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Identification of Probabilistic Cellular Automata

Stephen A. Billings and Yingxu Yang

Abstract—The identification of probabilistic cellular automata  population growth [4], and the spread of damage [5]. However,
(PCA) is studied using a new two stage neighborhood detection al- 3 review of the literature shows that the study of PCA has

gorithm. Itis shown that a binary probabilistic cellular automaton |5r4elv been focused on simulating dvnamical svstems [6]-[8
(BPCA) can be described by an integer-parameterized polynomial gely 9 dy Y [61-[8]

corrupted by noise. Searching for the correct neighborhood of a and investigations of the dynamical . behavior revealed by
BPCA is then equivalent to selecting the correct terms, which con- PCA models [9]-[11]. However, an important problem of
stitute the polynomial model of the BPCA, from a large initial term  identification of PCA rules from given patterns of data seems
set. It is proved that the contribution values for the correct terms  to have been largely ignored.

can be calculated independently of the contribution values forthe  The identification problem consists of determining the prob-

noise terms. This allows the neighborhood detection technique de- , pjjicsic |ocal transition rules and the associated neighborhood
veloped for deterministic rules in [14] to be applied with a larger

cutoff value to discard the majority of spurious terms and to pro- ©OVer which the rule is operated, from a given set of spatio—tem-
duce an initial presearch for the BPCA neighborhood. A multiob- poral patterns generated by the PCA evolution. The identified
jective genetic algorithm (GA) search with integer constraints is PCA rule should be parsimonious so that the rule set is as small
then evolved to refine the reduced neighborhood and to identify the g5 possible and the size of the neighborhood is minimal. Only

polynomial rule which is equivalent to the probabilistic rule with ; ; in Al
the largest probability. A probability table representing the BPCA a few authors have studied this problem. In [12], a genetic al

can then be determined based on the identified neighborhood and 9,0_“thm (GA) was designed in search Of, an appropriate proba-
the deterministic rule. The new algorithm is tested over a large set Dilistic CA rule through a space of possible PCAs constructed
of one-dimensional (1-D), two-dimensional (2-D), and three-dimen- over a number of dimensions. However, the neighborhood selec-
sional (3-D) BPCA rules. Simulation results demonstrate the effi- tion process was complicated and it was unclear if the neighbor-
ciency of the new method. hood obtained was minimal. Both sequential and parallel algo-
Index Terms—Genetic algorithms (GAs), identification, proba- rithms were introduced in [13] for the identification of PCAs.
bilistic cellular automata (PCA), spatio—temporal systems. The neighborhood was found by incrementing the radius by
one at each iteration until a preformulated condition was sat-
isfied. Although this produced small neighborhoods the search
process was not very flexible or efficient. The simulation results
ROBABILISTIC cellular automata (PCA), which are re-in [1] suggested that the correct neighborhood and local tran-
ferred to as stochastic cellular automata (SCA) by somagion rules may still be obtained under certain levels of noise
authors, are constructed by introducing probabilistic elemenigen the GA search developed in the paper for deterministic
into deterministic local CA rules. The probabilistic elements afgles was applied. However, the rule space was constructed over
generally regarded as a form of noise, which unlike the classi¢aé complete assumed neighborhood and this can involve an ex-
definition of noise in other systems, is essential in investigatir@ptionally large number of possible rules, and the search time
the dynamical behavior of PCAs. Deterministic CAs can havegan be extremely long.
large number of attractors, but the inclusion of noise can causerhis paper considers binary probabilistic cellular automata
jumps between attractors and leads to the selection of a sMBIPCA) and shows for the first time that a class of BPCA can
number of physical states [2]. Noise also plays an important raje described by simple integer-parameterized polynomials cor-
in phase transitions when CAs are employed as a modeling tegbted by noise (the probabilistic elements). It is proved that
to approximate both equilibrium and nonequilibrium systemsthe contribution values for cell terms that define the neighbor-
PCAs have been widely studied in recent years. The cofpod can be calculated without a knowledge of the noise. This
bined simplicity of PCA rules together with the rich dynamicak important because this will allow the neighborhood detection
behavior exhibited in the spatio-temporal patterns producggheme developed in [14] for deterministic rules to be employed
in the evolution of these systems has attracted the attenti@ia preliminary neighborhood detection tool in the presence of
of many researchers. This has made the PCA a prototypenitise. By increasing the cutoff value for the contributions the
the study and testing of certain aspects of complex systegtgliminary neighborhood detection technique can be used to
including oscillations in reaction-diffusion processes [3Hiscard most of the spurious terms included in the selected term
set and therefore to produce a much reduced neighborhood. As
' ed Aoril o o ) aresult the number of terms in the candidate term set can be dra-
e v e Cavesiy o ot aneagatcallyredced. Amuliobjective GAwith nteger constaints
U.K., and by U.K. EPSRC. This paper was recommended by Editor L. O. Hal then introduced to refine the preselected neighborhood to the
S. A. Billings is with the Department of Automatic Control and Sysiminimum and to find the polynomial that best represents the
tems Engineering, University of Sheffield, Sheffield S1 3JD, U.K. (e-mailgpCA rule with the largest probability. It is shown that the effi-
s.billings@sheffield.ac.uk). . . . .
Y. Tang is with Texas Instuments, Freising 85356, Miinich, Germany. ciency of the search is conS|derany |mproved because the GA
Digital Object Identifier 10.1109/TSMCB.2003.810437 now only has to search through the reduced candidate term set.
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TABLE |
EXAMPLE OF 1-D BPCA

t—1: 000 001 010 011 100 101 110 111

: 1/p 1/p
(/= R

i, j-1,k i,3+1,k

I1l. PRELIMINARY NEIGHBORHOODDETECTION

Determining the neighborhood which defines the spatial and
temporal connections that specify the CA rule is an important
first step in CA identification. Even complex patterns can be
Fig. 1. Three-dimensional neighborhood. generated from simple neighborhoods and it is important to

develop procedures that can identify parsimonious CA model

The paper is organized as follows. In Section Il, a clagerms from CA pattern data. This problem will be addressed in
of BPCAs and the polynomial representation are introduceitie following sections by introducing an algorithm which shows
Section Il discusses the preliminary neighborhood selectitime contribution that each term makes to the CA rule.
process. A multiobjective GA with integer constraints is )
constructed in Section IV and Section V provides the siméf* Representations of BPCA
lation results and some discussions. Section VI contains theEvery deterministic binary CA rule with a neighborhood of

conclusions. sizen consisting of a set of cells within the CA pattern denoted
as{cell(z1), ..., cell(z;), ..., cell(z,)}, wherez, is the lo-
[I. PROBABILISTIC CELLULAR AUTOMATA cation of the cell, can be expressed by a Boolean function of the
Background knowledge regarding the basics of cellular anrm (4

tomata are well-documented in many standard CA text booksa(z;) = ao ® a1s(z1) ® - ® av(s(z1) * -~ * s(zn)) (1)
and publications [1], [15]. For simplicity this is not repeated ifvhere
the present paper where only the details specific to the current” = 2" — 1, z; cell to be updated;

study are introduced (see [1, Sect. 2.0 and 3.1] or [15] for a mores(z;) state ofcell(z;) at time steg — 1;
detailed introduction to CAs). sa(zj) next state incell(x;) at time step;

