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Performance Assessment of Feature
Detection Algorithms: A Methodology and

Case Study on Corner Detectors
Peter I. Rockett

Abstract—In this paper, we describe a generic methodology for
evaluating the labeling performance of feature detectors. We de-
scribe a method for generating a test set and apply the method-
ology to the performance assessment of three well-known corner
detectors: the Kitchen-Rosenfeld, Paler et al., and Harris-Stephens
corner detectors. The labeling deficiencies of each of these detec-
tors is related to their discrimination ability between corners and
various of the features which comprise the class of noncorners.

Index Terms—Corner detection, feature detection, performance
evaluation, ROC curves.

I. INTRODUCTION

THE requirement for robust and reliable corner detection
is well-rehearsed in the literature [1] and in an attempt to

meet this, many corner detection algorithms have been proposed
over the years [2]. Unfortunately, assessment of the labeling per-
formance of these detectors has been largely subjective: typi-
cally detector results on real images are shown – usually with
few details of the imaging conditions or detector parameters
employed – and a subjective appraisal is made of the labeling
performance. In recent years there has been an increasing em-
phasis onquantitativeperformance evaluation in computer vi-
sion (which we briefly review in Section II). In this paper, we
present a generic methodology for assessing the performance
of feature detectors. To illustrate this methodology, we describe
its application to corner detectors, an area where there has been
comparatively little work on performance evaluation. We return
to the generic nature of the proposed methodology in Section V
but in the following sections we focus on the issue of corner de-
tector evaluation. We employ the well-known receiver operating
characteristic (ROC) paradigm [3] to assess the performance
on the two-class labeling problem (corners versus noncorners).
ROCs have the advantage of mapping-out the whole range of
detector operating points independent of the priors on a given
labeling problem; the slope of the ROC can be related to the pos-
terior probability of class membership [4] and the area under the
curve (AUC) is a concise measure of performance [5] although
Adams and Hand [6] have pointed-out the need for care when
comparing two detectors whose ROCs cross. Central to the gen-
eration of an ROC are two labeled datasets: a true feature dataset
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(here, corners) and a dataset of counter-examples (noncorners)
and a key challenge is to obtain two labeled sets of sufficient
size to obtain statistically meaningful results. In Section II, we
review relevant work on the performance evaluation of feature
detectors. In the present work we employ a detailed model of
the image formation process to obtain datasets of the necessary
cardinality; we describe the generation of the model data in Sec-
tion III.

In Section IV, we illustrate the application of the methodology
presented where we examine the performance and operation of
three well-known corner detectors: the Kitchen & Rosenfeld de-
tector [7], the Paler detector [8] and the Harris & Stephens de-
tector [9] also known as the Plessey corner detector. One ad-
vantage of the present approach is that it enables us to probe the
key issues in the functioning of each of the detectors as well as
assessing labeling performance in operation.

We discuss the implications and extensions of this work in
Section V before offering concluding remarks in Section VI.

II. FEATURE DETECTORPERFORMANCEEVALUATION

The need for performance evaluation protocols in computer
vision has greater gained acceptance in recent years—see
Bowyer and Phillips [10] and Courtneyet al. ([11] and refer-
ences therein) for a partial survey. Most of the work done to
date on evaluating the performance of feature detectors has
concerned edge detection algorithms, an area initiated by the
seminal work of Abdou and Pratt [12].

Heathet al. [13] have reviewed a number of methods for as-
sessing edge detector performance and presented an approach
of using manually labeled edges from real images to generate
a dataset labeled with the ground truth from which ROC plots
were produced. An ingenious aspect of the method of Heathet
al. was to introduce a “don’t know” class which was applied to
image regions where it was not possible for a human observer to
unambiguously label edges. It is, however, a philosophical issue
whether judging a feature detector by its concordance with the
opinions of a group of human observers is legitimate—the issue
would seem to hinge on the ultimate purpose of the edge detec-
tion process. In addition, whereas an edge detector would em-
ploy a small image patch (maybe 3–7 pixels square) a human
observer would utilize much larger-scale contextual cues.

