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ABSTRACT 

Quasi-random number sequences have been used extensively for many years in the simulation of 

integrals that do not have a closed-form expression, such as Mixed Logit and Multinomial Probit 

choice probabilities. Halton sequences are one example of such quasi-random number sequences, 

and various types of Halton sequences, including standard, scrambled, and shuffled versions, 

have been proposed and tested in the context of travel demand modeling. In this paper, we 

propose an alternative to Halton sequences, based on an adapted version of Latin Hypercube 

Sampling. These alternative sequences, like scrambled and shuffled Halton sequences, avoid the 

undesirable correlation patterns that arise in standard Halton sequences. However, they are easier 

to create than scrambled or shuffled Halton sequences. They also provide more uniform coverage 

in each dimension than any of the Halton sequences. A detailed analysis, using a sixteen-

dimensional Mixed Logit model for choice between alternative-fuelled vehicles in California, 

was conducted to compare the performance of the different types of draws. The analysis shows 

that, in this application, the Modified Latin Hypercube Sampling (MLHS) outperforms each type 

of Halton sequence. This greater accuracy combined with the greater simplicity make the MLHS 

method an appealing approach for simulation of travel demand models and simulation-based 

models in general. 
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INTRODUCTION 

The analysis and modeling of travelers� choices is one of the most important areas of 

transportation research. Predominantly, the models used in this area of research are members of 

the family of discrete choice models. This family can be split into two main groups of models; 

models with a (convenient) closed-form expression, and models that require simulation to 

approximate the value of the integrals that they are based on. For a detailed review of existing 

model types, along with in-depth descriptions of the different approaches to simulation, see Train 

(2003). 

While the simulation-based methods allow for more realistic modeling of the actual 

behavior of decision-makers, notably by allowing for random taste variation in the population, 

their use was initially very limited, due to the high computational cost of the simulation 

processes required during estimation and application. Over recent years however, significant 

advancements in the performance of computers have led to renewed interest in simulation-based 

models, and have for example led to the Mixed Logit model becoming one the most widely used 

models in transportation research. 

Besides the advancements in computer technology, improvements have also been made 

to the simulation process, notably in the use of alternatives to pseudo-random numbers. The use 

of these �cleverly-crafted� sequences, known as quasi-random number sequences, can lead to 

significant improvements in the precision of simulation processes, thanks to the improved quality 

(uniformity) of coverage of the multi-dimensional area of integration. This in turn leads to a 

requirement for fewer draws to be used in the simulation process, considerably easing the 

computational cost of simulation. Over the years, many different types of such quasi-random 

number sequences have been proposed, one of the most popular being Halton sequences. In their 
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original form, Halton sequences were found to greatly outperform pseudo-random numbers in 

the estimation of choice models, at least when the number of dimensions is small (Bhat, 1999, 

Train, 1999). However, untransformed Halton sequences create undesirable correlations over 

dimensions, which can be particularly problematic for higher-dimensional integration. Two main 

methods of transforming Halton sequences have been proposed to eliminate the multi-

dimensional correlation. Scrambled Halton draws permute the digits on the original elements of a 

multidimensional sequence, while shuffled Halton sequences permute the order of the original 

elements. 

In this paper, we propose an alternative to Halton sequences, based on the use of one-

dimensional sequences of evenly spaced draws that are randomly shuffled before being 

combined into multi-dimensional sequences. These sequences obtain more uniform coverage in 

each dimension than Halton sequences of any form, since even spacing gives the most uniform 

coverage possible. The shuffling of the one-dimensional sequences does not affect the spacing in 

each dimension and yet avoids correlation over dimensions in the same way as shuffled Halton 

sequences. Also, these new sequences are easier to create than the scrambled and shuffled Halton 

sequences. To analyze the performance of this new type of sequence, we fit a Mixed Logit model 

to a data set for choice between gas, electric and hybrid vehicles, and compare the ability of the 

shuffled uniform sequences to recover the �true� parameter values to that of the different types 

of Halton sequences. 

The remainder of this paper is organized as follows. In the following two sections, we 

give a brief review of Monte-Carlo and Quasi-Monte Carlo integration. The development of our 

proposed approach is described in the fourth section, the data and models used in the estimation 
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are described in the fifth section, and the sixth section compares the performance of the different 

types of approaches in terms of their ability to recover the �true� values of the parameters. 

MONTE-CARLO INTEGRATION AND MAXIMUM SIMULATED LIKELIHOOD 
ESTIMATION 

Equation [1] shows a very general form of integral that is used in different types of discrete 

choice models, as well as other areas of research. 

( ) ( )∫x dxxfxg           �[1] 

The integral is over the range of x, with density function for x given by f(x), and the 

dimensionality of the integral depends on the dimensionality of x. The definition of f(x) implies 

that equation [1] is in fact equal to the expected value of g(x), say g . The integral in equation [1] 

can easily be approximated by using the following approach:  

1. Draw a value xr from the density function f(x), where r indicates the current iteration, 

with r=1 in the first iteration. The draws are based on �uniform� draws in the 0-1 

interval, which are then transformed in order to represent draws for a given choice of 

f(x); for details, see Train (2003). 

