The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of The theory of classification part 16: rules of extension and the
typing of inheritance.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79258/

Version: Published Version

Article:
Simons, A.J.H. (2005) The theory of classification part 16: rules of extension and the typing
of inheritance. Journal of Object Technology, 4 (1). 13 - 25. ISSN 1660-1769

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ff——"

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 1, January-February 2005

The Theory of Classification
Part 16: Rules of Extension and the
Typing of Inheritance

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the sixteenth articl|® a regular series on objeatiented type theory for non-
specialists. Earlier agies have built up.-calculus models of objéx [1], classes [2],
inheritance [3, 4] and gerie template types [5]Classification describes the way in
which typed objects fit into a hierarchy ofaskes, which nest inside each other [3].
Inheritance is the short-hand mechanism forfidaing a subclass by extension from
another class, specifying ontppe additions and modification® the base class [4].
Previously, we have motled the inheritance ofype [3] and implementation [4] and
combined both of these in a modeltgbed inheritance [6]. We showed how short-hand
inheritance expressions can be simplified/ield a canonical subclass definition that is
type compatible with the base superclassnfiwhich it was derived. Further aspects of
inheritance have included method combinafitip mixin inheritarce [8] and inheritance
among generic classes [5].

The current article examines the mechanigrnmheritance in more detail, looking at
the constraints on what may or may notameled to a class dag inheritance. Most
object-oriented languages havstritions on the types aiverriding methods, to ensure
that the resulting subclass is still type cofiiga with the superclass. This requires more
precise rules about the typing ®f the inheritance operatd?reviously, we thought a
as a polymorphic map override operator thatld combine two maps of any types,
irrespective of the types ofdHields. We now require inhigance to be properly typed, in
the second-order F-boundgetalculus, so that we can restrict the kinds of extension that
are deemed legal. The extended type tggulfrom inheritanceis shown to be an
inter section type [9].

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 16: Rules of
Extension and the Typing of Inheritance”, in Journal of Object Technology, vol. 4, no. 1, January-
February 2005, pp. 13-25. http://www.jot.fm/issues/issue 2005 01/column2

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_01/column2

vL_IH{—FHEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF
o INHERITANCE

2 MERGING RECORDS AND RECORD TYPES

In the Theory of Classification, we modelobjects as simple records of functions,
representing their methods, aigject types as the corresponding record types, containing
the signatures of these methods. This |lgada model of inheritance based on record
union with overriding, denoted by the operatorintuitively, this ceates a longer record
by combining two shorter records:

derived = basé® extra

in which thederived result contains the uniaof all the fields otbase andextra, but fields

from extra are preferred over any iderdlty-labelled fields frombase in the result [3].

This right-handed preference &f models the notion obverriding in object-oriented
languages, in which thderived class may replace some of the methods present in the
base class with redefined vsions supplied in thextra extension.

So far, we have always usé@lin a context where the replacement fields have the
same types as the originalrg®ns. As a consequence, Wwave been able to construct
Derived record types using simple set uniorto merge the two sets of type signatures in
the correspondinBase andExtra type-records:

Derived = Base s Extra

We think of objects as sets of maplets fréabels to functions, and object types as
corresponding sets of maplets from label$utaction types. It igeasonable to think of
the merger of two record types as the set uniotheir respective sets of maplets, since
any fields with identical labels will also have identical types.

Merging in the subtyping model

In the subtyping model [10], we must consitler possibility that fiels of different types
may be merged. This is because the recordyping rule allows fields to be replaced by
subtype fields. In this case, we cannotws® merge the recorgpes. The following is a
plausible definition of aecord subtype by extension:

Vehicle = {owner .— Person, home-» Location}

Car = Vehicle® {home :— Garage, range : Litres Kilometres}
= {owner :— Person, home-> Garage, range : Litres Kilometres}

That is, we wish to obtaithe subtyping relationshifar <: Vehicle. According to the
record subtyping rulgl0], this requiresCar to have at least as many fields\ahicle (it
has one more) and requires any replacement fields to be subtypes. Tierfield—
Location is replaced byhome : — Garage, so the subtyping condition is only met if

14 JOURNAL OF OBJECT TECHNOLOGY VoL.4,No. 1

MERGING RECORDS AND RECORD TYPES O?L_/

Garage <: Location, which is plausible. We us®, rather thanu, to combine the two
record types, because we wish the right-higppes of any common fields to be retained N
in the result.