As far as the quantitative assessment of corner detectors is
concerned there has been little published work. Courtneyet al.
[11] describe a Monte Carlo procedure for constructing prob-
ability density functions for the Harris and Stephens detector

1057-7149/03$17.00 © 2003 IEEE
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Fig. 1. Image patch in the vicinity of a corner feature. In (a), pixel “A” should be labeled as a corner whereas in (b) pixel “B” should be labeled as a (nonobvious)
noncorner.

over a very limited range of corner configurations. Mohanna and
Mokhtarian [14] have employed a methodology similar to the
one used by Heathet al. for edges by asking a panel of human
observers to hand label corners in a set of test images; these au-
thors took a feature to be a corner if more than 7 out of the 10
panel members labeled it thus and took the position of a given
corner to be the average position indicated by their observers.
Whatever the merits of assessing edge detectors using hand-la-
beled datasets, clearly the approach is problematic in the case
corners since these are fairly rare and a very large number of
images would be needed to produce a statistically meaningful
test set (see Section III-B). Mohanna and Mokhtarian increased
the numbers of corners in their test set by affine and similarity
transformation although as a consequence, not all of their test
features can have been statistically independent. In addition, it
is unclear whether the image location labeled by a human ob-
server necessarily corresponds to the correct pixel ofprojection
of a corner in object space.

In the following section, we describe the development of a
ground truth dataset based on an accurate imaging model which
overcomes the drawbacks of the approaches set-out in this sec-
tion.

III. D ATA MODEL

In formulating our approach, we take the objective of a corner
detection process to be:To label the pixel site which corre-
sponds to the optical projection of the corner feature in object
space. This introduces a subtlety in that as a corner detector of
finite (invariably odd) region of support is swept over the dig-
ital image, a corner projecting in anadjacentpixel site to the
location currently under consideration will produce a pattern
rather similar to a corner. Nonetheless the site adjacent to the
true corner should be labeled as anoncorner. This situation is
illustrated in Fig. 1.

In Fig. 1(a), the pixel labeled “A” should be labeled as a
corner whereas in Fig. 1(b), pixel “B”—which would present

a pattern closely resembling a corner—should nonetheless be
labeled as a noncorner. In this paper we term the feature at
pixel “B” a nonobvious noncornerto distinguish it from fea-
tures which are obviously noncorners, such as edges and uni-
form patches. Most corner detectors give a number of high re-
sponses in thevicinity of a corner, a situation which is usually
mitigated by nonmaximal suppression; in pattern space, corners
and nonobvious noncorners thus seem to be rather close and are
often confused. For this reason we explicitly consider nonob-
vious noncorners.

A. Image Patch Generation

There is a sentiment in the image processing community,
expressed, for example, in [13] that synthetic image data is
somehow not representative ofreal images. We would argue
that the data generated by the model used here ishighly
representativeof idealizedfeatures. The value of approximate
yet tractable models is beyond doubt in most fields of physics
and engineering. In addition, a point that has been overlooked
by most critics of synthetic data is that the design methodology
of almost all detectors is the recognition ofidealizedfeatures.
For example, ideal step edges in the case of the Canny edge
detector [15] and points of rapid, two-dimensional intensity
change for the Harris-Stephens corner detector [9]. We are
aware of no conventional feature detector whose development
has beenexplicitly influenced by the need to reject clutter,
texture and so on. Consequently, detector responses to the data
used here are at very least, a measure of self-consistency and in
practice, indicative of performance across a far wider domain.
We are not aware of anybody who regards the Canny detector
as of no worth because it is developed from an “unrealistic”
—although eminently sensible—model of an edge.

Further, in Section II we argued that generating a test set by
hand labeling corners is impractical. In this work we have ex-
tended and enhanced previous synthetic-based approaches by
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accurately modeling thewhole optical imaging process. (We re-
turn in Section V to yet further extensions.)

In the present work we assume we are imaging a “knife-edge”
right-angled (“L”-) corner located on the optical axis. These
“knife-edge” features are then projected onto the CCD image
plane to a perfect focus through a diffraction-limited lens which
in practice involves convolving the object space with an Airy
function [16]. The image quality of most reasonable lenses is
usually limited by diffraction through the optical aperture when
stopped-down sufficiently and in this paper we have assumed
an aperture of f8 as a typical figure. (Interestingly, omitting this
stage – equivalent to assuming a lens of infinite diameter aper-
ture – produces the most significant effect on the (mis)labeling
of edges rather than corners. The influence of the optical system
on the performance of feature detectors will be reported else-
where.)