2. Calculate g(x
r
), the value of the integrand in the current iteration. 

3. Repeat steps 1 & 2 a high number of times, then average the results. 

With R repetitions (draws), the integral is thus approximated by 

R

R

r

rxg

g

∑
=

⎟
⎠
⎞⎜

⎝
⎛

= 1(
,          �[2] 

where, with independent draws {x
1
,�,x

R}, the estimator is unbiased by construction. 

Furthermore, the variance of the estimator decreases as R increases, such that the simulation 

error decreases as R increases.  
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Integrals of the form shown in equation [1] are used in Mixed Multinomial Logit models 

(MMNL) to calculate the choice probabilities for the different alternatives. We have: 

( ) ( )∫= ε
εβεε dfzgP nini ;, ,        �[3] 

where niP  is the probability of decision-maker n choosing alternative i and  zn is a matrix of the 

(fixed) attributes of the different alternatives as faced by decision-maker n. The vector ε  varies 

over decision-makers and reflects the idiosyncratic aspects of decision-maker n�s preferences; 

these terms are distributed in the population with density ( )βε ;f , where ȕ is a vector of 

parameters to be estimated that represents, for example, the mean and variance of preferences in 

the population. The function ( )ni zg ,ε , which is a Multinomial Logit (MNL) probability term (for 

alternative i, as faced by decision-maker n), is integrated over the density of random terms to 

obtain the MMNL choice probability. For a given value of the parameter vector ȕ, the choice 

probabilities for each alternative in the choice set are calculated for each decision-maker; with I 

alternatives, the log-likelihood is then given by: 

( ) ( )∑
=

∑
=

=
N

n

I

i
ni

P
ni

dLL

1 1

lnβ ,        �[4] 

where nid  is a dummy variable that is set to 1 if decision-maker n is observed to choose 

alternative i and 0 otherwise. In estimation packages, equation [4] is simply replaced by the sum 

of the logged probabilities of the chosen alternatives, requiring the calculation of only N choice 

probabilities, as opposed to N·I, as in equation [4]. 

The standard approach to finding estimates for ȕ is to use maximum likelihood 

estimation, such that with maximum likelihood estimator (MLE) ȕ� , we have that 

( )
0

�

�
=

ȕd
ȕdLL

.           �[5] 
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In the presence of integrals that do not have a closed-form expression (as in the MMNL model), 

the choice probabilities 
ni

P  are replaced by the simulated choice probabilities 
ni

P
(

 in equation 

[4], leading to the simulated log-likelihood function. The simulated choice probabilities are 

obtained by: 

R

R

r

zrg

ni
P

ni∑
=

⎟
⎠
⎞⎜

⎝
⎛

= 1

,ε
(

,         �[6] 

where the different values of rε  are independent draws from ( )βε ;f , for a given value of ȕ. The 

simulated log-likelihood is then given by: 

( ) ( )∑
=

∑
=

=
N

n

I

i
ni

P
ni

dSLL

1 1

ln
(

β ,        �[7] 

with maximum simulated likelihood estimator (MSLE) given by ȕ
(

. 

It has been shown (Lee, 1995) that if R rises faster than the square root of the number of 

observations ( N ), MSL estimation is asymptotically equivalent to ML estimation. The use of a 

fixed number of draws R induces simulation bias and variance, which is lower with higher R (c.f. 

Train, 2003).  

ALTERNATIVES TO SIMPLE PSEUDO-RANDOM NUMBER SEQUENCES 

The problem with using short sequences of pseudo-random numbers (also called pseudo-Monte 

Carlo, or PMC, sequences) is the uneven coverage of the area of integration that can arise by the 

randomness in the sequences. This can lead to greater simulation error in the choice probabilities, 

leading to poorer estimation of the parameter vector ȕ. 

Quasi-random number (or quasi Monte Carlo, QMC) sequences are designed to provide 

more uniform coverage of the area of integration. The use of these QMC sequences can lead to 

significant improvements in the precision of the simulated probabilities and MSL estimation, 
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hence leading to lower requirements in the number of draws used, with corresponding reductions 

in the computational cost of model estimation and application.. The only QMC sequence that has 

seen widespread use in Mixed Logit modeling in general, and transportation research in 

particular, is the Halton sequence (Halton, 1960). In the following subsections, we present a brief 

description of the Halton sequence, in its different forms, and discuss some of the findings 

regarding its use, especially in the area of transportation research. We then briefly discuss some 

alternative types of sequence that could be used in the estimation of MMNL models.  

Halton sequences 

Halton sequences are constructed according to a deterministic method that uses a prime number 

as its base. The one-dimensional Halton sequence based on prime p (≥ 2) fills the 0-1 space by 

dividing this space into p segments, and by systematically filling in the empty spaces, using 

cycles of length p that place one draw in each segment. 

Formally, the ith element in the Halton sequence based on prime p is obtained by taking 

the radical inverse of integer i in base p by reflection through the radical point. We have: 

( )∑
=

=
L

l

l
l pibi

0

,          �[8] 

with ( ) 10 −≤≤ pibl  and 1+<≤ LL pip , and use the values for ( ) ( )ibib L,,0 L  that solve equation 

[8], in writing the resulting Halton element in base p as: 

( ) ( ) ( ) ( )ibibibi Lp ....0 10=ϕ         �[9] 

This can be rewritten as a decimal number by: 

( ) ( )∑
=

−−=
L

l

l
lp pibi

0

1ϕ          �[10] 

The deterministic Halton sequence can be randomized in several ways. Tuffin (1996) and Bhat 

(1999) suggest random shifting, which is implemented as follows: (1) take a draw from a 
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uniform density between 0 and 1, (2) add this draw to each element of the Halton sequence, and 

(3) substract 1 from any resulting element that exceeds one. The process shifts the entire 

sequence over by the amount of the random draw, with the elements that are shifted out of the 

unit line �wrapping back� to re-enter the unit line from zero. We use this form of randomization 

in our application.  Another procedure, suggested by Wang and Hickernell (2000), is to eliminate 

the first G elements of the sequence, where G is chosen randomly. Multi-dimensional Halton 

sequences are constructed by combining one-dimensional sequences generated from different 

primes. Randomization of the one-dimensional sequences provides randomization of the multi-

dimensional sequence. 