The above model could be used in langsddes Java and C++, which are based on
types and subtyping. However, in thesaglaages, a replacement method is typically
expected to havexactly the same type as the method it replaces. In more recent versions
of C++, the type othis is allowed to be more specific in the result of a replacement
method. The overriding rules of Trellis are closest to the subtyping model, allowing both
method argument and result types to changaccordance with the function subtyping
rule [10].

Merging in the subclassing model

In the subclassing model, we merge generadocs type generatorsather than objects

and object types [3, 4]. A cawuis thing happens when marg records according to the
(F-bounded) parametric model: the parametges instantiated or replaced before any
record combination occurs. This means that references to different parametric types on
the left and right hand sides become unifteefore record combination. As a result,
record combination always merges recondsose common fields have the same types.
The following illustrates a simple type generator example, in which a (somewhat
simplified) Integer-class generator is defined by extension fromNamber-class
generator:

GenNumber 3c.{plus : ¢ — o, equal . — Boolean}

Genlinteger #t.(GenNumberf] U {minus :t — 1, equal :t — Boolean})
=\t {plus : T — 1, minus T — 1, equal T — Boolean}

We obtain the subclass relationshigr. Geninteger[t] <: GenNumber[t]. This is
achieved by making sure th@eninteger has more fields tha@enNumber and that the
common fields are typed in terms of parameters which can be unified before record
combination occurs. In the inneype-record combination expressioBenNumber|[t]
causes the substitution of/&} in the body ofGenNumber, such that the record types on
both sides of the uniow have field types which refer to the self-type uniformlycas

and, in particular, the common fieédual has the same type:— Boolean on each side

of the union.

In fact, it is always the case, in the subclassing model, that self-type parameters are
unified before record combination. Likewjsgeneric type parameters may be unified
before combination [5] (see also 5.4 below). So, the simpler uniaf type-records
appears to be all that weed in the sublassing model.

VoL.4,No. 1 JOURNAL OF OBJECT TECHNOLOGY 15

vL_IH{—FHEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF
o INHERITANCE

3 SUBSETS, SUBTYPES AND TYPE INTERSECTIONS

Throughout this series, we have been carefulistinguish the notation for the subset
and subtype <: relationships. This is becahserelationship betwedhe two depends on
whether we are thinking about the set of ealun a concrete type, or the set of type
signatures in a record type. These two sebttbtic constructions are different, and they
correspond to differergubtyping relationships.

Concrete versus abstract representation

The fundamental relationship is that typesyrba modelled as sets. When we assert that
an element is of a particul&éype, this is equivalent (in ¢hmodel) to asserting that the
element is a member of a particular set:

X:T=xeT “x is of type T means that x is in the set T”
From this it follows that a subtype may be modelled as a subset:

S<T=ScT “S is a subtype of T means that S is a subset of T”

In the universe of types, we want to show flfiat: S and S <: T, then x : T also. In the

universe of sets, x T follows from xe S and Sc T, by the defiition of the subset
relationship:

ScT=VYVx.xeS=SeT “Sis a subset of T means thatif xisin S,
then xisalsoin T”

This is the fundamental relationphiwhich applies to types defin@dncretely as sets.

When we move to defining typetstractly, in terms of their syatctic signatures, then
the relationship is different. A record typeth more signatures detes a subtype of a
record type with fewer signatures. For exajifl the following record types are defined:

S = {plus : Integer» Integer, minus : Integep Integer}

T = {plus : Integer Integer}

then it is clear that S is the larger recorplet and contains the signees of T, which we
express as € S in the universe of signature-basgpets. However, it is also clear that S
denotes a subtype of T, because every objattstitisfies the interface S will also satisfy
the interface T. The reod subtyping rule (see [10]) expresses this fact.