We then generate a set of corner patterns by applying ran-
domly determined affine transformations of the optical field
image projected onto the CCD. First the image is sheared to
produce a corner with an random opening angle uniformly dis-
tributed in the range . Then, the image is rotated
by a random angle and translated by uniformly
distributed displacements

If then the generated
feature is a corner, otherwise it is a nonobvious noncorner. The
gray levels either side of the corner were then linearly mapped
to the randomly selected ranges, , . The
generated data thus spans the whole pattern space of corners.

The diffracted and transformed optical signal was then
integrated over the square CCD pixel sites (which, without
loss of generality, we assume to exactly abut). Finally, we add
Gaussian-distributed noise to the pixel values and quantize to
one of 255 levels to simulate an 8-bit analog-to-digital conver-
sion process in a framegrabber. Up to this final quantization
stage, all calculations were performed with floating-point
arithmetic. The process flow is illustrated in Fig. 2; note there
is a change of scale between the first three images and the last
two.

This data model thus accurately represents anidealized
imaging situation and the performance of a corner detector on
this dataset represents anupper boundon labeling performance
which factors such as texture and clutter may well reduce; we
would argue that knowing an upper bound on the performance
of a detector is extremely valuable. Nonetheless, the basic
methodology described here is extendable to cover factors
such as finite depth-of-field (see Section V) and image clutter
[17].

The particular results reported in this paper have been
generated for a representative imaging setup with a lens of
25 mm focal length and an object distance of 1 meter. (In
fact, the only role of the object distance is to set the optical
magnification.) The CCD pixel sensors have been taken as
7.5 m on a side (15 the mean optical wavelength of 500
nm) and we have used 4040 samples in the optical field to
correspond to one CCD pixel, this figure having been determined

as sufficient to produce accurate results. The Gaussian noise
had a variance of 4, being the figure observed in a number of
analog camera/framegrabber combinations examined in this
laboratory.

B. Size and Composition of Datasets

The labels produced on a two-class classification problem can
be described by a binomial distribution with probability of suc-
cess, (where is a function of the classifier operating point).
We estimate over a finite sample and we would like to have
confidence intervals on this measure. Confidence intervals on
a binomial-distributed variate were considered by Clopper and
Pearson [18] for rather small sample sizes but more generally,
we can adjust the sample size to obtain a given confidence in-
terval for some observed. Unfortunately, direct evaluation of
the factorial quantities in the binomial distribution is problem-
atic for the sample sizes of interest here but we can use an ap-
proximation to the normal distribution [19] to obtain confidence
intervals. In this way we conclude that for probability estimates,

, 10 000 samples are sufficient to give a confidence
interval of at a 95% confidence level; this range of proba-
bilities is of the greatest practical interest for ROC plots.

In order to construct ROC plots we require a test set of corners
and another test set of noncorners. Our corner dataset comprises
10 000 examples generated in the manner shown in Fig. 2. The
set of noncorners comprises the subclasses of: nonobvious non-
corners (see Fig. 1), edges and uniform patches and we can iden-
tify two possible measures of performance. Firstly, we can eval-
uate performance in thecontextof a whole image for which the
composition of the noncorner set needs to reflect the proportions
of the various noncorner subclasses present. Here we proceed
by assuming that the prior probability of corners is and
therefore the proportion of pixels which are nonobvious non-
corners (NONCs) is – every corner has eight nearest
neighbors which are NONCs. We further assume that around
5% of all pixel sites are edges and the remainder are uniform
patches. Taking the number of NONCs as 1000, the composition
of the whole imagenoncornerset is determined accordingly. We
refer to this whole image noncorner set as dataset “A;” clearly
the vast majority of this dataset is uniform patches. In a sense,
evaluation on dataset “A” reflects the expectation of any pixel
randomly selected from an image being labeled correctly.