A well-known problem with multi-dimensional Halton sequences is that, especially when 

using high primes, the individual Halton sequences can be highly correlated, leading to an 

uneven distribution of draws in the multi-dimensional area of integration (poor coverage), and 

consequently poor simulation and estimation performance. While most readily recognized with 

high primes, these problems actually arise to some degree whenever the ratio of any two prime 

numbers used is close to an integer value. The way in which Halton sequences are constructed 

implies that the effects of such correlation are gravest in the case of high primes, where the 

number of cycles used is consequently lower. For sequences based on choices of primes that do 

not lead to substantial problems with correlation, standard Halton sequences can lead to 

significant improvements in estimation efficiency compared to pseudo-random number 

sequences, and have been used successfully in different areas of science, including 

transportation; see for example Bhat (1999), Train (1999), Bhat (2000) and Hess and Polak 

(2004).  
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Two main methods for reducing the correlation in Halton sequences have been discussed in the 

literature; scrambling and shuffling. The former approach scrambles the sequences by using 

permutations of the coefficients ( )ibl  in the radical inverse function (equations [9] and [10]). The 

resulting Scrambled Halton sequence for prime r is written as: 

( ) ( )( )∑
=

−−=
L

l

l
lpsp pibi

0

1σϕ         �[11] 

where pσ  is the operator of permutations for the possible values of ( )ibl  in base p. Different 

methods for producing the permutations have been proposed; the most commonly used method 

was proposed by Braaten and Weller (1979), other approaches are given by Hellekalek (1984), 

Kocis and Whiten (1997) and Tuffin (1998). In this paper, we use the approach proposed by 

Braaten and Weller (1979) and implemented in transportation by Bhat (2002). 

The Shuffled Halton sequence was introduced by Morokoff and Caflisch (1994). The procedure 

consists of randomly reordering the elements of each one-dimensional sequence before 

combining them into a multi-dimensional sequence. The generation of a Shuffled Halton 

sequence uses a one-dimensional standard Halton sequence of length N, generated from prime p: 

( ) ( )Nppp ϕϕΗ ,...,1=         �[12] 

where ( ) Niip ,...,1, =ϕ  is defined as in equation [10]. Differently shuffled versions of this 

sequence are then used in different runs, with the sequence used in the jth run being given by: 

( ) ( )pjjp ΗΙ=Η ,, Hσ ,         �[13]  

where H is a function that creates a sequence with the elements of pΗ  arranged in the order given 

in the vector Ij, where Ij is a random permutation of the ordered index vector, and where ( )⋅σ  is a 

permutation operator that yields the permutation Ij of the index vector I in the jth run. The use of 

different permutations of the index vector for different dimensions disrupts the cyclical ordering 



Hess, Train and Polak   11 

in the different dimensions in different ways and hence manages to reduce correlation between 

the individual sequences. Although the performance of the shuffled Halton sequence is clearly 

dependent on the specific shuffling order used in a given run, it has been shown that the shuffled 

Halton sequence does have the potential to significantly reduce the impact of correlation, and can 

offer very stable performance over runs in the estimation of MMNL models (Hess et al., 2003). 

QMC Sequences Designed in Multiple Dimensions  

As described above, multi-dimensional Halton sequences are created by combining one-

dimensional sequences. Several QMC sequences have been proposed that are created in the 

multi-dimensional space directly. Generally, these sequences obtain more uniform spacing of 

points over the multiple dimensions while attaining less uniformity in each one dimension.  

One such method is the systematic sampling approach proposed by McGrath (1970). This 

approach produces a K-dimensional uniform grid of N points by randomly drawing N/M points in 

one of the M K-dimensional parts of the grid and translating these points into the remaining M-1 

grid areas. Alternatively, the draws in each sub-area are drawn randomly. The precision of either 

approach increases with M. The main difficulty with these grid methods is that of finding 

appropriate values of M (and N), such that N/M and K M  are integer values. Clearly, the best 

performance with this method is obtained in the case where a division can be used such that each 

sub-cube of the 0-1 cube contains exactly one draw. This is only possible in the rare case where 

K N  is an integer value. Alternatively, it is possible to use a division of the 0-1 hypercube into 

hyper-rectangles, rather than hyper-cubes. As an example, with N=100 in three dimensions, we 

can divide the 0-1 interval into five segments along two dimensions, and into four segments 

along the third dimension.  
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In any case, the uniformity in each one-dimension is generally less with the grid approach 

than under Halton sequences or the MLHS that we discuss below. For example, in a two-

dimensional case with N=100, the grid can divide each dimension into 10 segments. Each 

segment in one dimension contains 10 points which are either exactly the same in that dimension 

(if one random draw is used for the entire grid) or are randomly placed within this segment (if 

different random draws are used for each sub-area of the grid). In contrast, MLHS divides the 

unit line into 100 segments with one point in each.  

