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The Theory of Classification 
Part 16: Rules of Extension and the 
Typing of Inheritance 

Anthony J H Simons, Department of Computer Science, University of 
Sheffield, U.K.

1 INTRODUCTION 

This is the sixteenth article in a regular series on object-oriented type theory for non-
specialists. Earlier articles have built up λ-calculus models of objects [1], classes [2], 
inheritance [3, 4] and generic template types [5]. Classification describes the way in 
which typed objects fit into a hierarchy of classes, which nest inside each other [3]. 
Inheritance is the short-hand mechanism for definining a subclass by extension from 
another class, specifying only the additions and modifications to the base class [4]. 
Previously, we have modelled the inheritance of type [3] and implementation [4] and 
combined both of these in a model of typed inheritance [6]. We showed how short-hand 
inheritance expressions can be simplified to yield a canonical subclass definition that is 
type compatible with the base superclass from which it was derived. Further aspects of 
inheritance have included method combination [7], mixin inheritance [8] and inheritance 
among generic classes [5]. 

The current article examines the mechanism of inheritance in more detail, looking at 
the constraints on what may or may not be added to a class during inheritance. Most 
object-oriented languages have restrictions on the types of overriding methods, to ensure 
that the resulting subclass is still type compatible with the superclass. This requires more 
precise rules about the typing of ⊕, the inheritance operator. Previously, we thought of ⊕ 
as a polymorphic map override operator that could combine two maps of any types, 
irrespective of the types of the fields. We now require inheritance to be properly typed, in 
the second-order F-bounded λ-calculus, so that we can restrict the kinds of extension that 
are deemed legal. The extended type resulting from inheritance is shown to be an 
intersection type [9]. 
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2 MERGING RECORDS AND RECORD TYPES 

In the Theory of Classification, we model objects as simple records of functions, 
representing their methods, and object types as the corresponding record types, containing 
the signatures of these methods. This leads to a model of inheritance based on record 
union with overriding, denoted by the operator ⊕. Intuitively, this creates a longer record 
by combining two shorter records: 

derived = base ⊕ extra 

in which the derived result contains the union of all the fields of base and extra, but fields 
from extra are preferred over any identically-labelled fields from base in the result [3]. 
This right-handed preference of ⊕ models the notion of overriding in object-oriented 
languages, in which the derived class may replace some of the methods present in the 
base class with redefined versions supplied in the extra extension. 

So far, we have always used ⊕ in a context where the replacement fields have the 
same types as the original versions. As a consequence, we have been able to construct 
Derived record types using simple set union ∪ to merge the two sets of type signatures in 
the corresponding Base and Extra type-records: 

Derived = Base ∪ Extra 

We think of objects as sets of maplets from labels to functions, and object types as 
corresponding sets of maplets from labels to function types. It is reasonable to think of 
the merger of two record types as the set union of their respective sets of maplets, since 
any fields with identical labels will also have identical types. 

Merging in the subtyping model 

In the subtyping model [10], we must consider the possibility that fields of different types 
may be merged. This is because the record subtyping rule allows fields to be replaced by 
subtype fields. In this case, we cannot use ∪ to merge the record types. The following is a 
plausible definition of a record subtype by extension: 

Vehicle = {owner : → Person, home : → Location} 

Car = Vehicle ⊕ {home : → Garage, range : Litres → Kilometres} 
= {owner : → Person, home : → Garage, range : Litres → Kilometres} 

That is, we wish to obtain the subtyping relationship Car <: Vehicle. According to the 
record subtyping rule [10], this requires Car to have at least as many fields as Vehicle (it 
has one more) and requires any replacement fields to be subtypes. The field home : → 
Location is replaced by home : → Garage, so the subtyping condition is only met if 
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Garage <: Location, which is plausible. We use ⊕, rather than ∪, to combine the two 
record types, because we wish the right-hand types of any common fields to be retained 
in the result. 

The above model could be used in languages like Java and C++, which are based on 
types and subtyping. However, in these languages, a replacement method is typically 
expected to have exactly the same type as the method it replaces. In more recent versions 
of C++, the type of this is allowed to be more specific in the result of a replacement 
method. The overriding rules of Trellis are closest to the subtyping model, allowing both 
method argument and result types to change in accordance with the function subtyping 
rule [10]. 

