intended,

this formally requires the use of a typeamaeter, to stand for the group of types over

which the function is defined [3]. For example, consider howdéity function applies

to a value of any type and returns an identigdlie, and the result &f the same type as

the argument. To define such a function in C++, we must use the template mechanism:
template <class T»>

T identity (const T arg) // argument is not modified
{ return arg; // returns a copy of arg

}
in which the line t enpl at e <cl ass T>" introduces the type paramet&r which
stands for any type. This function can belaga to values of may different types in
C++, including primitive types, pointers and structured object types:

returns an int

returns a double

returns a Point* pointer
returns a Point value

int x = identity(5) ;

double y = identity(3.14);
Point* p = identity(new Point) ;
Point q = identity(Point (2, 3));

NN
NN

The polymorphic function appears to be “srhécause it somehow detects the type of

its argument and returns a value of the exact same type. In C++ this is accomplished by
the compiler, which statically detects the argument's type and creates a specific
instantiation of the template function at compile time. In fact, for every distinct
instantiation of theidentity function, the compiler musgenerate a new copy of the
identity function. In the Bd, it is as if the above pragn contained four differemdlentity
functions, with the overloaded type signatures:

int identity (int arg) ;
double identity(double arg) ;
Point* identity (Point* arg) ;
Point identity (Point arg) ;

and then C++’s normal rules for selecting amether overloaded function were used to
determine which function to apply.

In the A-calculus, which is a very simplerspol-manipulation system, we bind the
type parameter explicitly, supplying the intkeed type. The calcu$ cannot detect by
itself that a value has any particular type ssleve tell it so. A polymorphic functions
therefore accept type arguments and value arguments, in that order [3]. The identity
function is defined:

identity :Vt.t—>1 /[for all t, accept & and return a
identity =At . A(arg :7) . arg /l bindt, then bindarg : t, then returrarg

38 JOURNAL OF OBJECT TECHNOLOGY VoL. 4,NO. 5

ff—

and we apply it to values of different typesthe following style, in which we supply
first the type argument, thenvalue argument of that type: -

identity int5 = 5
identity double 3.14= 3.14

Readers will recall that &-function simply binds its arguments in a left-to-right fashion
and so doesn’t need to putetlarguments in parentheses. darlier articles, we have
sometimes adopted the convention of wragpype arguments in brackets [] and value
arguments in parentheses () to help teader visualise what is going on inside the
function.

Second-order functions like the above am@lyetwo functions, one nested inside the
other. The outer function is a type-functiamdathe inner function ia value-function. In
the above examples, we supplied both the type argument and then the value argument. If
we only supply the first type argument, thte result we get badk the second function,
which is the body of the first fution, in which the type parametehas been replaced:

identity int = A(arg : int) . arg /I replaceby int: {int/t}
identity double = A(arg : double) . arg // replaeeby double: {doubles}

and this models the effect of C++'’s type argiation, since it retusa specific version of
the identity function, readip be applied to a value of one particular type.

3 CLASSES NEED BOUNDED PARAMETERS

Throughout this series, we have argued thads-types are algmlymorphic things and
therefore need to be modelled using tygrameters [3, 4, 1]. The main difference
between a universal polymahic function, such aslentity, and the kinds of function that
belong to a restricted class, suchphass, minus, times anddivide, is that we want these
functions to apply not just to any old type, loualy to those types which are considered to
be “at least some kind of numbem earlier articles, we demonstrated that this required
the introduction otonstraints, or bounds on the type parameter. We defined the interface
of a number class using a type function:

GenNumber #c.{plus : 6 - o, minus :c — o, times :c — o, divide :c - o}
and then used this to constrain a typeapeeter, in the function-bounded style [2, 4]:

V(t <: GenNumber]]) . (... some definition involving ...)
How does this constraint express whatmean by a class? The intention is thahay
only range over certain types in a type familyy @hat the constraint literally says is “all
typesrt that are subtypes ofdhype you get when you appBenNumber to thet type”.