Another type of QMC sequences designed in multiple dimensions are (t,m,s)-nets, as 

discussed for example by Niederreiter (1992). These nets constitute a general class that includes 

Sobol, Faure, Niederreiter, Niederreiter-Xing, and other sequences. The specification and 

construction of (t,m,s)-nets are different for different numbers of dimensions and points. They 

are restrictive in the number of points that can be used for any given number of dimensions, and, 

like the grid procedures, generally attain more uniform multi-dimensional coverage at the 

expense of uniformity along each individual dimension1. Sándor and Train (2004) compare four 

kinds of (t,m,s)-nets with Halton sequences in the estimation of MMNL models. They find that 

two of the (t,m,s)-nets performed better than Halton sequences, and the other two performed 

worse. 

MODIFIED LATIN HYPERCUBE SAMPLING  

In this section, we describe our proposed Modified Latin Hypercube Sampling (MLHS) 

approach. The motivation for the approach arises from the concepts developed with respect to 

Halton sequences. In single dimensions, Halton sequences attain good coverage because they are 

                                                 

1 An exception to this trade-off occurs for nets with  t=0, which is difficult to attain in high dimensions. 
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constructed of sub-sequences of evenly spaced points, with each sub-sequence filling in spaces 

left unfilled by previous sub-sequences. Halton sequences were developed in the context of 

series, which are defined as being sequences whose length can be extended without changing the 

original points. This requirement allowed theoretical analysis of the asymptotic properties of the 

series, such as measuring the uniformity of coverage as the length of the series extends without 

bound. However, for any given length of the sequence, the points are not evenly spaced, and 

hence the one-dimensional coverage is not as uniform as possible. This is an effect of the 

sequential nature of these sequences, making their performance depend heavily on the exact 

number of draws used; this can explain the fact that increases in sequence length do not 

necessarily lead to constant improvements in simulation performance, as for example observed 

by Hess et al. (2003). 

With a given number of points, the most uniform coverage possible is necessarily 

attained by spacing those points evenly. Such a sequence of evenly-spaced points cannot be 

extended without changing the original points and therefore does not qualify as a series in the 

way that a Halton sequence does. This could be seen as a disadvantage, since the researcher 

cannot add points without recalculating the original points. However, for the purposes of 

numerical simulation rather than theoretical analysis of asymptotic properties, some preset 

number of points is always used, and with a given number of points, the best coverage is attained 

by spacing them evenly. This constitutes the first aspect of our proposed approach.  

The second aspect arises with respect to combining several one-dimensional sequences to 

create multi-dimensional sequences. When one-dimensional Halton sequences are combined into 

multi-dimensional vectors, the cycling over sub-sequences in each dimension creates correlation 

over dimensions, which scrambling and shuffling have been proposed to address. Combining 
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evenly spaced points in each dimension creates perfect correlation over dimensions. However, 

the same kind of shuffling that was proposed to eliminate correlation in the case of Halton 

sequences can be applied in the case of uniform sequences. The points in each dimension are re-

ordered randomly (i.e. shuffled), before combining the one-dimensional sequences into a multi-

dimensional sequence. As is the case with shuffled Halton draws, the shuffling of the uniform 

vectors does not change the coverage in any of the one-dimensional sequences. Each shuffled 

sequence of evenly spaced points therefore provides more uniform coverage in each dimension 

than any type of Halton sequence, since the coverage was more uniform before shuffling.  

We now describe the sequence more formally. It can easily be seen that the most basic 

way of guaranteeing equal distances between draws is to set the jth draw to be equal to 
1+N

j
; the 

difference between any two adjacent draws is now equal to 
1

1

+N
, as is the difference between 

the extreme points and the border of the 0-1 interval. However, this approach is clearly 

impractical as it prohibits the use of different draws in different dimensions, as well as in 

different runs. 

The problem thus lies in devising a method that leads to equal distances between adjacent 

draws without requiring the draws to be the same in different dimensions and runs. We propose 

an approach that starts with a sequence of draws defined by: 

( ) Nj
N

j
j ,,1,

1
L=

−
=ϕ         �[14] 
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A random number x is then drawn, such that 
N

x 10 << ; this can be obtained by drawing a 

pseudo-random number2 contained in the interval ] [1,0 , thus using strict upper and lower limits, 

and dividing this number by N.  The elements in the final sequence are then generated by: 

( ) ( ) Njxjj ,,1, L=+=ϕΨ .        �[15] 

In the resulting sequence, the distances between adjacent draws are all equal to
N

1 , satisfying 

the condition of equal spacing. Furthermore, the combined distance between the two extreme 

points and the respective borders of the 0-1 interval is also equal to
N

1 ; if the interval is regarded 

as being cyclical, the distance between the two extreme points is thus also
N

1 , so that all 

�adjacent� distances are equal to
N

1 . Multi-dimensional sequences are constructed by simple 

combination of randomly shuffled one-dimensional sequences.  