Intensional versus extensional definition

There are grounds for confusion here: in one model, we say:TSbut in the other
model, we say: E S. The difference is that, in the first model, we are comparing sets of

16 JOURNAL OF OBJECT TECHNOLOGY VoL.4,No. 1

SUBSETS, SUBTYPES AND TYPE INTERSECTIONS O?L_/

values, but in the second model, we are canng sets of type signatures. To see how
these both ultimately reflect the same subtypiglgtionship, we have to distinguish the -
intensional andextensional definitions of a type.

e Theextension of a type is the enumeration oktket of elements that it contains,
for example, thé&oolean type has the extensiornfa{se, true}

e Theintension of a type is the enumeration oktket of properties that characterise
the type, for example, the (existentially defined [Bjpolean type has the
intension:

Boolean=3b.{not: b— b, and : b« b— b, or : bx b— b,
implies : bx b — b}

followed by a set of axioms definirige meanings of these operations.

To unify the concrete and abstract views b, it is easiest to imagine the extension of
the type, that is, the set of values (or objeptspulating the type. Ti$ is the usual view
adopted in type theoretical treatments. dbject-oriented progmming, we usually
characterise a class intensionally, that isitdyroperties (type sighares). From this, we
have to imagine the extension of the claéisat is, the possible sef objects which could
populate it.

Intersection types

Here, we try to establish the relationship between intensional (signature-based) types and
extensional (value-based) typ&arlier, we modelled type #nsion as the union of type-
records:Derived = Base U Extra. In terms of sets of signatures, this means Baa¢ —

Derived and Extra — Derived, that is, bothBase and Extra contain a subset of the
signatures oDerived, which is a longer record type. Blye record subtyping rule [10], a
longer record type with more field signatuies subtype. According to this, the direction

of the subtyping relationship ntravariant with the direction of the signature subsets:
Derived <: Base and alsoDerived <: Extra. This is a fundamental property of type
hierarchies: the larger thetarface, the smaller the setalfjects which may satisfy it.

From this, we may reason about the extensions of each type. InstanceB&i\ba
type may also be considered instances oBtee type (and instances of tlitra type),
by the subtyping rule of subsumption. So, the extension set Batedype is larger than
that of theDerived type; likewise the extension set of thera type is larger than that of
the Derived type. Since elements of tiierived extension are also members of Base
and Extra extensions, the membership of tl¥erived extension is precisely the
intersection of the memberships of tigase andExtra extensions.

For this reason, the kinds of types crdaby merging signature-based types are
sometimes known astersection types. Instead of writingBase U Extra (in the world of
signatures), we writdBase A Extra (in the world of sts), to denote the intersection of the
Base and Extra types. Much of the fundamental research on this was done by
Compagnoni and Pierce in the mid-1990s19]. They developed a type system called

VoL.4,No. 1 JOURNAL OF OBJECT TECHNOLOGY 17

vL_IH{—FHEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF
o INHERITANCE

“System FA”, pronounced “System F-omega-meed’,higher-order type system with
intersection types.

4 CONSTRAINING THE INHERITANCE FUNCTION

Many object-oriented languages have cstniules about method overriding, during
inheritance, because they wish to presetyge compatibility (either subtyping, or
subclassing) in the derived type. In Cot Java, any replacement method must have
exactly the same type as the original methogefilaces. This imposes a constraint on the
inheritance function, which wehould like to capture in ¢hmodel. We shall try to
capture this constraint in a general enough tisay it will apply both to the first-order
subtyping model of inheritanceas found in Java, and also in the second-order
subclassing model of inheritance, which is a neoappropriate general model for object-
oriented programming, in which polymorphatasses and simpletypes are actually
distinct notions.

The extend inheritance function

Inheritance is only well-defined if tHextra record provides fiels whose types “merge”
with the types of th@&ase record. This “merge” condition is expressed as a consivhint
between the two record-types in the fallog F-bounded, second-order definition of the
inheritance functiomxtend, which we shall now use place of the earlier unconstrained
@ map override operator:

extend :VBase.V(ExtraM Base). Base» Extra— (Basen Extra)
= ABaseA(ExtraM Base)A(base : Base).(extra : Extra).
{ label— value | (labekE dom(base)lu dom(extra)a
(label € dom(extra)= value = extra(label))
(label ¢ dom(extra)= value = base(label)) }

This definition says that:ektend takes two type argumenBase andExtra, whereExtra

must satisfy the type-merge condition wigase, then two record argumentsgse : Base

and extra : Extra, and constructs a result by merging the two records, which has the
intersection typeRase A Extra). The result is a map of label-value pairs, such that the set
of labels is the uoin of the domains dbase andextra, and the values are preferentially
taken fromextra, if the label is present iextra, otherwise taken frorbase.” (Note that
base(label) maps to theralue oppositdabel in thebase map [4]).