In addition to studying the typical labeling performance one
might expect over a given image, it is highly instructive to study
theoperationof a detector, in particular its ability to differen-
tiate corners from the various noncorner subclasses. For this
reason, we have generated a second dataset which we desig-
nate “B” which comprises 10 000 of each of the noncorner sub-
classes from which can obtain reliable statistics on discrimina-
tion ability between, for example, corners and NONCs.

All of the noncorner subclasses were generated in a very sim-
ilar manner to the corner features. The generation of nonob-
vious noncorners have been described in Section III-A. Edge
generation is identical except that the starting corner image is
replaced with a semi-infinite half plane. To produce uniform
patches it is sufficient to randomly select a nominal patch in-
tensity, and then corrupt each pixel with
Gaussian-distributed noise.
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Fig. 2. Illustration of the corner generation process. Note: There is a change of scale of a factor of 40 between the first group of three images and the last two –
see text for full details.

To allow other workers to assess the performance of ad-
ditional corner detectors, the datasets generated here are
available at http:// www.shef.ac.uk/eee/staff/pir/Datasets/Cor-
nerDatasets_f8_40.zip.

IV. A PPLICATION TO CORNERDETECTORS

We have applied the present methodology to evaluate the per-
formance of three well-known corner detectors. The Kitchen
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and Rosenfeld (KR) detector [7] is a seminal contribution to the
field and forms a measure of the corner-like properties of an
image point (“corner-ness”) by taking the product of gray-level
curvature and the gradient magnitude. Subsequently, other au-
thors have pointed-out that many other significant corner de-
tectors effectively fall into this curvature-times-gradient-mag-
nitude category although exact implementations may well pro-
duce significant differences in performance. The KR detector
here has been implemented over a 33 neighborhood.

We have also considered the detector of Paleret al. [8] which
appears to operate on a very different principle from those detec-
tors based on image calculus in that a median filtered version of
the image is subtracted from the original and a cornerness mea-
sure formed by multiplying the gray-level differences with the
contrast over a window. Davies [20], however, has shown that
subject to certain assumptions, this detector also conforms to the
curvature-times-gradient-magnitude format.

The corner detector of Harris and Stephens (H-S) [9] is based
on an autocorrelation measure and uses only first-derivatives
to form a cornerness quantity as opposed to the second-deriva-
tives used by the KR detector which are well-known to be noisy.
Noble [1], however, has shown that the H-S detector again fits
the curvature-times-gradient-magnitude model.

Corner detectors usually produce significant false responses
in thevicinity of corners and conventionally, nonmaximal sup-
pression (NMS) is used to select the peak local response. De-
spite its practical utility, NMS is ultimately a “repair” stage to
ameliorate detector deficiencies – in this work we focus only on
thequalityof the underlying corner measure on the grounds that
a detector based on a good corner measure can perhaps be im-
proved by NMS but a detector based on a poor measure cannot
be brought up to the same quality by NMS. The minor exception
to not treating NMS is with the KR detector where, arguably, an
NMS stage constitutes an intrinsic part of calculating one of the
possible corner measures [7].

In a number of the ROC plots which follow, the false
positive fraction does not reach a value of unity even for
zero threshold. (To prevent misleading discontinuities in the
ROC plots we take a positive label to be the condition where

; note thestrict inequality.)
Where the we modify the AUC
measure to be afill-factor, AUC’, where we normalize the
AUC by the maximum false positive fraction. This gives an
indication of the degree to which the characteristic is filling
the reachable portion of the plot; an AUC’ measure of unity is
ideal.

A. Kitchen and Rosenfeld Detector [7]

The ROC plot for the basic KR detector generated with
dataset “A” (reflecting whole image labeling) butwithout
nonmaximally suppressing gradient values is shown in the
upper curve of Fig. 3. (The gaps in the plot are caused by
calculating the cornerness measure over quantized gray-level
values rather than insufficient data.)

Clearly the basic KR detector is rather poor and we can in-
vestigate the reasons for this from the response to each sub-
class (dataset “B”) plotted against threshold in Fig. 4 where the
thresholds span the range of practically useful values.

Fig. 3. ROC plots for the basic and nonmaximally suppressed KR detector.

Fig. 4. Labeling response of the basic Kitchen and Rosenfeld detector.