To unpack this further, recall that we started with a simple model of objects as
records, whose labelled fields are functiompresenting the object’'s methods. The types

VoL. 4,NO. 5 JOURNAL OF OBJECT TECHNOLOGY 39

OVL_/THE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

of objects are therefore represented by retgpds, whose fieldare the corresponding

type signatures of the object’s methods. The notion of subtyping we need, in order to
understand this constraint, tiserefore record subtyping [5]. The record subtyping rule
permits a type with more fields to besubtype of a type with fewer fields.

So, returning to the original problem, imagine that we expectrieger type to
belong to the class of numbers. Therefbneeger must be one of the types that satisfies
the above constraint, in other words expect the following to be true:

Integer <: GenNumber[Integer] which we can re-express as:

Integer <: {plus : Integer> Integer, minus : Integer Integer,
times : Integer> Integer, divide : Integer> Integer}

by applyingGenNumber[Integer] and seeing what kind oécord-type we get when we
substitute {nteger / o} in the body of the generator. Sawhat this constraint is really
saying is that thénteger type must have at least asnmganethods as theecord type on
the right-hand side. This is easy enough to satisfy if welgteger all of those methods;
and we could possibly give it more methods, sucmadulo : Integer — Integer, which
returns a remainder.

So, this kind of bounded type parameter captures exactly the sort of constraint we
need when defining groups of functions thaply to all the types in a given class and
only to those types. We mayrite the polymorphic type glus andminus in the style of
methods:

V(t <: GenNumber]]) . t.plus it >t
V(t <: GenNumber])) . t.minus it >t

This says that, for all numeric typesselecting thelus or minus methods from an object

of type t will return a function that accepts the remaining argument of the same type
and this will also return a result of the type Alternatively, we can write the
polymorphic type oplus andminus in the style of regular functions:

plus :V(t <: GenNumbent]) . Tt — (t - 1)
minus :V(t <: GenNumber]]) . Tt — (t > 1)
which are now clearly seen to accept two argats, the first of which is the receiver

object, from which the method is to bees#éd. The remaining argument and result type
are as above.

4 BOUNDED PARAMETERS IN FUNCTIONAL LANGUAGES

Our notion of a class is exacttite same as the notion type classes in the strongly-
typed functional programming languages. Tdnaguage Haskell [6] defines polymorphic
functions using type parameters and sometimesds to assert that these parameters

40 JOURNAL OF OBJECT TECHNOLOGY VoL. 4,NO. 5

range over certain restricted classes of sy the following example of a polymorphic
function to compute theengt h of a list, 1] ” denotes a list-type anda" denotes a
type parameter:

length :: [a] -> Int
length nil = 0 -- empty case
length (head : tail) = 1 + length tail -- non-empty case

The first line is a type signature, saying thaingt h takes a list of any polymorphic

element type[‘a] ” and returns a result of tHent type. This is a universal polymorphic

function, rather likadentity earlier. Thd engt h can be computed, irrespective of what
type of element we choose for the list.

However, the polymorphic function for list membership cannot be defined in quite
the same way. To determine list membership, the body altbenfunction needs to be
able to compare the suppliedwawith successive elementstbé supplied list, using the
equal function £=". So, the polymorphic element type must be one thiat tise class of
types possessing an equal function. In Haskell, this is represented by the constrdia “

a”, which has the sense “any polymorphic typen the Eq class”. Elsewhere, Haskell
defines theeq class as the class df those types possessing=" and “/ =" (not equal).
The definition ofel emis given by:

elem :: Egq a => a -> [a] -> Bool

elem x nil = False -- empty case

elem x (head : tail) -- non-empty case
X == head = True -- found the element
otherwise = elem x tail -- keep searching

in which the constraintEq a =>" on the first line has the sense: “provided that the type
a is a member of thEq class, then this function takes an element of the dyged a list

of the typeg a] and returns 8ool result”. The effect of thislass constraint is to ensure
thatel emcan only apply to lists, whose elen®ehave a well-defied equal function. If
this constraint were not present, then laskell compiler would refuse to compile the
definition ofel em because it could not guarantee that== head” was a well-typed
expression. This, by the way, contrasts withapproach taken in C++, which allows you
to write arbitrary expressions involving vabies with parametric types, because C++
doesn’t compile or check any of its templdefinitions. It simply waits for these to be
instantiated, and then checks that all dals are well-typed for each instantiation,
separately.