The addition of the random variate x has the desired effect that the draws used are 

different across dimensions and runs, while still keeping the distance between adjacent draws at 

N
1 , such that the quality of one-dimensional coverage remains unchanged. Two different 

approaches can be used in the shifting of the draws; the use of the same shifting (same value of 

x) in different runs of the approach will lead to the same one-dimensional draws but different 

multi-dimensional draws due to the shuffling (as with shuffled Halton draws), while the use of a 

different shifting in different runs will lead to different one-dimensional as well as multi-

dimensional draws.  

                                                 

2 The spread of the values of x across sequences can be made more uniform by basing the draws of x themselves 

either on a quasi-random approach (e.g. Halton draws), or by using a pseudo-random number generator with proven 

properties (of which the computational statistics literature contains many examples). 
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The procedure is very similar to the Latin Hypercube Sampling (LHS) proposed by 

McCay et al. (1979) � hence the name, MLHS. LHS is the same as the MLHS approach 

described above except that for LHS, a different draw is taken for each element in each 

dimension, rather than using the same draw for all elements in each dimension. That is, for LHS, 

equation 15 is changed to   

( ) ( ) Njxjj j ,,1, L=+=Ψ ϕ  

where xj is a separate draw from a uniform between 0 and 1/N. The use of NK different uniform 

draws as opposed to K uniform draws makes the LHS method computationally more expensive, 

although, given the low cost of producing random draws, these differences in speed are trivial. 

The more important differences arise in the actual substantive effects of using a common draw 

for each point in a given dimension, as opposed to using separate draws. The motivation for 

MLHS was to attain a sequence that has more uniform coverage in each dimension than Halton 

sequences. An evenly spaced set of points necessarily attains that goal and is the most uniform 

set possible. Using one draw to shift all points retains this uniformity. In contrast, when using a 

separate draw for each point, as in LHS, the resulting set of points is less uniform than evenly 

spaced points and can potentially (depending on the realized draws) be less uniform than the 

Halton sequence. It should be noted however that the LHS method allows for the possibility of a 

type of cancelling out, by which a draw that moves one point to the higher end of its segment is 

counteracted by a draw that moves another point to the lower end of its segment. Inherently, 

however, the goal of uniformity operates against the potential for cancelling out in this way.   

It is of interest to briefly compare our MLHS approach to the systematic sampling 

method described in the previous section, hence highlighting the differences between a sequence 

designed in multiple dimensions and a sequence based on the combination of one-dimensional 
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sequences. Indeed, it should be highlighted again that, with a method based on the combination 

of randomly shuffled one-dimensional sequences, there is no guarantee of good multi-

dimensional coverage, even in the case of very good one-dimensional uniformity (although this 

clearly increases the scope for good multi-dimensional coverage). As described in the previous 

section, the one-dimensional quality of coverage of a grid method increases as M and hence 

K M (the number of intervals per dimension) increases; this quality of coverage will however 

necessarily be inferior to that obtained in single dimensions by our MLHS method, as our 

approach effectively uses N intervals along each dimension with one draw per interval. Only in 

the case where K=1 and M=N will the systematic sampling approach lead to the same degree of 

one-dimensional uniformity of coverage. As the systematic sampling approach does not rely on 

any shuffling of the one-dimensional draws, but explicitly creates a grid of multi-dimensional 

points, the multi-dimensional quality of coverage should be superior to that of MLHS; this 

however presumes sufficiently high values for M (with correspondingly small cells and low 

numbers of draws per cell, resulting in more uniform coverage due to a lower effect of the 

random positioning of draws), which are often not possible.  

The MLHS approach has a disadvantage in that it is not easily possible to accurately 

define the asymptotic properties of the method, since it is not a series. This is a drawback in that 

it does not allow us to compare the method asymptotically with other approaches. However, 

some comparisons can be made. Firstly, the coverage offered by MLHS is necessarily better than 

that of the shuffled Halton sequence, given that both approaches rely on random shuffling of 

one-dimensional sequences in the construction of multi-dimensional sequences, where with our 

new approach, the coverage offered by the one-dimensional uniform sequences is superior to that 

of the one-dimensional Halton sequences. Secondly, the same reasoning can be used in the 



Hess, Train and Polak   18 

comparison with pseudo-random sequences. Indeed, multi-dimensional pseudo-random number 

sequences are in fact simply combinations of one-dimensional pseudo-random sequences, where 

the ordering of points in these one-dimensional sequences is similarly random, just as in the case 

of shuffled uniform vectors. The fact that the one-dimensional ordering of points is thus random 

in both cases means that, asymptotically, any differences between the two approaches in terms of 

the resulting multi-dimensional quality of coverage depend solely on the quality of coverage of 

the one-dimensional sequences, which is better in the case of uniform vectors.  

EMPIRICAL APPLICATION 

Data 

The data used in this paper is for potential customers� choice between three types of vehicles in 

California; gas internal combustion (ICV), electric (EV) and gas-electric hybrid (HV). The data 

is described in detail by Train and Hudson (2000), and has also been used by Sándor and Train 

(2004) and Train and Sonnier (2003). A total of 500 respondents are included in the data set, and 

the respondents were presented with a number of different choice situations (up to 15) between 

three vehicles, where the individual choice sets do not necessary contain one vehicle of each of 

the three types of vehicles considered. The total number of observations in the data set is 7437. 

Two different data sets were available for the original study; a basic data set and an �enhanced� 

data set. The present analysis uses the latter data set, in which the respondents were provided 

with prior information on EV vehicles and on air quality in California. This has been observed to 

have a significant positive effect on the attitude of respondents towards EV vehicles (Train and 

Hudson, 2000). 