A BPCA comprises a lattice of cells, each taking only zero or subscriptd used to indicate the rule is deterministic.
one as the state, and a probabilistic local transition rule whigh(i = 0, ..., V) are binary numbers ang = 1 indicates that

specifies at any discrete time step the state of a cell as a futige following term is included in the Boolean expression while
tion of the states in previous time steps of the cells within a gives = 0 indicates that the following term is not includes andx
neighborhood. An example of a three-dimensional (3-D) PCdenoteX O R and AN D operators, respectively. To simplify the
neighborhoods is shown in Fig. 1. Note the neighborhoods omgtation,cell(x;) will be replaced by:; throughout the present
involve cells from time step—1 although BPCA neighborhoodsstudy.

can take cells from various spatial and temporal scales. For simThe X OR and AN D operators can be represented using the
plicity, this paper only considers neighborhoods composed mérmal algebraic plusg- and multiplicationx operators to give
cells from time steg — 1, but the results are not restricted toh, x hy = hy X ha, hq ® ho = hq + ha — 2h1 X ha. Applying

this case. The probabilistic local rule is compose@'f(n is  this to (1) shows that every binary deterministic CA rule with a
the size of the neighborhood) rule components, where each rapighborhood cell(z1), ..., cell(x,)} can be represented by
resents a possible state of the neighborhood. The probabiligtipolynomial of the form

rule is constructed by specifying one or more (not all) of the rule

N—4p colps(zn)+ -+ 0 n
components to be one or zero with probabifitidenoted as/p 5a(w) 18(@1)+ $(@n)F - Fhvso) x xs(a:(z))

or 0/p, respectively), and zero or one W.ith probgbil@/— P)  whereV = 27 — 1 andé; (i = 1, ..., V) are a set of integers
[denoted a®/(1—p) or1/(1—p), respectively] while the other ¢ | .1, that (2) maps,(z;) into {0/7 1}_’

components are deterministic (zero only or one only). Varying According to the definition, a BPCA can be represented by
the probabilityp between one and zero leads to a transition from salz;) with probability 1 — p
d\lj) —P1
sp(T5) = { 3

one deterministic rule (correspondinggte= 1) to another rule

(corresponding tp = 0). A typical rule of a one—dimensional 1 — sq(z;), with probabilityp;

(1-D) 3-site BPCA with von Neumann neighborhood is showwherep; = (1 — q) x p2 (¢ > 0.5), ¢ is the probability pa-

in Table I. This probabilistic rule causes a transition frRale rameter;s is the probability with which the probabilistic com-
60 (following Voorhees’ nomenclature scheme [15])Rade40. ponents will appear in the spatio—temporal pattern; andpthe
It can be seen that the noise is addeBudte 60 through making subscript indicates that the rule is defined in terms of probabil-
rule components 010 and 100 dependent on the probability [tées. p; is related to and smaller than

rameterp. For Rule 60, the states that are governed by these Equation (3) shows that a probabilistic rule is equivalent to
two rule components are no longer exclusively updated to otree deterministic rule defined by specifying all the probabilistic
at time stept, but may be flipped to 0 with probability — p. components to be one, with a probability- p; and the conju-
These flipped states represent the noise. gate deterministic rule constructed by assigning zero to all the
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probabilistic components, with a probability. Sinces,(z;), where
sd(zj), ands(z;) (i =1, ..., n) are all temporally dependent,

the probabilistic rule can also be viewed as a binary time se-
ries defined by (2) where the data is corrupted by a time depé@H‘—d
dent noise signal which occasionally flips the updated state. Te(t — 1) = [s(z1;t — 1) -+ s(@p; t —1) -+ s(z1; t— 1)

G=16, 6, --- 6v]"

make later discussions clearer, temporal symbols are introduced XX 8(xp; t —1)].
into the notation and,(z;), sa(z;), ands(z;) (i =1, ..., n) i )
can then be denoted as(z;; t), sa(z;; t), ands(z;; t — 1) OF In matrix form
(i =1, ..., n), respectively. _ -
The noise signal is defined as sa=8x0 ©)
n(t) = sp(xj; 1) — sa(wj; 1) (4) where

so that substituting (3) into (4) and using the new notation above ¢, — [sa(z; 1) sa(zj; 2) -+ sa(xj; N)]T
yields ’
S = [sT(0) s7(1) - sT(N=1)]" =[s1 -+ sv]

0 1-— P1
n(t) = { 1—2sq(z;it) p1 (®)  andN is the total number of time steps in CA evolution. Matrix
7 ' S can be decomposed 8s= E x Q, where
It can be seen thaf(¢) is a signal with only three statesl, 0, e1(0) . ev(0)
and 1 and the nonzero states appear with probabiity
The statistics of the noise signal are unknown and difficultto E = : : =le; - ey]
predict since the occurrence of the nonzero states is dependent er(N—1) - ey(N-1)

on the initial conditions and the evolution of the BPCA. The h | matri
noise signal can therefore be assumed to be nonstationary S orthogonal matrix

nonlinear. According to [16, eq. (26.3)}(t) can be expanded E" xE = Diag [e] xe; -+ e xey]
as m, and Q is an upper triangular matrix with unity diagonal ele-
n(t) =D g€t —1), ..., &(t—ny)) x Bi(t) +£(t) (6) Ments
=1 I ¢iz qu3 -+ qv
wherethey;()s(i =1, ..., m,) are asetof nonlinear functions 1 qo3 - qov
and{(t) is a white noise sequence. The nonstationary nature of .
7n(t) is denoted by the temporal dependence of the parameters Q=
,6, (L = 1, R mn). 1 qQv-1v
From the discussions above, every binary probabilistic CA 1
rule with a neighborhoodcell(z1), ..., cell(zy,)} can be rep- .
resented by Equation (9) can then be represented as
sp(zjst) =bis(z; t—1) 4+ Ops(@p; t— 1)+ - sa=ExQxf=Ex¥0 (10)
+Oyvs(z;t—1) X - X s(xp; t—1)+n(t) (7) wheref = Q x 6 = [0, ---0y]7.
whereV = 2" — 1 andd, (i = 1, ..., V) are a set of integers  Equation (2) can therefore be expressed as
the combinations of which in (7) maga(z; t) into {0, 1}. v )
Before moving on to the next section, the relationships be- sa(zj; t) = Z ei(t—1) x 6. (11)
tween a cell, a neighborhood, a term, and a CA rule need to be i=1
clarified. A neighborhood is composed of one or more cells. ABubstituting (11) into (7) gives
assumed neighborhood normally includes other cells that are not v
within the real neighborhood to be identified. Atermis a product sp(1j; t) = Z ei(t — 1) x 6, + n(t). (12)

of the states of one or more cells within a neighborhood. A CA
rule is constructed over one or more terms. The correct term ‘T‘?\te
for a CA rule is the collection of only those terms that defin{eo select the correct neighborhoddell(x+) cell(wn)}