VoL. 4,NO. 5 JOURNAL OF OBJECT TECHNOLOGY 41

OVL_/THE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

In the A-calculus, we can express such a <la$ types with quality, using a type
generator to constrain the polymorphic typeapaeter to accept only types that have at
least the two functionequal andnotEqual:

GenEqual sic.{equal :c — Boolean, notEqualc — Boolean}

V(t <: GenEqualf]) . (... some definition involving ...)

The above F-bound provides theaekmeaning of Haskell’'sEg a => ...” constraint.

It was quite satisfying to find this convergenbetween the notion of class put forward in
the Theory of Classification, and the notion of “type classes” in functional programming
languages, because it means thataveeall probably on the right track!

5 CLASSES WITHIN CLASSES NEED NESTED PARAMETERS

After a while, the realisation comes thaverywhere you want polymorphism, you
formally need another type parameter.isThas interesting ansequences when you
consider more complex classes that are builbwipof a number obther classes as their
“elements”. Simple examples include the kiofdgeneric classes we considered in an
earlier article [7]. Foexample, if we have kist class whose self-type is expressed as the
parameter, and if thisList has a methothsert accepting elements of some other class,
whose polymorphic type is expressed as the parameten in which order should these
be declared?

The solution to this quandary iound by thinking about the notion of type
dependency. The element-type may exist byfjtbat the list-type depends in some way
upon the element-type in its definitiohhat is, for whatever element typeve imagine,
the list self-typesc somehow depends on the typetofThis is natural, since we would
expect arnintegerList to depend on itgnteger elements, whereasRealList would have
Reals as its elements. We therefore introduckeforec, since this keeps within the
second-order A-calculus, in which type parametensly range over simple types [3]. That
is, we introduces in a context in which is already bound to some actual typecsstan
range over simple types also.

To see how the type parameters stack up, let us construct the type signature for a
genericList class with a methodem to test whether the inserted elements are members
of the list. From section 4 above, we know that this puts a constraint on the element type,
which must have aequal method to compare itself with other elements. Therefore, we
will first require a type generator é&xpress the shape of the element type:

GenEqual sit.{equal :t1 — Boolean, notEqualt — Boolean}

42 JOURNAL OF OBJECT TECHNOLOGY VoL. 4,NO. 5

The shape of the list’s interface is esgsed through a second type generator:

GenList =At.Ac.{insert :t — o, head z, tail : o,
length : Integer, elemr:— Boolean}

which now recognises that there areotywarameters invoed. The first ist for the
element-type. We can see this by apply(BgiList to some actual element type, say
Integer, to see what kind of/pe-expression this produces:

GenlList[Integer] =sAo.{insert : Integer— o, head : Integer, tailc,
length : Integer, elem : Integer Boolean}

The result substituteddteger/t} in the body of the generatoreturning a nested type
function beginningic.{...}. This looks exactlylike the shape of a galar type generator
for a non-generic class, and sasit The second type parametestands for the self-type
of this class. We need this because wedwaling with polymorphic classes, not simple
types. That is, the above definition itminimum common interface for a variety of
different list-types, which might include moreesjmalised list-types, such as sorted lists.

What is the form of the F-bound constrathit ensures thaiur list self-typec
ranges over only those lists whi@hhave elements with aaual-method and (ii) have a
list-interface that ineldes all of the methodsisert, head, tail, length andelem? This is a
constraint constructeasing both of the above two type generators:

V(t <: GenEqualf]).V(c <: GenListf, o]).
(... some definition involving andc ...)