Each alternative used in the data set is described by a total of 6 attributes: 

• Car type (ICV, EV or HV) 
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• Body type (10 different types, ranging from mini car to mini van) 

• Purchase price ($1000�s) 

• Operating cost ($/month) 

• Performance (grouped into high, medium and low performance) 

• Range (100�s of miles between refueling/recharging) 

Although the performance of the vehicles is simply divided into three levels, the 

respondents were actually provided with more detailed information on top speed and seconds 

needed to reach 60mph; these were however directly linked to the three levels of performance. In 

addition to this, the range attribute was set to constant values for ICV and HV vehicles; the 

reason for including this attribute was simply to gauge the effect on respondents� choices of 

increases in the range of EV vehicles. 

Choice of model 

The model used in the estimation process is a Mixed Logit model (c.f. Revelt and Train, 1998), 

allowing for random taste variation across decision-makers and also taking into account the 

repeated choice nature of the data set (panel data). The dummy variables for type of vehicle take 

the role of alternative specific constants; for reasons of identification, no coefficient was 

associated with ICV vehicles, such that the coefficients associated with the dummy variables of 

the other two types of vehicles represent the net impact of unmeasured variables (including 

general attitude of respondents) on the utility of EV and HV vehicles relative to ICV vehicles. 

Similarly, some normalization was performed for the other variables included in the model.  For 

the body type, midsize car was taken as the base, whereas for the performance variables, medium 

performance was chosen as the base. Finally, as the range variable had been kept constant for 

ICV and HV vehicles, a coefficient associated with this attribute was only estimated for EV cars. 
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An important question arises with regards to what distributional assumptions should be 

made for the different coefficients. It can safely be assumed that the coefficients associated with 

the different attributes for car type, body type and performance are strongly dependent on the 

individual respondents� taste parameters and need thus not be restricted to having the same sign 

for all members of the population; accordingly, a Normal distribution was used for these 

coefficients. It is however very risky to simply associate a normally distributed coefficient with 

the other three types of attributes (price, operating cost and range) without some prior testing 

regarding the advantages of using a distribution that imposes some prior condition on the sign of 

the coefficients. For a discussion of the risks involved, and on guidance for which approach 

should be used, see for example Train and Sonnier (2003), Hensher and Greene (2001), Hess and 

Polak (2004) and Hess et al. (2004). The log-normal distribution is the standard choice in such 

scenarios; it is restricted to be strictly positive such that it can be used directly for desirable 

attributes (having strictly positive coefficients), and in combination with a sign change for 

undesirable attributes, such that a positive coefficient is associated with the negative value of an 

undesirable attribute. Previous applications using this data set have either assumed a fixed 

(negative) value for the price coefficient and a Normal distribution for all other coefficients 

(Train and Hudson, 2000 and Sándor and Train, 2004) or used a lognormal distribution for those 

coefficients that should have the same sign over all decision-makers (Train and Sonnier, 2003). 

We started off by using Normal distributions for all coefficients and compared the log-

likelihood of the resulting model to three models that use a lognormal distribution for one of the 

above-mentioned three coefficients. The biggest increase in the log-likelihood (from �6309.6 to 

�6297.2 with no additional parameters) was achieved by the model using a lognormal 

distribution for the price coefficient. The fact that the improvements offered by the log-normal 
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distribution are more important for the price coefficient than for the operating cost coefficient 

should come as no surprise; high purchase price is in this case clearly less desirable than high 

operating cost (different units), such that a wrongly-signed coefficient for the price parameter 

can be seen as a more significant misspecification than for the operating cost parameter. The next 

step consisted of using a lognormal distribution for either the operating cost coefficient or the 

range coefficient. Surprisingly, the latter leads to a marginally bigger improvement in the log-

likelihood (from �6297.2 to -6294.3 compared to �6295.7). Finally, the best fit is given by a 

model using a lognormal distribution for all three coefficients (price, cost and range) and a 

Normal distribution for the remaining 13 coefficients. The use of this model results in a log-

likelihood of �6286.1, which is a significant improvement over the original model (LL=-6309.6) 

as it comes without changing the number of parameters. This model now uses a random 

distribution for all 16 coefficients, leading to 32 parameters to be estimated. To the authors� 

knowledge, this is the first application comparing the performance of the different types of 

Halton sequences in a Mixed Logit application with this high a number of dimensions. 

Generation of true parameters 

In order to produce �true� values of the parameters for use as reference points in the comparison 

of the different types of draws, multiple runs with a high number of pseudo-random draws were 

used. A stability analysis was conducted to determine an appropriate number of draws to be used 

in this process. The results showed that beyond 2,000 draws, there were no significant changes in 

the log-likelihood function and parameter estimates over the different runs used; this was thus 

judged to be a high enough number of draws to guarantee stable estimation results, without 

unnecessarily increasing the computational cost of the estimation process. Ten separate runs 

were however still used at this stage to allow for the effects of randomness in the draws. From 
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the results, mean values of the parameters were calculated over runs, in addition to standard 

errors of the parameters (calculated as the square root of the average of the squared standard 

errors from individual runs). The standard errors are related to the shape of the log-likelihood 

function at the maximum. A high standard error for a parameter indicates a flat shape of the log-

likelihood function for this parameter at the overall maximum of the function; slight changes in 

the value of the parameter have little effect on the value of the log-likelihood function. The 

converse is the case for low standard errors. The inverse of these standard errors can be used as 

weights for the parameters in the calculation of estimation performance (when comparing 

different types of draws), such that a higher simulation error is tolerated for parameters that have 

a higher standard error (c.f. Sándor and Train, 2004). 