1)y -+ n
thg CA rule. For examplg, 1-Bule 60 over the von Neumann from an initial large neighborhoodcell(z1), ..., cell(zy),
neighborhood can be written as

=1
neighborhood detection algorithm should be designed

: . . cell(xpy1), .., cell(zy,)} of sizem. The algorithm proposed
sa(jit)=s(—-Lt—1)+s(;t—-1)—-2 in [14] selects the relevanit,. (V,. < V) terms from the initial
xs(j—1;t—1) x s(j; t —1). termset{s;, i =1, ..., Viu} (Vi, = 2™ — 1) by calculating

The correct term set for this rule therefore consists of three terfi§ contribution )
. . . . 2 T
s(—1;t—1),s(5;t—1),ands(j — 1; t — 1) x s(j; t — 1). [ef]; = 0; ><Te>i X €; (13)
S S
B. Orthogonalization and the Noise Model . poor
each terrs; in (9) makes t&,. This guarantees that all the cor-

Equation (2) can also be expressed as rectterms are in the assumed term set and without the corruption
sq(zj;t) =s(t—1)x 0 (8) of noise, is able to select a correct set of terms that represent the
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rule and cover the correct neighborhood. However, terms not in-Replacingy(¢) in (19) by (14)
cluded in the correct term set but constructed over cells within v, v,
the neighborhood and terms constructed over cells out of the, _o & (Z ei(t—1) x 9~7;> % (Z e (t—1)
neighborhood may also be chosen if noise is introduced (see the P =

simulated examples in Section V). This means that the effects

of the noise can be restrained to two parts: xgw )+ Z (t—1) ?(t) + 5@))]

1) inclusion of terms out of the correct term set but con-
structed over cells within the real neighborhood Vi
vE (

2) terms constructed over cells within the assumed neigh- Z e (t—1) x 0°(t) + Z (t—1)
borhood but out of the real neighborhood. i=1

Following an analogous procedure as above but now;fey

2
yields x02(1) + ¢ (t)>

0ty =S el (e — 1) x 62 (¢ +Z (t— 1) x 62() + £(t)

(14)
where the first and second sum represent the orthogonalized
noise terms constructed over cells within and out of the real + Z (t—1) x ég(t))2 + &%(t)
neighborhood, respectively. The nonstationary nature(of
exhibited ing;(¢) in (6) is now expressed by the time depen- AR .
dence off(t) andf?(t). = Z Wt —1) x 0¥(t))*

=1 L:l

Vaw

Yo (er(t—1) x 67(t))?

i=1

=0+04+0+F

~+

C. The Effects of Noise on Term Contribution

N V,
1 - o
The term contribution defined in (13) is important in the term + N Z Z (t 1) x 9 N Z 0
selection process. For deterministic rules the correcttermsetcan =1 =l
be selected by calculating the contributidas;. In this subsec- Substitutingy back into (18) produces

tion, the effects of noise on term contribution will be discussed. v, LN R . . )
Although all the terms of;(t — 1) x 6; (i = 1, ..., V) Xow o et=1)x0; 3§ (e (t—1)x6"(t))
are present in (12) assume that obly< V define the correct 1— = = -2 =
BPCA model. The irrelevant terms are assumed to correspond % > S%(xj; t) Y 512)(%, t)
to 6;s which are zero in (7). Therefore, (12) can be rewritten as t=1 t=1
Vi N - N
¥ (et =1)x0(1)*  § X ()
Szt At —1) % 6; + 15 2w 2 (el J N 2
J ; n(t)- (15) _i=l  t=1 = n Nt_l (20)
1 2( 1 2
Squaring both sides of (15) and taking the expected value gives N ,; (@55 1) N ,;1 (@55 1)
V. 2 From the definition ofct] in (13), (20) can finally be expressed
E[sg(wj; )= FE (Z ei(t—1) x 9~Z> +2 as
W Y-S =S ey
. R — ct]; — ct]y’ = ct]; +
(Z ei(t—1) % 01-) xn(t)| + En*(t)]. (16) i=1 i=1 i=1 62,
=1

where the subscripts and superscriptsv, ando are used to
Because the;(t — 1)s are orthogonak; (t — 1) x ¢;(t—1) = 0 indicate the terms that are in the real term set, the noise terms
(i # j), and that are only related to cells within the correct neighborhood
v 2 v and the noise terms that are related to both cells within, and
- 5 _ ~ o out of the correct neighborhood. Equation (21) implies that the
E (Z cit=1) % 0i> =F Z ei(t—1) x H’i] ’ [ct] values for terms that are in the correct term $&f'() and
=t (17) noise terms_ th'at are out of thq correct term set but constructed
Substituting (17) into (16) yields over cells within the correct nglghborhoth[w) can be calcu-
lated independently of the noise terms that are constructed over

i=1

1 ) Vo1 X 5 - cells out of the correct neighborhoddi{”). This suggests that
N sp(Tj5t) — N e;(t—1)x0; =y (18) the neighborhood detection algorithm in [14] can still be em-
t=1 i=1 t=1 ployed to detect the neighborhood. The problem is the cutoff
where pointC,.¢ because any noise term which hgs#f value larger

thansg /67 will be incorrectly included iCg is still set to zero

+ E[2(t)]. (19) as in [14]. Ideally,Co should be set tqgfgl[ct];’ + (652/5(;;)
and learned online in order to determine the appropriate cutoff
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and hence the exact correct term set. However, because the sta- TABLE 1l
tistics of(¢) are unknown and the signal: noise ratio is 100% RELATIONSHIP %‘g&i@ggg‘;ﬁgﬁﬁ&\éggTORS AND THE
occurring with probabilityp;, which makes it difficult to use

conventional methods to minimize the effects of the noise, it is Binary vectors | Integers | Binary vectors | Integers
not easy to calculat@,g online. However, (21) is still a valuable 0000 0 1000 -0
result because even if the correct cutoff cannot be easily found 0001 1 1001 -1
the application ofct] can still be employed to eliminate many 0010 2 1010 -2
inappropriate terms. However the test results in Section V-A 0011 3 1011 -3
suggest that the correct or almost correct neighborhood can still 0100 4 1100 -4
be found ifC,g is chosen within the rang6.05, 0.1]. 0101 > 1101 5
off ) 0110 6 1110 6
0111 7 1111 7

IV. RULE SELECTION USING MULTIOBJECTIVE GAS

WITH INTEGER CONSTRAINTS _ _
ch term and associated parameter is represented by @a