From Fig. 4 we can see that while the detector maintains a
reasonable discrimination over NONCs, it responds strongly to
edges and also to uniform patches to a lesser degree. These false
responses are qualitatively well-known [21] leading Kitchen
and Rosenfeld [7] to modify their corner measure to use the
nonmaximally suppressed gradient magnitude. The ROC plot
for the KR detector with NMS is also shown in Fig. 3. It is
clear that the performance is very poor and the reasons for this
degradation are apparent from comparing Fig. 5 (the labeling
response for the NMS-KR detector) with Fig. 4. While the re-
sponse to all the noncorner subclasses (false positives) has been
effectively suppressed by NMS, unfortunately the response to
corners has also been reduced significantly. Recall that here a
corner is considered correctly labeled if the pixel into which it
projects from object space is labeled. Clearly the KR detector
is exhibiting poor localization, an observation which is not
new [21] but it is gratifying that the present methodology gives
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Fig. 5. Labeling response of the Kitchen and Rosenfeld detector with
nonmaximal suppression.

results consistent with previous subjective evaluation as well as
providing a means toquantifythe effect.

B. Paler, Föglein, Illingworth, Kittler Detector [8]

The Paler detector is based on the observation that median
filtering does not greatly distort edges but does affect corners.
Here the size of the median filter window is a parameter. The
ROC plots (dataset A) for both 33 and 5 5 windows are
shown in Fig. 6; using a 7 7 window does not produce a sig-
nificantly better ROC plot than the 55 detector. The conclu-
sion from Fig. 6 is in agreement with Davies [20] that a 55
window gives somewhat better results.

The labeling responses (over dataset B) for both the 33 and
5 5 windows are shown in Figs. 7 and 8, respectively. It is
noteworthy that although the 55 detector has an improved
selectivity for corners, the response for all of the noncorner
classes, particularly NONCs, is also increased. This would tend
to suggest that the 5 5 detector would suffer from an increased
rate of false responses in the vicinity of a corner but if these
could be filtered by nonmaximal suppression then the larger
window size may be preferable. Although not shown here, the
trend of increasing window size reducing the corner/NONC dis-
crimination is further worsened for the 77 detector.

C. Harris & Stephens Detector [9]

The Harris and Stephens detector proceeds by forming a set
of partial first derivatives, whence

(1)

where is a zero-mean Gaussian smoothing kernel of
variance, and is the convolution operator. Forming the
symmetric matrix:

(2)

Fig. 6. ROC plots for the Paler detector for 3� 3 and 5� 5 windows.

Fig. 7. Labeling response for 3� 3 Paler detector.

Fig. 8. Labeling response for 5� 5 Paler detector.
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Fig. 9. ROC plots for the Harris-Stephens detector. Filled circles are fork =

0:04 and open triangles fork = 0 – see text for explanation.

Fig. 10. Labeling response for Harris-Stephens detector fork = 0:04.

leads to the “inspired formulation” [9] of the cornerness mea-
sure

(3)

It is interesting to note that Gaussian convolutions in (1) were
justified by Harris and Stephens as needed to suppress noise in
the partial derivatives, but it is clear from the above (1)–(3)
that either omitting this stage or smoothing beforecalcu-
lating , , results in a cornerness measure which is iden-
tically zero. Thus, rather than merely suppressing noise, the
Gaussian convolution would appear to be fundamental to the
operation of the detector in that it isotropically modifies the fre-
quency spectra of the various quantities – in this sense it func-
tions similarly to the median-filtering stage in the Paler detector.
This pivotal role of the Gaussian filter does not hitherto seem to
have beenexplicitly noted in the literature.

The ROC plot for the H-S detector for ; is
shown in Fig. 9 along with the plot for the case where . It
is clear that the detector with is superior and achieves a

Fig. 11. Labeling response for Harris-Stephens detector fork = 0. Note the
greatly increased response to edges over Fig. 10.

Fig. 12. ROC plot for Harris-Stephens detector for� = 1 andk = 0:04.
Here the noncorner class comprises only nonobvious noncorners (NONCs). The
dashed line is the ROC characteristic for random guessing.

lower false positive score for a given true positive rate. From the
labeling performance shown in Figs. 10 and 11 it is clear that the
principal function of the trace-squared contribution to the corner
measure (3) is to suppress the response of the detector to edges.