The results from this estimation are summarized in Table 1, which gives the estimates of 

the different parameters, along with their standard errors, and also gives the corresponding mean 

and standard variation values for those parameters based on the lognormal distribution. For these 

three coefficients, the estimated parameters are the mean c and standard deviation s of the log of 

the coefficient (rather than mean and the standard deviation of the coefficient itself). The mean 

and standard deviation of the actual coefficient can be calculated as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2
exp

2s
cµ  and 

( ) 1exp 2 −= sµσ  respectively. 

The estimated values of the coefficients indicate the changes in utility following a unit 

change in the respective attribute, with all other attributes kept constant. The results produced in 

the present analysis are broadly consistent with those produced by Train and Hudson (2000). The 

positive value of the mean of the price and cost coefficients in conjunction with the negative 

value of the attributes means that an increase in price and/or operating cost leads to a decrease in 
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utility; this is clearly consistent with normal consumer behavior. The high value of the standard 

deviations for these parameters (along with the corresponding t-statistic) also supports the 

decision not to use a fixed value for the parameters � there is strong variation in price and cost 

sensitivity across decision-makers. The use of a lognormal distribution for the range coefficient 

implies that all respondents appreciate range increases; for this parameter, the variation in the 

population is however far less important, as can be seen from the low standard deviation. A 

similar observation was made by Train and Hudson (2000). 

With medium performance used as the base, the signs of the coefficients for high and low 

performance are as expected, indicating that high performance is preferred to medium 

performance while low performance leads to lower utility than medium performance. The results 

suggest that the effect of moving from low to medium performance is around 2.5 times as 

important as the effect of moving from medium to high performance. Similar results were 

obtained by Train and Hudson (2000) when using the enhanced sample, whereas with the non-

enhance sample, the ratio of coefficients was close to 1. This implies that the extra information 

given to respondents in the enhanced sample lessens their desire for increases in performance 

past the medium level. 

The estimate for the coefficient associated with the dummy variable for electric vehicles 

can be most easily interpreted by summing it with the range coefficient (which was set to zero 

for all non-electric vehicles); this shows that, ceteris paribus, an electric vehicle needs a range of 

353 miles to be valued equally highly as an ICV vehicle. With inferior range, EV vehicles are 

valued lower than ICV vehicles, while HV vehicles are valued more highly than ICV vehicles.  

In terms of body type, only the mid-size SUV is preferred to the mid-size car (used as 

base); smaller vehicles are valued more lowly, possibly due to a combination of lower comfort 
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and lower safety performance, while larger vehicles are possibly valued more lowly due to extra 

strain they put on air quality (remembering that the associated higher operating cost in taken into 

account separately). It should also be noted that the mean of the coefficient associated with large 

SUV�s is insignificant (low t-statistic), while its standard deviation is significant.  

SIMULATION PERFORMANCE WITH DIFFERENT TYPES OF DRAWS 

To compare the performance of the different types of methods, the root-squared-error (RSE) 

between the estimated value and the �true� value of each parameter was calculated, thus testing 

the ability of the draws to recover the �true� parameters. In order to account for the shape of the 

log-likelihood function, the RSE values were expressed as a proportion of the standard error of 

the true parameter (c.f. Sándor and Train, 2004). The same approach was used for the alternative 

statistics of standard deviation and bias. Ten runs were used for the non-deterministic methods 

(shuffled Halton draws, MLHS and pseudo-random vectors), and the errors were averaged over 

runs. For the Halton-based approaches, the first sixteen eligible primes (2 to 53) were used. 

Table 2 shows the average RSE as a proportion of the standard error, where the average 

is over the 32 parameters that were estimated, and with experiments being conducted for 

sequences of length 50, 100, 200 and 500. Due to space constraints, only the overall measures 

are reproduced here; more detailed results are available from the first author on request. 

Similarly, for those methods where multiple runs were used, only the mean performance over 

runs is given in Table 2; it is however worth noting that the performance of the shuffling-based 

methods was found to be very stable over runs (reflecting earlier results by Hess et al., 2003). 

The first observation that can be made from Table 2 is that the performance of the 

standard Halton draws is surprisingly good, despite the high correlation between some of the 

dimensions. Another interesting observation is that the use of scrambled Halton sequences 
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actually leads to poorer prediction performance than the use of standard Halton sequences for 

three out of the four sequence lengths (50, 100 and 200 draws). Except for the longest choice of 

sequence length (500 draws), the standard and scrambled Halton draws are outperformed by the 

shuffled Halton draws, suggesting that, especially with short sequences, the shuffling approach 

can offer improvements over the other two approaches. The MLHS method leads to better 

performance than any of the Halton sequences. This result holds for all four choices of length of 

sequence.  

Finally, it should be noted that the use of pseudo-random draws leads to surprisingly 

good relative performance, given earlier results, for example by Bhat (1999) and Train (1999). 