Merging in the subclassing model 

In the subclassing model, we merge generators and type generators, rather than objects 
and object types [3, 4]. A curious thing happens when merging records according to the 
(F-bounded) parametric model: the parameters are instantiated or replaced before any 
record combination occurs. This means that references to different parametric types on 
the left and right hand sides become unified before record combination. As a result, 
record combination always merges records whose common fields have the same types. 
The following illustrates a simple type generator example, in which a (somewhat 
simplified) Integer-class generator is defined by extension from a Number-class 
generator: 

GenNumber = λσ.{plus : σ → σ, equal : σ → Boolean} 

GenInteger = λτ.(GenNumber[τ] ∪ {minus : τ → τ, equal : τ → Boolean})  
  = λτ.{plus : τ → τ, minus : τ → τ, equal : τ → Boolean} 

We obtain the subclass relationship: ∀τ. GenInteger[τ] <: GenNumber[τ]. This is 
achieved by making sure that GenInteger has more fields than GenNumber and that the 
common fields are typed in terms of parameters which can be unified before record 
combination occurs. In the inner type-record combination expression, GenNumber[τ] 
causes the substitution of {τ/σ} in the body of GenNumber, such that the record types on 
both sides of the union ∪ have field types which refer to the self-type uniformly as τ; 
and, in particular, the common field equal has the same type: τ → Boolean on each side 
of the union. 

In fact, it is always the case, in the subclassing model, that self-type parameters are 
unified before record combination. Likewise, generic type parameters may be unified 
before combination [5] (see also 5.4 below). So, the simpler union ∪ of type-records 
appears to be all that we need in the subclassing model. 
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3 SUBSETS, SUBTYPES AND TYPE INTERSECTIONS 

Throughout this series, we have been careful to distinguish the notation for the subset ⊆ 
and subtype <: relationships. This is because the relationship between the two depends on 
whether we are thinking about the set of values in a concrete type, or the set of type 
signatures in a record type. These two set-theoretic constructions are different, and they 
correspond to different subtyping relationships. 

Concrete versus abstract representation 

The fundamental relationship is that types may be modelled as sets. When we assert that 
an element is of a particular type, this is equivalent (in the model) to asserting that the 
element is a member of a particular set: 

x : T  ≡  x ∈ T  “x is of type T means that x is in the set T” 

From this it follows that a subtype may be modelled as a subset: 

S <: T  ≡  S ⊆ T “S is a subtype of T means that S is a subset of T” 

In the universe of types, we want to show that if x : S and S <: T, then x : T also. In the 
universe of sets, x ∈ T follows from x ∈ S and S ⊆ T, by the definition of the subset 
relationship: 

S ⊆ T  ≡  ∀x . x ∈ S ⇒ S ∈ T “S is a subset of T means that if x is in S, 
      then x is also in T” 

This is the fundamental relationship, which applies to types defined concretely as sets. 
When we move to defining types abstractly, in terms of their syntactic signatures, then 
the relationship is different. A record type with more signatures denotes a subtype of a 
record type with fewer signatures. For example, if the following record types are defined: 

S = {plus : Integer → Integer, minus : Integer → Integer} 

T = {plus : Integer → Integer} 

then it is clear that S is the larger record type and contains the signatures of T, which we 
express as T ⊆ S in the universe of signature-based types. However, it is also clear that S 
denotes a subtype of T, because every object that satisfies the interface S will also satisfy 
the interface T. The record subtyping rule (see [10]) expresses this fact. 

Intensional versus extensional definition 

There are grounds for confusion here: in one model, we say: S ⊆ T; but in the other 
model, we say: T ⊆ S. The difference is that, in the first model, we are comparing sets of 
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values, but in the second model, we are comparing sets of type signatures. To see how 
these both ultimately reflect the same subtyping relationship, we have to distinguish the 
intensional and extensional definitions of a type. 