One matter for concern with the H-S detector is the poor
discriminability of corners over NONCs that is apparent from
Fig. 10. A modified ROC characteristic is shown in Fig. 12
where the noncorner class comprises solely NONC features;
this plot illustrates corner/NONC discrimination for the H-S de-
tector and it is worth noting that the dashed line in this figure is
the ROC characteristic we would obtain for purely random as-
signment of class labels. It is clear that the H-S detector char-
acteristic is uncomfortably close to random guessing. To quan-
tify this, the AUC’ measure for Fig. 12 is 0.6085 (whereas the
comparable statistic for even the basic KR detector is 0.6636.)
These quantitative observations are consistent with the widely
observed defect of the H-S detector of producing large numbers
of false responses around a true corner.
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Fig. 13. AUC’ measure versusk-value for the Harris-Stephens detector. Note
the suppressed zero on the ordinate.

As a final example of the evaluation methodology presented
here, we examine the optimal setting of one of the parameters
in the H-S detector. Harris and Stephens [9] mentioned no value
for in (3) but 0.04 appears to be widely used. We have applied
the present methodology to determining the-value which opti-
mizes the AUC’ measure for the family of corner versus NONC
ROC plots such as Fig. 12. A plot of AUC’ versus-value (for

) is shown if Fig. 13 which suggests that a value of 0.05
is optimal, at least for the present imaging conditions. The im-
provement in performance is, however, very small and thus the
figure of seems well-founded. Nonetheless, Fig. 13
illustrates an important application of the present approach to
optimization of detector parameters with respect quantitative la-
beling performance.

V. DISCUSSION ANDFUTURE WORK

Clearly the present methodology generatesidealizedimage
examples which can be viewed as yielding an upper bound on
performance; if a feature detector cannot perform well on such
“clean” examples then it unlikely to perform well on real-world
examples contaminated by clutter and texture. Although the il-
lustrations used here relate to corner detection, the methodology
is generic in the sense that it can be used to produce test data
for any arbitrary feature. All that is required is a high-resolution
image of the idealized feature to replace the first image in Fig. 2.
The construction of a suitable dataset proceeds analogously.

In the present paper, in using the Airy function for the point
spread function we have implicitly assumed quasimonochro-
matic incoherent illumination. Extension to broadband illumi-
nation for a source of arbitrary spectrum is straightforward; fur-
ther extension to fully or partially coherent illumination is also
possible [16] although somewhat more involved. Here, for sim-
plicity we have also assumed that the image features are in per-
fect focus but a finite depth of optical field can be modeled via
the Lommel functions [16]. More generally, the influence of
imaging conditions on the performance of feature detectors is
an area that has not received much attention [22] – this too is an
avenue of future research.

Most of the previous analyses of corner detectors have as-
sumed a real-valued, continuous intensity function, for example
[1], [2], [20]. Clearly images are discrete and quantized and
therefore it is conceivable that even different implementations
of the same algorithm may produce different results. Despite
each of the three corner detectors considered having been shown
to broadly conform to the curvature-times-gradient-magnitude
form, it is interesting that each has its own particular short-
coming. A detailed comparison of corner detectors will be the
subject of future publication.

In this paper we have approached the issue of localization
implicitly by taking a true positive to be a label in the pixel in
which the object-space corner projects – if a neighboring pixel
is labeled this is counted as a false positive. Clearly localization
and its interaction with nonmaximal suppression is complex and
again, will be the subject of further research.

The present use of a standardized methodology allows a
quantitative comparison or the objective evaluation of novel
detectors – we see this as the key contribution of the present
paper. Nonetheless, it is reassuring that the present results agree
broadly with previous subjective observations.

VI. CONCLUSIONS

In this paper, we have described a methodology for the per-
formance evaluation of feature detectors. The evaluation frame-
work is generic but to illustrate the procedure, we have analyzed
three well-known corner detectors. In particular, we have been
able to pinpoint the deficiencies of each detector which we have
related to its ability to discriminate between corners and various
of the noncorner classes.
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