Stated more directly, the alternative methods did not provide very much improvement over 

pseudo-random draws. A possible reason for the small improvement could be the high 

dimensionality of the application compared with those of Bhat and Train. As stated above, the 

Halton and MLHS procedures are not specifically designed in multiple dimensions; rather they 

are all designed as one-dimensional sequences that are combined to create multi-dimensional 

sequences. It might be the case that, as the number of dimensions rises, the importance of one-

dimensional coverage diminishes. Or, stated alternatively, any unstructured combination of one-

dimensional sequences may start to more closely resemble a purely random sequence as the 

number of dimensions rises. This conclusion suggests the need for comparisons with sequences 

like systematic sampling and (t,m,s)-nets, which, as stated above, provide better uniformity over 

dimensions by relinquishing uniformity in each dimension. 

Very similar results were obtained when using the standard deviation or bias measures 

instead of RSE, as well as when using different lengths of sequences. It should be noted that the 

differences in performance between the single methods are rather small, and probably too small 
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to allow us to generalize the results. The advantage of our proposed approach may also be 

specific to this application, and further research is needed to compare the performance of the 

different methods in other applications (including systematic analyses using synthetic datasets), 

and also using different statistics in the comparison, such as for example the t-statistics produced 

with the different approaches. Along these lines, one could also attempt to compare the entire 

variance-covariance matrix across methods. Nevertheless, the results in this study are interesting 

and intuitive. They indicate that if a multi-dimensional sequence is going to be created by 

randomly combining one-dimensional sequences, then performance is enhanced by obtaining 

more uniform coverage in each dimension, which is attained by MLHS relative to shuffled 

Halton sequences, and by MLHS and shuffled Halton Halton sequences relative to pure pseudo-

random sequences.  

SUMMARY AND CONCLUSIONS 

In this paper, we have proposed a modified Latin Hypercube Sampling (MLHS) approach for use 

in the estimation of MMNL models.  

A practical application was conducted to compare its performance with that of various 

types of Halton sequences and pure pseudo-random sequences in simulation-based estimation, 

using a Mixed Logit model for choice between differently fuelled vehicles. The initial estimation 

conducted to generate �true� values of the parameters shows that while information campaigns 

have the potential to reduce customers� dislike of EV vehicles, there is still a preference for ICV 

and HV vehicles. Indeed, ceteris paribus, EV vehicles only become competitive with 

unrealistically appealing range characteristics (>353 miles).  

The different types of sequences were then used to estimate the models with a lower 

number of draws, with the aim of assessing the ability of the different types of sequences to 
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recover the �true� values of the parameters. MLHS was found to outperform the other 

approaches in the current analysis. However, the overall differences in performance between the 

different methods are relatively small, suggesting that more extensive simulation 

experimentation is required to reach more reliable conclusions. Also, the comparisons are only 

among methods that create multi-dimensional sequences by combining one-dimensional 

sequences. Comparisons are needed between these methods and QMC sequences like grids and 

(t,m,s)-nets that are designed in multiple dimensions. Nevertheless, the initial results are 

promising particularly given the simplicity of implementing MLHS in any number of 

dimensions.  
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 TABLE 1: True parameters, generated by 10 runs using 2,000 pseudo-random number 
draws each 

Parameter Statistic Value Std. error 
Mean for 

log-normal 
parameters 

Std. Dev. for 
log-normal 
parameters 

c -2.54594 0.059417 
Price 

s 0.73051 0.04285 
0.102375 0.085966 

c -3.53995 0.108101 
Op.Cost 

s 0.85295 0.078472 
0.041745 0.04318 

c -0.58633 0.247207 
Range 

s 0.122127 0.223853 
0.560528 0.068711 

Mean -1.97947 0.207765   
Electric 

Std. Dev. 1.277689 0.129988   

Mean 0.79084 0.102068   
Hybrid 

Std. Dev. 1.140494 0.098965   

Mean 0.183616 0.057337   
High Perf. 

Std. Dev. 0.608566 0.092543   

Mean -0.49192 0.058369   
Low Perf. 

Std. Dev. 0.55102 0.100139   

Mean -2.98284 0.234245   
Mini Car 

Std. Dev. 1.935799 0.308884   

Mean -1.32572 0.165322   
Sm. Car 

Std. Dev. 1.11959 0.285104   

Mean -0.46289 0.173889   
Lrg. Car 

Std. Dev. 1.182731 0.269354   

Mean -0.79594 0.162877   
Sm. SUV 

Std. Dev. 0.757905 0.276538   

Mean 0.331235 0.151385   
Mid SUV 

Std. Dev. 0.777742 0.327428   

Mean -0.1597 0.237397   
Lrg. SUV 

Std. Dev. 1.580258 0.409971   

Mean -1.28973 0.175784   
Com. PU 

Std. Dev. 1.038175 0.281801   

Mean -0.77123 0.190277   
Full PU 

Std. Dev. 1.588612 0.313687   

Mean -0.4788 0.187064   
Minivan 

Std. Dev. 1.500402 0.254235   
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TABLE 2: Mean prediction error when using different types of quasi-random number 
sequences (mean RSE as proportion of standard errors) 
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50 0.75791 0.76823 0.75774 0.73766 0.76266 

100 0.58074 0.59639 0.55211 0.50165 0.56638 

200 0.37616 0.38775 0.36821 0.36296 0.38580 

500 0.22777 0.21768 0.22801 0.21518 0.24476 

 