Readers will note that the body eftend is identicalto the body of® in earlier
articles [4]. These two functions earessentially the same, except tlesend is now
properly-defined in the second-ordecalculus, with type argumentBgse andExtra) as
well as value argumentbgse andextra). The type arguments were conveniently omitted
from the earlier definition ofd, which we imagined could bapplied directly to two
record values. We can retpesctively definghe operato® in terms ofextend:

18 JOURNAL OF OBJECT TECHNOLOGY VoL.4,No. 1

CONSTRAINING THE INHERITANCE FUNCTION O?L_/

V. Ve. @p .= extendf,e]

This creates a simply-typed version®ffor each pair of records we wish to combine. S
Really,® is just a short-hand faxtend with two types already supplied.

The M type-merge condition

The all-important type-merge conditidvi is a constraint that restricts the record-types
that are allowed to be substituted for tdra type argument. Although this is a rather
special condition, constructedrfthe purpose of typg inheritance, its syntactically no
different from other kinds of restriction, such as the F-bowitd<: F[t]), which restricts

a typert to be a subtype of some gerteraexpression. Here, we restrigktra to range
over those record types whose field-types rem® a particular relationship with the
types of theBase fields. The constrain¥l is defined as follows:

VBase.VExtra. ExtraM Base ::=
Vlabel e dom(Base)» dom(Extra). Base(label) = Extra(label)

This says: “For all type8ase and Extra, the type-merger conditioBxtra M Base is
defined as being satisfied, ifor all common fields inBase and Extra with identical
labels, the corresponding types are also equal”.

For this, we must assume that the notion of “type equality” is well-defined. In full,
this might be expressed by a whole set ofsukor the model of inheritance used in the
Theory of Classification, we require the following kinds of type equality:

t=t -- identity of simple types

T=1 -- identity of type parameters

(SxT)=(SxT) -- equality of produdiypes, where S, T ::= t|

(S>T)=(S—>T) -- equality of funtion types, where S ::=t|| Tx T
and T ::=tq

where t is a simple type,is a type parameter, and Bare metavariables ranging over
simple types and type parameters. (Type rules sometimes use metavariables like this to
save having to repeat the same rulesimple types and parametric types).

Constrained typed inheritance

The result ofextend is well-defined ifExtra M Base (“Extra merges withBase”). This

rule constrains inheritanceguenough to behave exactlydikyped inheritance in Java,
but disallows certain other kinds of initance For example, the Trellis-style of
inheritance in section 2.1 iow ruled out by the type-mergendition, because a field is
replaced by a field which hagddferent type. TheBase andExtra records have the types:

VoL.4,No. 1 JOURNAL OF OBJECT TECHNOLOGY 19

vL_IH{—FHEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF
o INHERITANCE

Base = {owner :» Person, home-> Location}
Extra = {home — Garage, range : Litres Kilometres}

and the common labels idom(Base) N dom(Extra) = {home}. However, when we
compare the corresponding types, we find tBase(home) = Location andExtra(home)
= Garage. So, we establish that commdield-types are not identicaBase(home) =
Extra(home), and therefore thatl is not satisfied. To passehlype-merge condition, the
Extra record would have to redefine theme field with the same typehome : —
Location, as in Java.