E
The fu_ll_neighborhood search can b_e dram_atically reduc %ary vector. The length is determined by the range of in-
by examining the terms selected using in Section lll abqve. teger parameters which define the search space. For example
De_note the selected terms{ag,, ..., sly, } and ths associated ¢ 11 = 4 the mapping between thex 1 binary vectors and the
ne|ghb(.)r_ho.od a$cell(.$1)’. oo cell(aa)} (Vi < 2¢ — 1.)‘ The corresponding integers is shown in Table Il. The leading zero
fn the binary vectors denotes plus and the leading one means
negative. For integer polynomial parameters of CAs with a di-
sa(zj) = O1sli +--- + 0y, sly, (22) mension under four our results suggest that a range &f 6],
wheret; (i = 1, ..., V,) are integers. u = 4 is large enough. If higher dimensional or more com-

Although the size of the assumed neighborhood and tREX BPCASs are involved, may need to be increased to give
number of terms in the assumed polynomial have both begn & > max — min, wheremax andmin represent the largest
considerably reduced, the noise effect is not completeN‘d the smallest possible integer parameters, respectively. The
eliminated when using data extracted from BPCA patter#g9th of the binary GA chromosome can therefore be com-
to determine the polynomial model in (22). A further nois@Uted fromA = x V,,. Theith GA chromosome; will be
reduction technique is therefore required. d_efined asd x A binary vector so that starting f_rom the first

Equation (2) shows that the parameters in the ponnom@F everyy bits in the chromosome represent an integer param-
model of a CA must be integers. In fact, a large number of sim@ter and correspond to a term in (22)
lation tests suggest that the parameters in the polynomial model  ¢;(1 : p) — sly,  ei(u+1 : 2u) —sly, ...,

with probability1 — p; can then be assumed as

of a CA are often integers within a finite range, for example 4 _ .
[—6, 6]. This suggests that it may be possible to find the correct eV =D+ 1 Vap) = sl
equivalent deterministic rule from the noise contaminated ddfahe jth parameted; (j = 1, ..., V,,) whichis represented by
by constraining the parameters to be integers within a limitee(jx+1: (j+1)u) is identified as zero, then the corresponding
range. termsl; is not included in (22). Define
However, most of the available optimization methods treat F=[sly sly -+ sly.]
the variables as continuous and are therefore not appropriate
when the parameters are integers. Although some of these algo- C=ler ca -~ cnp]T

rithms may produce integer solutions by first solving the con- D=de(C) = [dy dy - d ]T
tinuous problem and then employing round-off techniques the e R P

solutions may be far from optimal. The optimal integer solwherenp is the population size anét is the decoding function
tion can only be obtained by an exhaustive search. Howevwehich maps the binary vectors back to integers according to
this is impractical due to time and memory constraints even foable Il. The whole populatio€' is initialized by assigning each
small scale problems. Various methods [17]-[19] have been ddromosome as a randomly generated binary vectorwlis.
signed to solve the integer optimization problem, but each has

drawbacks including low efficiency, limited reliability and beB. Multiobjective Fitness Function

coming trapped at a local optimum. GAs, however, seem to beThe fitness function is designed to measure the performance
appropriate and allow integer constraints to be added to polyripolynomial rules represented by the chromosomes in regener-
mial rule selection. GAs will therefore be briefly introduced irating the observed spatio—temporal patterns. An important mea-

the following sections. sure in the present problem is the modulus of errors function
_ defined asMer(i) = 3757 |y(i, j) — (i, j)|, wherer is the
A. Population number of data points in the data set extracted from the BPCA

The objective of the GA search is to select the approprigpatternsy(z, ;) is the original measured state at data pgifar
terms from the reduced term set, which has been determirgtsiomosome, andy(i, j) = d; x f; is the predicted state. If
using contributiorjct] in Section lIl, and to determine the assod er is chosen as the fitness function the GA search will find a
ciated integer parameters so that the resulting polynomial repsetution with the least modulus of errors. However it is not guar-
sents a parsimonious model representation of the BPCA patteanteed that the associated neighborhood is correct and minimal.
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The preliminary neighborhood detection technique in Sechronously with the subpopulations under an objective jointly
tion Il produces the reduced neighborhodckli(z1), ..., determined by the two objectives. Each candidate in the main
cell(xz,)} for the GA search, which should be considerpopulation is produced by genetic communication between the
ably smaller than the original neighborhoddell(z1), ..., two subpopulations and is subject to evaluation by the ranking
cell(xy,), ..., cell(zy), ..., cell(x,,)}, but this may still be technique.
larger than the true neighborhodcell(z1), ..., cell(z,)}.

Notice that there may be more than one model that produags Reproduction

a minimum modulus of errors. Howev_er the principle of par- In the reproduction process, chromosomes are first selected
simony implies that the best model will have the least termsq 4 ents to reproduce offspring according to the corresponding
Therefore another search objective must be added to direct f§g.qs values. The purpose of parent selection is to give more
GA evolution to produce a parsimonious polynomial with mingenroductive chances to those chromosomes that are the most
imal modulus of errors. o ~ fit. This paper uses the roulette wheel parent selection technique
In the present study the two search objectives are to minimiggm [20]. The selected population is then used for genetic op-
the modulus of errors and to minimize the number of terms gations in the breeding process. There are two principle genetic
all models with the samé/er. An efficient way of combining operators for producing new chromosomes during the breeding
these two search objectives is to construct a multiobjective fiirocess. The crossover operator cuts segments from both parents
ness function based on a ranking scheme according to the cand combines these segments to produce new chromosomes.
cept of Pareto optimality [20]. This will guarantee equal probFhe mutation operator arbitrarily alters the bits in achromosome
ability of reproduction to all nondominant chromosomes areitcording to a predetermined probability, the mutation rate (see
should generate a solution nearest to the optimal. The multig@2] and [23] for details).
jective fitness function is constructed as follows. The new multiobjective GA search for polynomial rules with
i) For the current population with sizep, each chromo- integer constraints can be summarized as follows.

some is ranked with respect fder. The chromosome 1) Initialize the two subpopulations and the main population

with the least error occupies the first position, the chro-  on the basis of the preliminary neighborhood obtained in

mosome with the second least error occupies the second  Section IlI.

position and so on. Chromosomes with the same error2) Evaluate the three populations accordingfer, St, and

share the same rank, so that Mer gombined withSt, respectively, using the ranking
RANK 1 e i i technique. . .
ERROR  Mer(1) . Mer(d) Mer(i+1) 3) Apply the parent selection technique to the two subpopu-
RANK i . np lations. . _
ERROR Mer(i+2) --- Mer(np) 4) Employ crossover and mutation to the two subpopulations
separately.

with Mer(1) < --- < Mer(i) = Mer(i + 1) = 5) Employ crossover and mutation to the two subpopulations

) Mer(i + 2) < -+ < Mer(np). _ _ combined to produce new candidates for the main popu-
ii) Map the binary vectors back to integer parameters using  |ation.