• The extension of a type is the enumeration of the set of elements that it contains, 
for example, the Boolean type has the extension: {false, true} 

• The intension of a type is the enumeration of the set of properties that characterise 
the type, for example, the (existentially defined [1]) Boolean type has the 
intension:  

Boolean ≡ ∃b.{not : b → b, and : b × b → b, or : b × b → b,  
  implies : b × b → b} 

followed by a set of axioms defining the meanings of these operations. 

To unify the concrete and abstract views of a type, it is easiest to imagine the extension of 
the type, that is, the set of values (or objects) populating the type. This is the usual view 
adopted in type theoretical treatments. In object-oriented programming, we usually 
characterise a class intensionally, that is, by its properties (type signatures). From this, we 
have to imagine the extension of the class, that is, the possible set of objects which could 
populate it.  

Intersection types 

Here, we try to establish the relationship between intensional (signature-based) types and 
extensional (value-based) types. Earlier, we modelled type extension as the union of type-
records: Derived = Base ∪ Extra. In terms of sets of signatures, this means that Base ⊆ 
Derived and Extra ⊆ Derived, that is, both Base and Extra contain a subset of the 
signatures of Derived, which is a longer record type. By the record subtyping rule [10], a 
longer record type with more field signatures is a subtype. According to this, the direction 
of the subtyping relationship is contravariant with the direction of the signature subsets: 
Derived <: Base and also Derived <: Extra. This is a fundamental property of type 
hierarchies: the larger the interface, the smaller the set of objects which may satisfy it.  

From this, we may reason about the extensions of each type. Instances of the Derived 
type may also be considered instances of the Base type (and instances of the Extra type), 
by the subtyping rule of subsumption. So, the extension set of the Base type is larger than 
that of the Derived type; likewise the extension set of the Extra type is larger than that of 
the Derived type. Since elements of the Derived extension are also members of the Base 
and Extra extensions, the membership of the Derived extension is precisely the 
intersection of the memberships of the Base and Extra extensions. 

For this reason, the kinds of types created by merging signature-based types are 
sometimes known as intersection types. Instead of writing: Base ∪ Extra (in the world of 
signatures), we write: Base ∧ Extra (in the world of sets), to denote the intersection of the 
Base and Extra types. Much of the fundamental research on this was done by 
Compagnoni and Pierce in the mid-1990s [9, 11]. They developed a type system called 



 
THE THEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF 

INHERITANCE 
 

 
 
 

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1 

“System Fω∧”, pronounced “System F-omega-meet”, a higher-order type system with 
intersection types. 

4 CONSTRAINING THE INHERITANCE FUNCTION 

Many object-oriented languages have strict rules about method overriding, during 
inheritance, because they wish to preserve type compatibility (either subtyping, or 
subclassing) in the derived type. In C++ or Java, any replacement method must have 
exactly the same type as the original method it replaces. This imposes a constraint on the 
inheritance function, which we should like to capture in the model. We shall try to 
capture this constraint in a general enough way that it will apply both to the first-order 
subtyping model of inheritance, as found in Java, and also in the second-order 
subclassing model of inheritance, which is a more appropriate general model for object-
oriented programming, in which polymorphic classes and simple types are actually 
distinct notions. 

The extend inheritance function 

Inheritance is only well-defined if the Extra record provides fields whose types “merge” 
with the types of the Base record. This “merge” condition is expressed as a constraint Μ 
between the two record-types in the following F-bounded, second-order definition of the 
inheritance function extend, which we shall now use in place of the earlier unconstrained 
⊕ map override operator: 

extend : ∀Base. ∀(Extra Μ Base). Base → Extra → (Base ∧ Extra) 
= λBase. λ(Extra Μ Base). λ(base : Base). λ(extra : Extra). 
   { label a value | (label ∈ dom(base) ∪ dom(extra)) ∧ 
   (label ∈ dom(extra) ⇒ value = extra(label)) ∧ 
   (label ∉ dom(extra) ⇒ value = base(label)) } 

This definition says that: “extend takes two type arguments, Base and Extra, where Extra 
must satisfy the type-merge condition with Base, then two record arguments, base : Base 
and extra : Extra, and constructs a result by merging the two records, which has the 
intersection type (Base ∧ Extra). The result is a map of label-value pairs, such that the set 
of labels is the union of the domains of base and extra, and the values are preferentially 
taken from extra, if the label is present in extra, otherwise taken from base.” (Note that 
base(label) maps to the value opposite label in the base map [4]). 