By deliberate design, the same type-mergéz allows the kindf unions of type-
records we require for the merger of paramseel record types, ich are used in the
subclassing model of inhtance. Repeating the ample from section 2.2:

GenNumber 3c.{plus : ¢ - o, equal . — Boolean}

Genlinteger #t.(GenNumberf] U {minus :t — 1, equal :t — Boolean})
=\t {plus : T — 1, minus T — 1, equal t — Boolean}

The Base and Extra records have the following typeafter the parameter substitution
{/c}:

Base = {plus © — 1, equal t — Boolean}
Extra = {minus t — t, equal x — Boolean}

and the common labels olom(Base) » dom(Extra) = {equal}. When we compare the
corresponding types, we find th#ase(equal) = t — Boolean, and:Extra(equal) = t
— Boolean. Intuitively, these two types are identiceormally we would need to appeal
to the equality of tw function-types (see 4.2) basedthe identity of the two argument
type parameters and the identity of the two simpBoolean result types. Ultimately, the
conditionM is satisfied, so this is a legal extension.

5 VARIATIONS ON TYPED INHERITANCE

The standard “reference” modeliaheritance consists of tlegtend inheritance function
and theM type-merger constraint. This allowsexord to be extended only if overriding
fields have the same types as in the origiieddls they replace. The resulting intersection
type is always a record-type consigtiof the union of the signatures of tBase and
Extra record types, since common fields héve same types. We now consider a number
of object-oriented languages and examine hiogir models of typed inheritance differ
from this reference model.

20 JOURNAL OF OBJECT TECHNOLOGY VoL.4,No. 1

VARIATIONS ON TYPED INHERITANCE O?L_/

Inheritance in Smalltalk

Smalltalk is not strongly typed. Howevecertain rules arestill observed about
inheritance. A method can gnbverride another method if its untyped “signature” is
structurally similar, for example, the methatdput: always has the structural form:

at: anindex put: anltem

Any method in a descendant class must lihgesame name and structural form in order

to override this method. So, the “arity” ofiethod arguments and results is always
preserved, although nothing can be said abairttividual types of each argument or
result. Smalltalk can distinguish product types t from basic types, but apart from

this, all basic types (and parameters, consideringsdiiahas an F-bounded parametric
type) are indistinguishable, and so must be considered equivalent. So, for Smalltalk, we
should have to redefine the notion of type equality to alewt = ¢ = 1 for all simple
typess, t and all parametess, t.

Inheritance in Trellis

The type-merger condition above is too resing to describe inh#ance in Trellis.
Trellis allows full subtyping irits overriding rules, that jsnethods may be replaced by
other methods whose arguments have morergé types and whose results have more
specific types, according to the contragati and covariant parts of the function
subtyping rule. To handle Trellis, we should modify our definitioMof

VBase.VExtra. ExtraM Telis Base ::=
Vlabel e dom(Base)» dom(Extra). Extra(label) <: Base(label)

This now allows field types in thExtra record to be subtypes of common fields in the
Base record. The resulig intersection typ8ase A Extra may contain finer intersections
of field types, for example, the extensionvehiclein 2.1.:

{owner : — Person, home—> Location} A
{home :— Garage, range : Litres Kilometres}
= {owner : — Person, home-» (Locationn Garage),
range : Litres» Kilometres}
= {owner : —> Person, home-> Garage, range : Litres Kilometres}

requires the nested intersectituocation A Garage = Garage. (ConstructivelyGarage is
the largest type which is a subtype of bGtrage andLocation).

Inheritance in Java and C++

The original type-merger condition describesactly the constrainbn inheritance in
Java, in which all replacement methods nizste exactly the same types as the methods
they replace. This strict equalityearly describes the condition in C++, apart from the
relaxation that applies to returned sgibe¢s. We can express this relaxation as:

VoL.4,No. 1 JOURNAL OF OBJECT TECHNOLOGY 21

vL_IH{—FHEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF
o INHERITANCE

VBase.VExtra. ExtraM c.++ Base ::=
Vlabel e dom(Base) dom(Extra).
Vo. Base(label¥ (c — Base)= Base(label) = Extra(labelN
Vo. Base(label) = — Base)= Extra(label) =& — Basen Extra)

saying that replacement methodsstiave the identical typemsless they return the self-
type, in which case methods of the function type> Base must be replaced by methods
of the function types — (Base A Extra). The resulting intersection tyfdgase A Extra
will be a subtype oBase.

C++ may also have type parameters in its method signatures, téntpkate class
mechanism is used (and so will Java, freersion 1.5 onward). The notion of type
equality must therefore allow for the comparison both of exact types and type parameters
(see 4.2).