Table Il and define the structure functicft(i) for the ) Repeat 2) and insert new populations to replace the three
ith chromosome as the number of nonzero integersinthe ~ |d populations, respectively.

chromosome. Resort the orders of chromosomes sharingz) |f all chromosomes in the new main population converge

the same rank in proportion to the associa$e(i) and to a single individual then stop, otherwise return to 3) and

keep the ranking of the remainder unchanged. Thus repeat.
RANK 1 e { 1+1 After the deterministic model, which is corrupted by noise, is
ERROR Mer(1) .-+ Mer(i) Mer(i+1) found the minimal neighborhood can be retrieved. The proba-
STRUCTURE St(1) e St(i) St(i+1) bilistic elements and the associated probability can then easily
RANK 141 np be found from the data set by collecting a probability table.
ERROR Mer(i+2) --- Mer(np) For every rule component which is determined by the minimal
STRUCTURE St(i+2) --- St(np) neighborhood, the occurrences of zero and ong (m;; t) are

with St(1) < -+ < St(i) < St(i + 1) = St(i + 2) < recorded. Forthe deterministic rule components the occurrences

-+ < St(np). of zero and one i, (z;; t) cannot be both nonzero. This prob-

iii) The multiobjective fitness function of théeth chromo- aPility table represents the identified BPCA.
some is finally defined as
Fit(i) = MAX (rank(i)) — rank(i) . V. SIMULATION STUDIES
MAX(rank(i)) — MIN(rank(i)) A. Preliminary Neighborhood Detection

To avoid the GA search becoming trapped at a local optima twoThree examples, for 1-D, 2-D, and 3-D BPCAs, will be used
subpopulations will be introduced which evolve in parallel witho demonstrate the preliminary neighborhood detection and the
the main population [21]. The subpopulations are evolved segaucial role the increased,g plays in reducing the number of
rately under two different search objectives. One is to minimizmsignificant terms in the selected term set. The initial neigh-
the modulus of errord/er, the other to minimize the struc- borhoods used in the three examples are defined in Table IIl.
ture functionSt. The main population will then evolve syn-To simplify the notation all the neighborhoods are assumed to
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TABLE 1l
INITIAL NEIGHBORHOODSUSED IN EXAMPLES 1-3
Example Cells in the initial neighbourhood
1 2 3 4 5
1 cell(5) cell(j — 1) cell(j +1) cell(j — 2) cell(j + 2)
2 cell(i, j) cell(i+1,7) cell(i,j—1) cell(i,j+ 1) cell(i—1,7)
3 cell(i,j, k) | celli+1,5,k) | cell(i —1,7,k) | cell(i,5+ 1,k) | cell(i,j — 1,k)
Example Cells in the initial neighbourhood
6 7 8 9
1 cell(j — 3) cell(j + 3) cell(j — 4) cell(j + 4)
celli+1,j—1) |celli+1,j+1) | celili—1,5—-1) | celli—1,j+1)
3 cell(i,j, k+1) | cell(i,jk—1) |celli—1,j+1,k) | celli—1,j — 1, k)
be 9-site neighborhoods. The candidate ternsgeT” which is i S e T o
determined from the initial neighborhoods is therefore the same b b, Bk, Bh bbb BLE E .ff.“

for all the three examples, and is constructed as
1 0 000 0 0 00

SET = :
1 2 3 4 5 6 78 9

wherel, 2, 3, 4, 5, 6, 7, 8, 9 denote the cells in the assumed
neighborhoods. The mappings between entrie$ EiI’ and
cells in the neighborhoods are illustrated in Table IIl. For
example, entry 5 is associated witkli(j + 2) in Example 1,
cell(i — 1, j) in Example 2, anaell(i, j — 1, k) in Example

3, and so on. The whol8 ET consists o2? — 1 = 511 rows.
Each row represents a candidate term which corresponds to an
si, 1 =1, ..., VinmatrixS in (9). For example, the first row
(10000000 0) represents ondyj) in Example 1,5(3, j)

in Example 2, and(4, j, k) in Example 3, while the last row
(123456 7 8 9xorresponds to a product of nine states,
5(7) % s(7—1)x s(j+1) x 5(j—2) x5(j+2) x 5(j —3) x 5(j+3)
xs(j —4) x s(j +4) in Example 1,5(¢, j) x s(i + 1, j) x
s(i,7 —1) xs(i, 7+ 1) xs(i —1,7) x s(#+ 1,5 — 1)
xs(i+1, j+1)xs(i—1,j—1)xs(i—1, j+1)in Example
2,ands(i, j, k) xs(i+1, j, k) xs(i—1, 7, k) x s(i, j+1, k)
xs(i, =1, k)xs(i, J, k+1) xs(1, j, k=1)xs(i—1, j+1, k)
xs(i — 1, j — 1, k) in Example 3. Note that an entry $IET
denotes a cell while a row ¥ ET denotes the product of
the states of one or more cells, that is, a candidate term
Si,i: 17 V.

1) Example 1: Example 1 uses the 1-D BPCA rule given
in Table I. This rule is equivalent tBule 60 occurring with
probability p and Rule 40 occurring with probabilityl — p.

The spatio—temporal patterns produced by the evolution of this
BPCA rule with varyingp are shown in Fig. 2. All the patterns
were developed on a 200200 lattice with time evolution from

top to bottom and a periodic boundary condition. That is the lat-
tice is taken as a circle in the horizontal dimension, so the first
and last sites are identified as if they lay on a circle of finite
radius. The evolution started from an initial condition of a ran-
domly generated binary vector where the state initial densitiesFSﬂ- 2. Spatio—temporal patterns produced from Example 1 for the evolution
ones and zeros are both 0.5. Fig. 2(a) and (b) can be considéféd- P BPCA with varyingy. (@)p = 0.9; (0) p = 0.7

as patterns produced by the evolutionRoie 60 with noise at

two levels defined by the probability—p. It can be seen that the states of the updated cells governed by rule components 010 and
introduction of noise/probabilistic elements results in considel00 in Rule 60 from one to zero and therefore only takes two
able changes in the patterns, from a distribution of trianglesvalues,—1 and 0. The impact of the noise is by no means trivial
Fig. 2(a) to a random tree structure in Fig. 2(b) where the noiae can be seen in the pattern changes in Fig. 2. This is because
level is1 — 0.7 = 0.3. The noise is introduced by flipping thethe signal/noise ratio is 100% at each point the noise appears.
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rt1 0 0 0 0 00 0 0 0.36007