Readers will note that the body of extend is identical to the body of ⊕ in earlier 
articles [4]. These two functions are essentially the same, except that extend is now 
properly-defined in the second-order λ-calculus, with type arguments (Base and Extra) as 
well as value arguments (base and extra). The type arguments were conveniently omitted 
from the earlier definition of ⊕, which we imagined could be applied directly to two 
record values. We can retrospectively define the operator ⊕ in terms of extend: 
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∀β. ∀ε.  ⊕ β, ε =  extend [β,ε] 

This creates a simply-typed version of ⊕ for each pair of records we wish to combine. 
Really, ⊕ is just a short-hand for extend with two types already supplied. 

The Μ type-merge condition 

The all-important type-merge condition Μ is a constraint that restricts the record-types 
that are allowed to be substituted for the Extra type argument. Although this is a rather 
special condition, constructed for the purpose of typing inheritance, it is syntactically no 
different from other kinds of restriction, such as the F-bound: ∀(τ <: F[τ]), which restricts 
a type τ to be a subtype of some generator expression. Here, we restrict Extra to range 
over those record types whose field-types enter into a particular relationship with the 
types of the Base fields. The constraint Μ is defined as follows: 

∀Base. ∀Extra. Extra Μ Base ::=  
  ∀label ∈ dom(Base) ∩ dom(Extra). Base(label) = Extra(label) 

This says: “For all types Base and Extra, the type-merger condition Extra Μ Base is 
defined as being satisfied if, for all common fields in Base and Extra with identical 
labels, the corresponding types are also equal”.  

For this, we must assume that the notion of “type equality” is well-defined. In full, 
this might be expressed by a whole set of rules. For the model of inheritance used in the 
Theory of Classification, we require the following kinds of type equality: 

t = t    -- identity of simple types 

τ = τ    -- identity of type parameters 

(S × T) = (S × T)  -- equality of product types, where S, T ::= t | τ 

(S → T) = (S → T)   -- equality of function types, where S ::= t | τ | T × T 
         and T ::= t | τ 

where t is a simple type, τ is a type parameter, and S, T are metavariables ranging over 
simple types and type parameters. (Type rules sometimes use metavariables like this to 
save having to repeat the same rule for simple types and parametric types). 

Constrained typed inheritance 

The result of extend is well-defined if Extra Μ Base (“Extra merges with Base”). This 
rule constrains inheritance just enough to behave exactly like typed inheritance in Java, 
but disallows certain other kinds of inheritance For example, the Trellis-style of 
inheritance in section 2.1 is now ruled out by the type-merge condition, because a field is 
replaced by a field which has a different type. The Base and Extra records have the types: 
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Base = {owner : → Person, home : → Location} 
Extra = {home : → Garage, range : Litres → Kilometres} 

and the common labels in dom(Base) ∩ dom(Extra) ⇒ {home}. However, when we 
compare the corresponding types, we find that: Base(home) ⇒ Location and Extra(home) 
⇒ Garage. So, we establish that common field-types are not identical: Base(home) ≠ 
Extra(home), and therefore that Μ is not satisfied. To pass the type-merge condition, the 
Extra record would have to redefine the home field with the same type: home : → 
Location, as in Java. 

By deliberate design, the same type-merger rule allows the kind of unions of type-
records we require for the merger of parameterised record types, which are used in the 
subclassing model of inheritance. Repeating the example from section 2.2: 

GenNumber = λσ.{plus : σ → σ, equal : σ → Boolean} 

GenInteger = λτ.(GenNumber[τ] ∪ {minus : τ → τ, equal : τ → Boolean})  
  = λτ.{plus : τ → τ, minus : τ → τ, equal : τ → Boolean} 

The Base and Extra records have the following types, after the parameter substitution 
{ τ/σ}: 

Base = {plus : τ → τ, equal : τ → Boolean} 
Extra = {minus : τ → τ, equal : τ → Boolean} 

and the common labels in dom(Base) ∩ dom(Extra) ⇒ {equal}. When we compare the 
corresponding types, we find that: Base(equal) ⇒ τ → Boolean, and: Extra(equal) ⇒ τ 
→ Boolean. Intuitively, these two types are identical; formally we would need to appeal 
to the equality of two function-types (see 4.2) based on the identity of the two argument 
type parameters τ and the identity of the two simple Boolean result types. Ultimately, the 
condition Μ is satisfied, so this is a legal extension. 