Inheritance in Eiffel

The overriding rules of Eiffel allow methotts be replaced by methods whose arguments
and results are both uniformly specialised. Tikisiot legal within a simple subtyping
regime; but Eiffel is not based on the subtgpmodel of inheritance. Elsewhere, Eiffel
implicitly evolves the self-type (the type afirrent) under inheritancand anchors other
types to the self-type, esgially in binary methodssuch as the infix “+” method in the
Numeric class:

infix “+” (arg : like current) : like current

Because of this, it is tempgy to think of Eiffel as following the F-bounded subclassing
model of inheritance, in which “like current” is actually a parametric typé the kind:
V(o <: GenNumeria§]). Eiffel also has generic armbnstrained generic parameters:

class SortedList [T—> Comparable] ..end

which areexactly the same notion as F-bounds. Thinkloé constrained type parameter
T as a parametric typ&i(t <: GenComparable]). So, it makes most sense to think of
Eiffel as belonging to the second-order fignof languages, along with Smalltalk and
Flavors.

This being the case, the reference detinitof type-merge is adequate to capture
Eiffel's model of inheritance. You simply have to imagine thatEiffel class-types are
in fact parametric types, which are orilyed when object instances are created. The
model of inheritance unifies lahe type parameters before combining the records. We
illustrate this with a parametric rgon of the example from 2.1 above:

! A binary method is one which accepts an argument of the sge as self. It is binary in the sense that it
deals with two objects of the same type.

22 JOURNAL OF OBJECT TECHNOLOGY VoL.4,No. 1

VARIATIONS ON TYPED INHERITANCE O?L_/

GenVehicle =\(n <: GenPersom]]).A(6 <: GenLocatior]]).
ho.{owner : — 7w, home — 0} N

GenCar =\(n <: GenPersomn])).A(6 <: GenGaragé®)]).
Mp <: GenLitresp]).M(k <: GenKilometres]).
Ao.(GenVehiclef,6] U {home :— 0, range p — «})

= Mr <: GenPersom]).A(0 <: GenGarag®]).
Mp <: GenLitresp]).A(k <: GenKilometres{]).
Ao.{owner :— 7, home — 0, range p — «}

The subclass generat@enCar reintroduces all the parametric types used within the
class, and substitutes these new parameters inside the body of the parent generator,
through the application: GenVehicigf] before merging this adapted record with the
record of extra methods. So, all commoglds have the same types before record
combination is computed, and the simple unibrsignatures is all that is required. The
notion of type equality must allow foigeality of simple types (such as Eiffel'steger

andReal types) and equality of type parametfsall class-types (see 4.2). Simons first
proposed a unified parametric model of Hifgype system in 1995 [12], in which the
self-type, anchored types, constrained gengqpes and ordinarglass-types were all
modelled using F-bounded parameters.

6 CONCLUSION

In this article, we have revisdethe notion of typed inheritanc&he Theory of
Classification describes two models of inherita one a first-order model based on
subtyping (Java, C++) and the othersacond-order model based on subclassing
(Smalltalk, Eiffel). Objects are modelled as netsy or maps from labels to methods, so
inheritance may be modelled as map uniomthwvoverride. Previously, the classical
function override operat@® was used without any constraints on the types of the records
being combined. Here, we have introduesdF-bounded second-order definition of the
inheritance function, calleektend, with a constrainM on the type of extension that may
legally be combined with any record.

We showed how, in the referee model, the constraint nedy has to ensure that
replacement fields have the same types adidids they replace. This works for Java-
style inheritance (first order) and also foff&style inheritance (second-order) in which
field types may be parametric as well agnply-typed. Variabns on this allow
replacement fields to be sypes (Trellis), or a mixture dipe-equal and subtype fields
(C++). One observation emerging from thistlat the ability to replace fields with
subtype fields is not a frequer@quirement in object-oriéed languages. The subclassing
model of inheritance only requires type-equality, because all the field types are unified
prior to combination, whether by parameter igaifion [3], or instantiation [5]. Simons
and Bruce were the first to note the poaatch between simple subtyping and natural