Data extracted from a noise free simulation of iube 60 was 1 2 0 0 0 0 0O 0 0 0.1626
used for detecting the term set of the deterministic ralgy 2 0 000 0 0 0 0 0.3600
was chosen as zero and the result is shown in mbdel(a). 1 300000 0 0 0.0079
The last entry in each row represents the normalized value of 123 0 0 0 0 0 0 0.0029
the contribution the term in that row makessgp The sum of 23 00 0 0 0 0 0 0.0044
all the [ct] values will be unity so iflct] were multiplied by L1 6 00 0O O 0O 0 0.0029]
100 this would give the percentage contribution the term in that Model 1 — (¢)
row makes tos,. The same also applies to the other models.
In modell — (a) only three terms have been selected from the 1 0 0 00 0 0 0 0 03600
SET of 511 terms and the neighborhood that is determined by 12000000 0 01626
these terms i§cell(j), cell(j — 1)}, which is the same as listed 290000000 0 0360
in [15, Appendix 1] and is minimal and correct. - Model 1 — (d) }

Data extracted from Fig. 2(b) was used in determining the o )
neighborhood when noise was introduced at a level defined by2) Examples2and 3: The data used for preliminary neigh-
1 —p = 0.3. Model 1 — (b) shows the result from this databorhood detection in Example 2 was produced by the evolu-
set whenC, is set as zero. Although only 23 out of 511 term§on of a 2-D BPCA which was constructed by specifying the
have been selected, the neighborhood covered by these ternséates of the updated cells governed by rule components 0010,
exactly the same as the 9-site neighborhood assumed and 1840, 1000, and 1101 iRule 24235 to be zero with prob-
can be gained from this result. Modet- (¢) shows the chosen ability p and one with probabilityl — p over the neighbor-
terms wherC,g is chosen a8.1. The neighborhood determinedhood {cell(i + 1, j), cell(i, j — 1), cell(i, 7 + 1), cell(i —
by these terms i§cell(j), cell(j—1), cell(j+1), cell(j—3)}, 1, 5)}. Model2 — (a) shows the result whep = 1 andCq
which fully covers the correct neighborhood butis much small@ set as zero. The nine terms selected constitute the determin-
than the initial neighborhood. Whén, is increased to 0.2, the istic Rule 24 235 and referring back to Table I, determine the
three terms selected in modet- (d) are exactly the same as thecorrect and minimal neighborhood. When the noise is intro-
correct terms in modél— (a). This suggests that increasing thejuced by setting as 0.7, the cutoff value was incremented to
cutoff value can reduce the number of irrelevant terms includg@crease the number of spurious terms included in the iden-
in the identified model and in some cases, for example in Moqglad model. The result foCLy = 0.09 is given in model

1 — (d), can even discard all the spurious terms. 2— (b), where 18 terms were selected. A close inspection shows

1 0 0 0 0 0 0 0 0 0.1295] that these 18 terms cover all the nine correct terms in model
1 200 0 0 0 0 0 0.052 2 — (a). The remaining terms are composed of two types: 1)
20 00 00 0O 0 0 0.0440 five terms made up of cells within the correct neighborhood

i Model 1 — (a) i and 2) four terms made up of cells within the correct neigh-

100 0000 0 0 03600 borhpod bgt including a cell Qut5|de the correc_t n_elghborhood,
1 2000000 0 01626 cell(i—1, j+ 1). Example 3 illustrates the preliminary neigh-
200 0000 0 0 03600 borhood detection for a 3-D BPCA. This probabilistic rule was
16 000000 0 00029 created over a 6-site neighborhood defined y/i(i—1, j, k),

1 6 8 0 0 0 O 0 0 0.0061 Cell(L-i-L _j/ k),Cell(L j—l, k),cell(L _j—|—17 k),cell(i./ J k—

1 346000 0 0 0.0042 1), cell(i, j, k + 1)} by specifying the states of the updated

1 28 00 0 0 0 0 0.0046 cells governed by rule components 000010, 000101, 000111,
1 345 000 0 0 0.0030 001100, 010010, 010101, 010111, 011100, 100001, 100110,
26 7 0 0 0 0 0 0 0.0036 101001,101111,110001, 110011,110111,and 111110 in ade-
2 6 78 0 0 0 0 0 0.0103 terministic rule (01111110 11010111 11100110 11011110
2 6 0000 0O 0 0 0.0027 01000100 01011110 01110110 01010110) to be one with
12 6 00 0 0 0 0 0.0011 probability p and zero with probability — p.

1 50 0 0 0 0 0 0 0.0029

1 56 8 00 0 0 0 0.0026

1 4 5 0 8 0 0 0 0 0.0018 r3 0 0 0 0O 0O 0O 0 0 0.48717

1 3 5 0 0 0 0 0 0 0.0028 350 0 0 0 0 0 0 0.0631

24 6 0 0 0 0 0 0 0.0038 2 3 4 5 0 0 0 0 0 0.0363

1 58 0 0 0 0 0 0 0.0022 5 0 0 0 0 0 0 0 0 0.0217

1 3 5 8 0 0 0 0 0 0.0029 25 0 0 0 0 0 0 0 0.0292

29 0 0 0O 0O 0 0 o0.0007 345 0 0 0 0 0 0 0.0481

28 9 0 0 0 0 0 0 0.0009 2 0 0 00O 0 0 0 0.0377

12 9 0 0 0 0 0 0 0.0008 23 0 0 0 0 0 0 0 0.0322
L1 6 8 9 0 0 0 0 0O 0.0015. L2 3 5 0 0 0 0 0 0 0.01994

Model 1 — (b) Model 2 — (a)
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Model3 — (b) gives the 54 selected terms whers= 0.7 and domly chosen radius. A sample of the results is summarized in
Cos Was chosen as 0.095. The 54 terms were composed of thfable IV. For each rule, 100 trials were conducted with different
parts: initial populations. The data used for the GA search were ex-

1) 36 correct terms in modal— () selected for the deter- tracted from spatio—temporal patterns generated by evolving the
ministic rule whenClg = 0; BPCA rules constructed by specifying the states of the updated

2) 11 terms which are constructed only over the cells with€lls governed by a quarter of all the rule components in the as-
the correct neighborhood; sociated deterministic rules to be one with probability: 0.7
3) seven terms which are composed of cells within the cot'd zero with probability — p = 0.3. The numerical labels for

rect neighborhood but also one cell out of the Corre&ﬂese deterministic l‘u|eS are ||Sted il’l the “Rule" C0|umn. Only
neighborhoodgell(i, j + 1, k). the deterministic rules with small neighborhoods will be enu-