What is interesting here the double quantificatin. On the outside, wassert that the
element typer may only range over subtypes GénEqual[t], that is, types with at least
the methodsequal andnotEqual. Then, on the inside, wesast that the self-type may
only range over subtypes GenList[t, o], that is, types wittat least the methodsisert,
head, tail, length andelem, provided that is of the earlier specifietype. This is the way
in which the constraint for the list-type deys on the element-typ&ranslating this into
object-oriented programming terms, the palyphic type of a class depends on the
polymorphic types of the other classes whicheferences internally. More precisely, it
depends on those classes which affieetshape of its external interface.

6 SUBCLASSING USES PARAMETER SUBSTITUTION

Assume now that we wish torilee a more specialised kind bfst class, say &ortedList

of elements which are inserted automatically in ascending oleedList has two new
operationdeast andgreatest, to return the smallest and largest elements and otherwise
has all the operations oflast. Below, we define the polymorphic type of tBartedList

class by inheritance, constting the new constraint partfyom information present in

the old one. Afterwards, we show how thevrenstraint presergethe old constraint.

VoL. 4,NO. 5 JOURNAL OF OBJECT TECHNOLOGY 43

OVL_JTHE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

To permit the sorting ofelements when they areserted, elements must be
comparable with each other usihegssThan. This means that the constraint on the
element-type will be stronger than the one required for a pigilement. The new type
generator must at least have the interfac&mfal, otherwise the oldist membership
methodelem would not work. The new generat@enComparable is therefore defined to
extend the interface @enEqual:

GenComparable zw».(GenEqualp] U {lessThan w — Boolean,
greaterThan® — Boolean})

= \w.{equal :® — Boolean, notEqual® — Boolean,
lessThan & — Boolean, greaterThanm — Boolean}

In the above, the new element type parameter Ehis is introduced on the outside, then

the result is formed internally as the union of the old interface and the extra methods.
Note that the inherited interface is given IBenEqual[w]. This essentially applies the

old generator to the new parametard &reates a record type in whick/{} has been
substituted throughout:

GenEqualp] = {equal :® — Boolean, notEqual® — Boolean}

and this inherited record type can kafely unioned with the additional method
signatures. A similar trick is used to extend thg generator to produce ti@rtedList
generator:

GenSortedList Am.Ay.(GenListw, y] U {least :®, greatest w})

=l o. Ay {insert :® — y head w, tail : y, length : Integer,
elem .o — Boolean, least®, greatest w}
Note again how this creates an inherited version of th&isidnterface by applying the
old generator to the new parametéssnList[w, y]. This returns a record type in which
{o/t, y/c} have been substituted throughout:

GenListf, y] ={insert :® — y head o, tail : vy,
length : Integer, elemw — Boolean}

and this inherited record type can be Baimioned with the new method signatures.
Previously, we noted that the reason for sulistguyparameters like this was to ensure, in
the inheriting class, that the self-type was consistently denoteg¢ father than a

mixture of newy and oldo) [3, 4]. Now that weare dealing with nested classes, the rules

must be applied recursively for the eksmh type, which must be consistently
throughout.

The stronger constraint for our neSertedList class, which ensures that the type
paramteny ranges over only thosgpes which are at leaSortedLists of Comparable

44 JOURNAL OF OBJECT TECHNOLOGY VoL. 4,NO. 5

ff—

elements, is given by a nested F-bound thatien in terms of the two new generators,
but is otherwise similar to the nested F-bound forsa -

V(o <: GenComparable]]). V(y <: GenSortedListp, y]).
(... some definition involving andy ...)

7 SUBCLASSING IS THE INCREASING OF TYPE CONSTRAINTS

What is even more sophisticated in thisdal of inheritance ishe preservation of the
constraints on all the type parameterschiecally, we are sulifuting parameters
bounded by one set of constraints with new parameters bounded by a different set of
constraints. Are the substitutions all legal? dmthis, we check the expectations made
internally by thetype generators.