VoL.4,No. 1 JOURNAL OF OBJECT TECHNOLOGY 23

c”;L—IH-E‘FHEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF

INHERITANCE

models of inheritance 1B, 14]. This is what aginally motivated theTheory of
Classification.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

A J H Simons, “The theory of clagsation, part 3. Object encodings and
recursion”, inJournal of Object Technology, vol. 1, no. 4, September-October
2002, pp. 49-5Mttp://www.jot.fm/isses/issue_2002_09/column4

A J H Simons, “The theory of classificati, part 7: A class is a type family”, in
Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22.
http://www.jot.fm/issues/issue_2003_05/column2

A J H Simons, “The theory of classifiban, part 8: Classifidion and inheritance”,
in Journal of Object Technology, vol. 2, no. 4, July-Agust 2003, pp. 55-64.
http://www.jot.fm/issues/issue_2003_07/column4

A J H Simons, “The theory of classiftoan, part 9: Inheritance and self-reference”,
in Journal of Object Technology, vol. 2, no. 6, November-December 2003, pp. 25-
34. http://www.jot.fm/issues/issue 2003 11/column2

A J H Simons, “The theory of clagsation, part 13: Template classes and
genericity”, inJournal of Object Technology, vol. 3, no. 7, July-August 2004, pp.
15-25.http://www.jot.fm/issues/issue_2004_07/column2

A J H Simons, “The theory of classifiban, part 11: Adding class types to object
implementations”, inJournal of Object Technology, vol. 3, no. 3, March-April
2004, pp. 7-1%ttp://www.jot.fm/issues/issue_2004 03/columnl

A J H Simons, “The theory of clagsation, part 10: Method combination and
super-reference”, idournal of Object Technology, vol. 3, no. 1, January-February
2004, pp. 43-53ttp://www.jot.fm/isses/issue 2004 01/column4

A J H Simons, “The theory of clasgifition, Part 15: Mixinsand the superclass
interface”, inJournal of Object Technology, vol. 3, no. 10, November-December
2004, pp. 7-18attp://www.jot.fm/issues/issue_2004 11/columnl

A Compagnoni and B Piee, “Multiple inheritancevia intersection types”,
Technical Report ECSLFCS-93-275, University of Edinburgh, (Edinburgh: LFCS,
1993).

A J H Simons, “The theory of classiftgan, part 4: Objectypes and subtyping”, in
Journal of Object Technology, vol. 1, no. 5, November-December, 2002, pp. 27-35.
http://www.jot.fm/issues/issue_2002_11/column2

A Compagnoni, “Subtyping in“A is decidable” Technical Report ECSLFCS-94-
281, University of Edinburgh, (Edinburgh: LFCS, 1994).

24

JOURNAL OF OBJECT TECHNOLOGY VoL.4,No. 1

http://www.jot.fm/issues/issue_2002_09/column4
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2003_11/column2
http://www.jot.fm/issues/issue_2004_07/column2
http://www.jot.fm/issues/issue_2004_03/column1
http://www.jot.fm/issues/issue_2004_01/column4
http://www.jot.fm/issues/issue_2004_11/column1
http://www.jot.fm/issues/issue_2002_11/column2

CONCLUSION O#—/

[12] A J H Simons, “Rationalisg Eiffel's type system”Proc. 18" Conf. Tech. Object-
Oriented Lang. and Sys., eds. R Duke, C Mingins and B Meyer, (Melbourne : N
Prentice Hall, 1995), 365-377.

[13] A J H Simons, “A language with clasBhe theory of classification exemplified in
an object-oriented language”, PhD TisesUniversity of Sheffield (Sheffield,
Department of Computer Science, 1995).

[14] K B Bruce, A Fiech and L Petersen, “Subtyping is not a good “match” for object-
oriented languagesRroc. European Conf. Obj-Oriented Prog. 1997, pub. LNCS
1241, (Jyvaskyla: Springeverlag, 1997) 104-127.

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Scienddniversity of Sheffield, where he
leads object-oriented research irrifieation and testing, type theory
and language design, developmenthods and precise notations. He
can be reached atsimons@dcs.shef.ac.uk

VoL.4,No. 1 JOURNAL OF OBJECT TECHNOLOGY 25

mailto:a.simons@dcs.shef.ac.uk