Both Model2 — (b) and ModeB — (b) define a neighborhood Merated. This is due to the fact that the numerical label and the

larger than the correct neighborhood. However, the number@mponent form of the deterministic rules can be very cum-
candidate terms in both models are considerably reduced cdtifSome when the neighborhood size is larger than four. For
pared to the original term set. Only 18 and 54 out of a possibiénplicity only the average and standard deviatistd.dev.)
511 terms are selected in Examples 2 and 3, respectively. THues are listed in Table IV. The rules labeled witile n — &
shows that although it is difficult to calculate the exact cutoff® = 1, 2 3k =1, 2, ..., 14) have neighborhood size larger
value when noise is preseid,s can take a range of values sghan four and the rule numbers were randomly generated in the
that most of the spurious terms are excluded. In some cases &4y Simulation tool developed by the authors. _
instance in model — (d) in Example 1, the chosef.¢ iseven  Inspection of Table IV shows that the modulus of errors did
capable of selecting only the correct terms and hence the corrf@@} Converge to zero because the data used for the GA search
and minimal neighborhood. are corrupted by probabilistic noise. The number of errors is
Note that within each of Models— (c), 2 — (b), and3 — (b) actually the number of contaminated data points.
there is a set of terms which are not in the corresponding corre Rule;_lrl] Table IV are selected from a set of no more than
term set {see Models— (a), 2 — (), and3 — (a), respectively) 2% x 2 . posslble rules. For example, when= 4, for the _
but which are constructed over the correct cells (cells within tHeD 3-Site rules in Table 1V, the rule set for the GA search with
correct neighborhood). The inclusion of a term set of this kin?fe“m'zﬂ‘i‘gy nslghborhood.detectlon comprises a maximum of
demonstrates the probabilistic characteristic of the rule singe 2 = 524288 possible rules. In particular, in Example
these terms may well be from other deterministic rules with aWhenCor is chosen a8.1, the number of possible rules de-
similar component structure but with a differentFor instance termined by model — (¢) whichiis us7ed to prime the GA search
in Example 1, the resultin modek (c) also includes the three IS dramatically reduced to on X 2" = 2048. In comparison
termss(j — 1) x s(j +1), s(j) x s(j +1), ands(j — 1) x s(5) x whenm = 9 (m is the size of the initial neighborhood) the rule
s(j + 1), which constitute exactly the determinisftle 40. ;et for t_he GA search with no prel'iminary neighborhooq detec-
This is because the BPCA rule is equivalerRtbe 60 occurring  ion which 2ggenerates the results in [1, Table VI] consisted of
with probabilityp = 0.7 andRule 40 occurring with probability & massive® = 1.3408¢ + 154 rules. Hence, the average run
1—p=03. time in Table 1V is considerably smaller than in [1, Table VI].
These three examples also demonstrate that when using thEh€ Preliminary neighborhood detection and the GA search
neighborhood detection algorithm in [14], the] values for with integer constraints are insensitive to the dimensionality of
terms that are in the correct term set and noise terms that §}¢ BPCA rules because what matters is the number of terms
out of the correct term set but constructed over cells within tf§arched, not the dimensionality. Identification of rules of the
correct neighborhood can be calculated independently ¢éthe S&Me construction but different dimensions should therefore be
values for noise terms that are constructed over cells out of (&€ t0 produce the sanf and similarMer and average run
correct neighborhood. times. These properties are demonstrated in the results for the
The preliminary neighborhoods for Examples 1-3 can thd§© 1-D 4-site ruleRule 16798 andRule 24235 and the two
be retrieved from the selected term setin modelgc), 2— (b), 2-D 4-site rules of the same rule number. The slight discrepancy
and3 — (b) as{cell(j — 3), cell(j — 1), cell(j), cell(j + 1)} in M er and the average run time is caused by the different initial
{cell(i + 1, 3), cell(i j’ — 1), Ce”/(l- j +/ 1), cell(i — conditions and the randomness of genetic operations in the GA
1, ), cell(i — 1, + 1)} and {cell(i — 1, j, k), cell(i — €volution. _
1,7+ L k), cell(i + 1, j, k), cell(i, j — 1, k), cell(i, j + Each identified polynomial produces a correct truth table that
1 .k) CBH(Z’_ ok —1), Ce”(z /]-_ k +’1')} re/spectively./'i'hese matches the component form of the deterministic rule which
neighborhoods can be refined using the GAs described in fif@resents the probabilistic rule with probability- p. This
next section. polynomial also determines a correct and minimal neighbor-
hood for the corresponding probabilistic rule. The probabilistic
rule components and the associated probability can then easily
be identified from the data set by collecting a probability table.
The terms selected in Section V-A will be used as initiarhis is achieved by recording the occurrences of zero and one in
term sets for the application of the GA algorithm described is),(z; ¢) for every rule component which is determined by the
Section IV. The algorithm was tested over a large set of 1-Rlentified neighborhood. This collected probability table repre-
2-D, and 3-D BPCA rules with various neighborhoods of rarsents the identified BPCA. The probability table for the BPCA

B. Rule Sdlection Using GAs With Integer Constraints



BILLINGS AND YANG: IDENTIFICATION OF PROBABILISTIC CELLULAR AUTOMATA 235

TABLE IV
SUMMARY OF RESULTS OBTAINED IN EVOLVING SOME 1-D, 2-D, AND 3-D BPCA ROLYNOMIAL RULES WITH VARIOUS SIZES OF
NEIGHBORHOODSUSING THE GA ROUTINE OF SECTION IV

Dl n Rule a Generations Modulus of errors Structure average
mean | std.dev. | mean std.dev. mean | std.dev. | run time
Ruled40 4 | 14.15 2.36 4 0 2 0 25.49 min.
3 Rule60 4 | 18.96 3.54 6 0 3 0 38.56 min.
Rulel8 4 | 22.13 4.25 28 0 6 0 40.02 min.
4 Rulel6798 | 6 | 104.23 6.89 16 0 15 0 200.09 min.
Rule24235 | 5 | 75.48 6.06 35 0 9 0 141.26 min.
5 Rulel—5 | 5| 80.05 7.71 22 0 21 0 147.51 min.
Rulel—6 | 6 | 112.92 10.58 15 0 18 0 213.42 min.
116 Rulel—7 | 7 | 159.64 12.19 9 0 26 0 289.97 min.
Rulel -8 | 7 | 193.79 17.55 32 0 19 0 329.44 min.
7 Rulel —9 | 7 | 201.82 15.83 27 0 27 0 364.58 min.
Rulel —10 | 7 | 170.37 14.44 10 0 23 0 209.83 min.
8 Rulel — 11 | 8 | 254.91 19.89 41 0 16 0 470.69 min.
Rulel —12 | 9 | 338.26 23.25 13 0 34 0 592.85 min.
9 Rulel — 13 | 9 | 309.74 30.31 24 0 29 0 552.14 min.
Rulel —14 | 9 | 372.55 21.25 11 0 44 0 614.32 min.
4 Rulel6798 | 6 | 98.92 10.13 19 0 15 0 187.43 min.
Rule24235 | 5 | 72.39 8.57 30 0 9 0 150.06 min.
5 Rule2 -3 | 6 | 90.21 7.74 8 0 12 0 165.29 min.
Rule2 -4 | 7 | 173.24 9.83 43 0 11 0 313.80 min.
6 Rule2 -5 | 6 | 107.38 12.78 26 0 20 0 151.91 min.
9 Rule2 -6 | 7 | 166.43 15.69 14 0 25 0 311.29 min.
- Rule2 -7 | 8 | 238.56 14.32 5 0 32 0 422.36 min.
Rule2 -8 | 7 | 153.63 20.59 37 0 24 0 218.07 min.
8 Rule2—-9 | 9 | 400.07 36.77 20 0 53 0 713.46 min.
Rule2 —10 | 8 | 251.93 26.60 11 0 28 0 436.83 min.
9 Rule2 — 11 | 9 | 385.28 29.89 18 0 45 0 648.31 min.
Rule2 — 12 | 9 | 360.24 18.72 29 0 31 0 625.03 min.
6 Rule3—1 | 7 | 186.53 10.99 33 0 36 0 313.45 min.
Rule3 —2 | 7 | 151.38 11.48 17 0 26 0 220.96 min.
7 Rule3—3 | 9 | 379.26 13.05 22 0 39 0 639.46 min.
Rule3 —4 | 7 | 196.44 11.58 14 0 27 0 363.51 min.
3 8 Rule3 -5 | 8 | 290.00 14.45 29 0 32 0 537.09 min.
Rule3 -6 | 8 | 223.76 17.89 23 0 24 0 416.37 min.
9 Rule3 -7 | 9 | 335.14 20.31 7 0 29 0 589.69 min.
Rule3 —8 | 9 | 390.56 22.98 25 0 35 0 674.18 min.