5 VARIATIONS ON TYPED INHERITANCE 

The standard “reference” model of inheritance consists of the extend inheritance function 
and the Μ type-merger constraint. This allows a record to be extended only if overriding 
fields have the same types as in the original fields they replace. The resulting intersection 
type is always a record-type consisting of the union of the signatures of the Base and 
Extra record types, since common fields have the same types. We now consider a number 
of object-oriented languages and examine how their models of typed inheritance differ 
from this reference model. 
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Inheritance in Smalltalk 

Smalltalk is not strongly typed. However, certain rules are still observed about 
inheritance. A method can only override another method if its untyped “signature” is 
structurally similar, for example, the method at:put: always has the structural form: 

at: anIndex put: anItem 

Any method in a descendant class must have the same name and structural form in order 
to override this method. So, the “arity” of method arguments and results is always 
preserved, although nothing can be said about the individual types of each argument or 
result. Smalltalk can distinguish product types σ × τ from basic types τ, but apart from 
this, all basic types (and parameters, considering that self has an F-bounded parametric 
type) are indistinguishable, and so must be considered equivalent. So, for Smalltalk, we 
should have to redefine the notion of type equality to allow s = t = σ = τ for all simple 
types s, t and all parameters σ, τ. 

Inheritance in Trellis 

The type-merger condition above is too restricting to describe inheritance in Trellis. 
Trellis allows full subtyping in its overriding rules, that is, methods may be replaced by 
other methods whose arguments have more general types and whose results have more 
specific types, according to the contravariant and covariant parts of the function 
subtyping rule. To handle Trellis, we should modify our definition of Μ:  

∀Base. ∀Extra. Extra Μ Trellis Base ::=  
  ∀label ∈ dom(Base) ∩ dom(Extra). Extra(label) <: Base(label) 

This now allows field types in the Extra record to be subtypes of common fields in the 
Base record. The resulting intersection type Base ∧ Extra may contain finer intersections 
of field types, for example, the extension of Vehicle in 2.1: 

{owner : → Person, home : → Location} ∧ 
      {home : → Garage, range : Litres → Kilometres} 
⇒ {owner : → Person, home : → (Location ∧ Garage),  
             range : Litres → Kilometres} 
⇒ {owner : → Person, home : → Garage, range : Litres → Kilometres} 

requires the nested intersection: Location ∧ Garage = Garage. (Constructively, Garage is 
the largest type which is a subtype of both Garage and Location). 

Inheritance in Java and C++ 

The original type-merger condition describes exactly the constraint on inheritance in 
Java, in which all replacement methods must have exactly the same types as the methods 
they replace. This strict equality nearly describes the condition in C++, apart from the 
relaxation that applies to returned self-types. We can express this relaxation as: 
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∀Base. ∀Extra. Extra Μ C++ Base ::=  
     ∀label ∈ dom(Base) ∩ dom(Extra).  
  ∀σ. Base(label) ≠ (σ → Base) ⇒ Base(label) = Extra(label) ∧ 
  ∀σ. Base(label) = (σ → Base) ⇒ Extra(label)  = (σ → Base ∧ Extra) 

saying that replacement methods must have the identical types unless they return the self-
type, in which case methods of the function type: σ → Base must be replaced by methods 
of the function type σ → (Base ∧ Extra). The resulting intersection type Base ∧ Extra 
will be a subtype of Base. 

C++ may also have type parameters in its method signatures, if the template class 
mechanism is used (and so will Java, from version 1.5 onward). The notion of type 
equality must therefore allow for the comparison both of exact types and type parameters 
(see 4.2). 