When we applyGenEqual[w], we substitute §/t}. Now, thet-parameter expects to
receive a type satisfying: <: GenEqual[t], in other words, a type with at least the
interface of theEqual class. It so happens that wmee replacing ong@arameter with
another parameter, rather than an actual.teeinstead, we have to consider all the
types that might be allowed by tlmew parameter. The new paramederexpects to
receive a type satisfyingy <: GenComparable]w], in other words, any type with at least
the interface of th€omparable class. So, we have to ensure that all types that we could
substitute foko will also be acceptable types for the paramet&ormally, we determine
this using the pointwise subtypindey4], checking the assertion:

Vvt . GenComparable] <: GenEqual]

By inspection, theComparable interface includes th&qual interface, no matter what
value we supply fot, so this substitution is proven legitimate.

A similar process happens when we ap@gnList[m, y], causing the substitutions
{o/t, y/c}. We follow the same argument far, and then a similar argument fgras it
replaces the parameter. Eventually, we conclude &h any type which we could
substitute fony will also be an acceptable type for the parametess a result of the
pointwise rule:

V1 .Vo . GenSortedList], o] <: GenListf, o]

This expresses the assertion that the interfac8srtddList andList stand in a pointwise
subtyping relationship, no matter athtypes we substitute farandc. By inspection of
the two interfaces, we conclude this hoksis the substitution is proven legitimate.

In general, the derivation of subclas$elfows a process of monotonic restriction
(steadily increasing, or stabt®nstraint) on all the type parameters involved. The kinds
of restriction that are permitted can be mtatkeas a kind of commuting diagram, shown
in figure 1.

VoL. 4,NO. 5 JOURNAL OF OBJECT TECHNOLOGY 45

OVL_JTHE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

{w/t} = {y/c}
V(t <: GenEquaff]). ——— P V(0 <: GenComparablef]).
V(o <: Genlistft,0]) . © V(y <: GenListfo, y]) .y

{wiv}
{oit, yic}

¥V (m <: GenComparablej]).
V(v <: GenSortedListp, y]) . ¢

Figure 1: Commuting diagram of increasing constraints

This shows that you can start with a polymorphicdisif elements with equality, and
can choose to restrict the elertgype, giving a similar lisy of comparable elements

with less-than ordering, and then constrain the list further to a sorted lgith
comparable elements. Alternatively, both restrictionsn the element-type and list-type
may be carried out simultaneously, whichiligstrated by the diagonal path. A fourth
substitution path, changing a ltstto a sorted listy without changing the element type is
not possible, according to the diagram. TikiBecause a sorted list depends on having a
comparable element-type.

One new thing that the diagram shows is that substituting one of the “type elements”
of the main class, here, the elemirtype of the list, leads tochange in the self-type also.
Merely choosing to substituten{t} with a more constrained element-type entails the
substitution of the self-typey{c} in figure 1. This is something rarely considered in
informal treatments of object-oriented typgstems. Why has the self-type of the list
changed? Well, the result of one access method is typad: T for the original list; but
after we have substitutedobft}, then we would expect this method to return a different
type: head : ®. Therefore, this must be tinead of a different type ofist. Jens Palsberg
and Michael Schwartzbach were the firsteixplore the consequéalt effects of type
substitutions to any significant degree in abjeriented type systems [8]. This is still a
relatively new area, the st of continuing research.

8 CONCLUSIONS

We have shown how a proper treatmenbbject-oriented polymorphism involves the

use and manipulation of constrained type peters. In particular, the polymorphic type
intended by a class identifier in object-orienpgdgrams is quite a complex notion. It is a
parametric type, restricted to receive onjpds with a certain interface structure. But
more interestingly, the parametric type depends in turn on all the type elements of the
class in question. So, the polymorphic aliasirigone of these element-types may also
affect the type of the whole class. Ihgithe operation of inhgance, many type
substitutions are performed, both of the adetnypes and the da’s self-type. This

46 JOURNAL OF OBJECT TECHNOLOGY VoL. 4,NO. 5

ff—

follows a pattern which gradually increas#®e constraints on all type parameters
monotonically, restricting the types which ynaventually be valid members of the -
subclass.