D represents the dimension of the rule. n indicates the size of the real neighbourhood. u denotes the size of the prelimi-
narily detected neighbourhood before GA evolution. 100 trials were made for each problem. The “Generations” column

indicates the number of generations reached before the solution converged.

TABLE V
PROBABILITY TABLE FOR THE BPCA RULE IN EXAMPLE 2

t—1: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
19 54 28 69
0/ 0/ 0/28 0/&

t: 1 1 A 1 0 a4 31 1 1 5 1 0
/& 1% 1/13 /2

rule in Example 2 was collected from a data set of 1000 datence of eight times out of 27, 24 times out of 78, 13 times out
points and is presented in Table V. For simplicity the prob@f 41, and 69 times out of 98, respectively, while the updated
bility tables for other BPCA rules discussed are not included gells governed by the other rule components are either occu-
the paper. Table V shows that zero appeared in the updated geiésl by zero only or one only. This shows that rule components
governed by rule components 0010, 0110, 1000, and 1101 w10, 0110, 1000, and 1101 are probabilistic and the probability
a occurrence of 19 times out of 27, 54 times out of 78, 28 timgsis approximately 0.719/27 = 0.7037, 54/78 = 0.6923,

out of 41 and 69 times out of 98, and 1 appeared with a occaB/41 = 0.6829, 69/98 = 0.7041).



236

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003

VI. CONCLUSIONS [9] K. Kaneko and Y. Akutsu, “Phase transitions in two-dimensional sto-
chastic cellular automata,J. Phys. A, Math. Gen., vol. 19, no. 2, pp.

Despite the fact that PCA have been widely used in generating  69-175, 1986.
complex spatio—temporal patterns, very few investigators havid0] N. Menyhard, “Inhomogeneous mean-field approximation for phase

studied how to identify the PCA rules given only the patterns. A

transitions in probabilistic cellular automata: An example,Phys. A,
Math. Gen., vol. 21, no. 5, pp. 1283-1292, 1988.

two-step solution to this important problem has been developegi] M. Katori and H. Tsukahara, “2-neighbor stochastic cellular automata
in the present study based on a mapping of the PCA rules to a  and their planar lattice duals). Phys. A, Math. Gen., vol. 28, no. 14,

polynomial rule space. It has been shown that a class of BPC4,

pp. 3935-3957.
] F.C.Richards, “Extracting cellular automaton rules directly from exper-

can be represented as integer-parameterized polynomials con-' imental data,’Phys. D, vol. 45, pp. 189—202, 1990.
taminated by noise. On the basis of these polynomials it has thé#B] A. 1. Adamatskii, “Identification of probabilistic cellular automatév.

been proved that the contribution values for the correct term

J. Comput. Syst. i, vol. 30, no. 3, pp. 118-123, 1992.
4] Y. X. Yang and S. A. Billings, “Neighborhood detection and rule selec-

that are related only to the cells within the neighborhood can be "~ tion from cellular automata patterndEEE Trans. Syst., Man, Cybern.
calculated independently of the noise terms that are also associ-_ A vol. 30, pp. 840-847, Nov. 2000.

ated with cells out of the neighborhood. This allows the neigh—[15

] B. H. VoorheesComputational Analysis of One-Dimensional Cellular
Automata, World Scientific Series on Nonlinear Science.  Singapore:

borhood detection technique, originally developed for determin-  world Scientific, 1996.
istic rules, to be used to select a preliminary neighborhood evel] P. Young, “Developments in time series analysis, Time Variable and

in the presence of noise by increasing the contribution cutoff

Sate Dependent Modeling of Non-Stationary and Nonlinear Time Se-
ries, T. S. Rao, Ed. Berlin, Germany: Springer Verlag, 1993.

value. This preliminary neighborhood detection stage can yielgh7] c. C. Caroe and R. Schultz, “Dual decomposition in stochastic integer
significant improvements in efficiency by reducing the number __ programming, Oper. Res. Lett., vol. 24, no. 1-2, pp. 37-45, 1999.

of candidate rules fror82™ to less thar2* x 22“~1. For ex-

8] A. Hassibi and S. Boyd, “Integer parameter estimation in linear models
with applications to gps,TEEE Trans Sgnal Processing, vol. 46, pp.

ample, as shown in Example 1 whenre= 9, u = 4, andu = 4, 2938-2952, Nov. 1998.
the number of possible rules are reduced frioBa08e + 154 to [19] T. J. Cole, “Scaling and rounding regression coefficients to integers,”

only 2048. However, the choice of an exact contribution cutoff

Appl. Sat.: J. R Sat. Soc. C, vol. 42, no. 1, pp. 261-268, 1993.
[20] Z. Michalewicz,Genetic Algorithms 4+ Data Structures = Evolution

value that discards all of the spurious terms still needs further ~ programs. New York: Springer-Verlag, 1994.
study. Integer constraints were added to the GA search to ré21] J. R. KozaGenetic Programming: On the Programming of Computers

strain the preliminarily selected neighborhood to the minimu

by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.
22] D. E. GoldbergGenetic Algorithms in Search, Optimization and Ma-

and to direct the search so that the deterministic polynomial rule ~ chine Learning. Reading, MA: Addison-Wesley, 1989.
which represents the probabilistic rule with the largest probaf23] A.J. Chipperfield and P. J. Fleming, “Genetic algorithms in control sys-

bility can be retrieved. Several simulated examples of 1-D, 2-D,

tems engineering,Contr. Comput., vol. 23, pp. 88—94, 1996.

and 3-D PCA rules demonstrated the effectiveness of the new

approach.
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