Inheritance in Eiffel 

The overriding rules of Eiffel allow methods to be replaced by methods whose arguments 
and results are both uniformly specialised. This is not legal within a simple subtyping 
regime; but Eiffel is not based on the subtyping model of inheritance. Elsewhere, Eiffel 
implicitly evolves the self-type (the type of current) under inheritance and anchors other 
types to the self-type, especially in binary methods1 such as the infix “+” method in the 
Numeric class: 

infix “+” (arg : like current) : like current 

Because of this, it is tempting to think of Eiffel as following the F-bounded subclassing 
model of inheritance, in which “like current” is actually a parametric type σ of the kind: 
∀(σ <: GenNumeric[σ]). Eiffel also has generic and constrained generic parameters: 

class SortedList [T → Comparable] … end 

which are exactly the same notion as F-bounds. Think of the constrained type parameter 
T as a parametric type: ∀(τ <: GenComparable[τ]). So, it makes most sense to think of 
Eiffel as belonging to the second-order family of languages, along with Smalltalk and 
Flavors.  

This being the case, the reference definition of type-merge is adequate to capture 
Eiffel’s model of inheritance. You simply have to imagine that all Eiffel class-types are 
in fact parametric types, which are only fixed when object instances are created. The 
model of inheritance unifies all the type parameters before combining the records. We 
illustrate this with a parametric version of the example from 2.1 above: 

                                                           
1 A binary method is one which accepts an argument of the same type as self.  It is binary in the sense that it 
deals with two objects of the same type. 
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GenVehicle = λ(π <: GenPerson[π]).λ(θ <: GenLocation[θ]). 
  λσ.{owner : → π, home : → θ} 

GenCar = λ(π <: GenPerson[π]).λ(θ <: GenGarage[θ]). 
  λ(ρ <: GenLitres[ρ]).λ(κ <: GenKilometres[κ]). 
   λσ.(GenVehicle[π,θ]  ∪ {home : → θ, range : ρ → κ}) 

= λ(π <: GenPerson[π]).λ(θ <: GenGarage[θ]). 
  λ(ρ <: GenLitres[ρ]).λ(κ <: GenKilometres[κ]). 
   λσ.{owner : → π, home : → θ, range : ρ → κ} 

The subclass generator GenCar reintroduces all the parametric types used within the 
class, and substitutes these new parameters inside the body of the parent generator, 
through the application: GenVehicle[π,θ] before merging this adapted record with the 
record of extra methods. So, all common fields have the same types before record 
combination is computed, and the simple union of signatures is all that is required. The 
notion of type equality must allow for equality of simple types (such as Eiffel’s Integer 
and Real types) and equality of type parameters for all class-types (see 4.2). Simons first 
proposed a unified parametric model of Eiffel’s type system in 1995 [12], in which the 
self-type, anchored types, constrained generic types and ordinary class-types were all 
modelled using F-bounded parameters. 

6 CONCLUSION 

In this article, we have revisited the notion of typed inheritance. The Theory of 
Classification describes two models of inheritance, one a first-order model based on 
subtyping (Java, C++) and the other a second-order model based on subclassing 
(Smalltalk, Eiffel). Objects are modelled as records, or maps from labels to methods, so 
inheritance may be modelled as map union with override. Previously, the classical 
function override operator ⊕ was used without any constraints on the types of the records 
being combined. Here, we have introduced an F-bounded second-order definition of the 
inheritance function, called extend, with a constraint Μ on the type of extension that may 
legally be combined with any record. 

We showed how, in the reference model, the constraint merely has to ensure that 
replacement fields have the same types as the fields they replace. This works for Java-
style inheritance (first order) and also for Eiffel-style inheritance (second-order) in which 
field types may be parametric as well as simply-typed. Variations on this allow 
replacement fields to be subtypes (Trellis), or a mixture of type-equal and subtype fields 
(C++). One observation emerging from this is that the ability to replace fields with 
subtype fields is not a frequent requirement in object-oriented languages. The subclassing 
model of inheritance only requires type-equality, because all the field types are unified 
prior to combination, whether by parameter unification [3], or instantiation [5]. Simons 
and Bruce were the first to note the poor match between simple subtyping and natural 
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models of inheritance [13, 14]. This is what originally motivated the Theory of 
Classification. 
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