Very few attempts have been made so far to build a practical object-oriented
programming language based on entirely petaic treatments of polymorphism. One
attempt was by Simona al. in the early 1990s [9, 10]n the experimental language
Brunel, simple types were written in the usual wayxad: nt eger ; y: Bool ean; and
polymorphic class-types we written using exit type parametersp: P, where
#Poi nt [P] introduced the parameter and esgwed the F-bound constraint tRas in
the class ofPoints. However, the language eventyaproved unwieldy, due to the
stacking up of type parameteiSvery class that itself canibed further class-elements
had to declare the element-types up front. For larger classes, this was a considerably high
overhead and eventually was judged impcat for a real programming language. It
seems that the most practical way ahdaolukl be to design languages that can keep
track automatically of all the complex, anderdependent type substitutions. This might
eventually lead to a wholeew kind of compiler technology.

REFERENCES

[1] A J H Simons, “The theory of daification, part 18: Polymorphism through
the looking glass”Journal of Object Technology, 4(4), May-June 2005, 7-18.
http://www.jot.fm/issues/issue_2005_05/columnl

[2] P Canning, W Cook, W Hill, WOIthoff and J Mitchell, “F-bounded
polymorphism for objectHtented programming’Proc. 4th Int. Conf. Func.
Prog. Lang. and Arch. (Imperial College, London, 1989), 273-280.

[3] A J H Simons, “The theory of classifiban, part 7: A classs a type family”,
Journal of Object Technology, 2(3), May-June 2003, 13-22.
http://www.jot.fm/issues/issue 2003 05/column2

[4] A J H Simons, “The theory of daification, part 8:Classification and
inheritance”,Journal of Object Technology, 2(4), July-August 2003, 55-64.
http://www.jot.fm/issues/issue_2003_07/index_html

[5] A J H Simons, “The theory of cladication, part 4:0bject types and
subtyping”, Journal of Object Technology, 1(5), November-December 2002,
27-35http://www.jot.fm/isses/issue_2002_11/column2

[6] S Peyton-Jones et allhe Haskell 98 Language and Libraries. the Revised
Report (Cambridge, UK: CUP, 2003)270pp. Also pub. as special edn.
Journal of Functional Programming, 13(1), January, 2003. Online version:
http://www.haskell.org/onlinereport/

VoL. 4,NO. 5 JOURNAL OF OBJECT TECHNOLOGY 47

http://www.jot.fm/issues/issue_2005_05/column1
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2002_11/column2
http://www.haskell.org/onlinereport/

GVL_/THE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

[7]

[8]
[8]

[9]

A J H Simons, “The theory of clagisation, part 13: Teplate classes and
genericity”, Journal of Object Technology, 3 (7), July-August 2004,, 15-25.
http://www.jot.fm/issues/issue_2004 07/index_html

J Palsberg and M | Schwartzba€ject-Oriented Type Systems (Chichester:
John Wiley, 1994).

A J H Simons, Low E-K and Ng Y-M,An optimising delivery system for
object-oriented softwareQbject-Oriented Systems, 1 (1) (1994), 21-44.

A J H Simons,A Language with Class. The Theory of Classification
Exemplified in an Object-Oriented Programming Language, PhD Thesis,
Department of Computer Science, itarsity of Sheffield (Sheffield, 1995),
255pp.

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching Quality
in the Department of Computer Soiee, University of Sheffield, where
he leads object-oriented researclvamification and testing, type theory
and language design, developmenthmnds and precise notations. He
can be reached atsimons@dcs.shef.ac.uk

48

JOURNAL OF OBJECT TECHNOLOGY VoL. 4,NO. 5

http://www.jot.fm/issues/issue_2004_07/index_html
mailto:a.simons@dcs.shef.ac.uk

