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Relaxation of branched polymers under tube based models involve a parameterp2 char-

acterizing the hop-size of relaxed side-arms. Depending onassumptions made in rheological

models (e.g. about the relevant tube diameter for branchpoint hops)p2 had been set to values

varying from 1 to 1/60 in the literature. From large-scale molecular dynamics simulations of

melts of entangled branched polymers of different architectures, and from experimental rhe-

ological data on a set of well-characterized comb polymers with many (∼ 30) side-arms, we

estimate the values ofp2 under different assumptions in the hierarchical relaxation scheme.

Both the simulations and the experiments show that including the backbone friction and con-

sidering hopping in the dilated tube provides the most consistent set of hopping parameters in

different architectures.

1 Introduction

Over the last years, experimental studies on branched polymers have gone hand in hand with the-

oretical work aiming to explain their exceptional viscoelastic properties.1–4 While the viscoelas-

ticity of linear chains is well described by the tube theory,5 entangled branched polymer melts

reveal a more complex dynamic behavior as a consequence of their complicated structure.6 All of

them include one branchpoint (in the case of stars) or more (H-polymers, combs, Cayley trees, hy-

perbranched etc.), which dramatically slow down the overall relaxation of the material. The slow

relaxation processes are reflected in the rheological spectrum, extending over several time decades,

and play an important role during industrial processing.7 A correct implementation of the branch-

point dynamics in tube-based models seems to be essential for accurate theoretical predictions of

the rheological properties of these materials.

Molecular segments in the entanglement network of branchedpolymers relax hierarchically,

progressing from the outer to the inner parts of the molecule. The arms are retracted back and for-

ward along the tubes and their retraction becomes less favorable as the branchpoint is approached.8

This leads to an exponential distribution of the relaxationtimes along the arm, and to a progressive

dilution of the entanglement network. At times longer than the relaxation time of outer segments,
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inner segments do not experience the entanglements with theouter ones, which have relaxed at

much earlier time scales. As a result, the original tube becomes wider (‘dilated tube’) with time.

This mechanism is known as dynamic tube dilution (DTD).9,10 Once the arms are fully relaxed,

they act as sources of additional friction, i.e., as frictional ‘fat beads’. The branchpoint at these

time scales probes the space liberated by the removed constraints of the arm, and performs diffusive

steps (hops) along the tube contour with a diffusivity givenby:

D =
p2a2

2τa
(1)

whereτa is the longest relaxation time of the arm anda is the tube diameter. This may be the

original or the dilated one (see below). In the following thesymbola will be used for the dilated

tube. The original, undilated, tube diameter will be denoted asa0. In the case of asymmetric

structures (e.g., T- and Y-shaped stars, combs, etc), the branched architecture is reduced to an

effective linear chain containing the frictional beads representing the relaxed short arms. At this

point, the final stage of the relaxation is mediated by reptation of the backbone. In symmetric

structures (symmetric stars, Cayley trees...) reptation is not possible, and after retraction of the

main arms all stress is considered to be relaxed; hopping of the central branchpoint is the only

available mechanism for later motion.

The factorp2 in equation Eq. (1) is a dimensionless constant called the hopping parameter.

Thus, it is assumed that the typical hopping distance isp times the tube diameter, and that hop-

ping occurs every time the arm relaxes. Naively, it may be expected thatp2 is of the order of unity.

However, a series of investigations have suggested considerably smaller values in the case of asym-

metric T-shaped stars with weakly or moderately entangled short arms. This was first pointed out

by Frischknechtet al.11 They found that, in order to reproduce the experimental rheological data

with hierarchical tube-based models, the value ofp2 needed to be adjusted depending on the length

of the short arm. The values obtained in Ref.11 varied in the range 1/4≤ p≤ 1/60. The smaller

the short arm was, the lower value ofp2 was needed, decreasing (through equation Eq. (1)) the
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corresponding diffusivity compared to the naive value forp2 = 1. Thus, the relaxed short arms

in the asymmetric stars caused much more drag than expected,even in the case of very weakly

entangled short arms. Chen and Larson analyzed, in combination with hierarchical models, rhe-

ological data of asymmetric stars with the same length of theshort arm, but this being linked at

different positions along the backbone (forming T-shaped or Y-shaped stars).12 They described the

experimental data by using a fixed hopping parameterp2 = 1/12. We note that an alternative tube-

model approach, the time marching algorithm (TMA) usesp2 = 1 but invokes different molecular

assumptions which in essence (implicitly) require a different friction due to the branch point. So,

for example, in TMA, reptation is determined by consideringthe length of the primitive path of the

whole backbone (not only of the unrelaxed fraction of the backbone, as in the BoB3 or hierarchical

models2).

Branchpoint motion has also been characterized in more complex branched architectures. McLeish

et al.13 found the valuep2 = 1/12 to account well for rheological data of H-polymers.14 Further

experimental studies generalized the approach for H-polymers of Ref.13 to the case of comb poly-

mers. Danielset al.15 kept the value of the hopping parameterp2 = 1/12 and analyzed the possible

factors affecting the rheological spectra. They studied the change in the dynamics with increas-

ing number of arms in the comb structure. Some authors incorporated the effect of the different

length of the free backbone ends and side arms .16,17As previously found for their star-like coun-

terparts,11,18 rheological experiments of comb polymers with short, weakly entangled, branches

revealed that these exerted a higher frictional drag than expected.19 Kirkwood et al. proposed to

solve this problem by fixing again the valuep2=1/12 and using a different, effective entanglement

length for the branches.19

Further investigations have shown that reduced values ofp2 ≪ 1 are universally found for

branched architectures with weakly entangled short side arms, the values being strongly dependent

on the arm length.20–22On the other hand, recent studies on comb polymers using the TMA, have

kept the original value of the hopping parameter,p2 = 1, as already mentioned, and used a different

molecular coordinate system accounting for the entire original backbone.23 In addition, we note
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that the effects of architectural dispersity have been recently considered and analyzed.24–26

There have been only a few theoretical attempts to specifya priori the value ofp2. Lee et

al.20,27extended hierarchical tube models to include branchpoint diffusion in a self-consistent way,

accounting for linear rheology of Y-shaped asymmetric stars, combs and pom-pom molecules. The

hopping parameter was identified asp2 = 1/ZAR being independent of the specific architecture,

with ZAR the entanglement density of the unrelaxed backbone segments at the hopping events.

Some studies using slip-link simulations have focused on the nature of the branchpoint motion

itself. Shanbhag and Larson28 suggested that the branchpoint diffusion is limited by thefull

removal of the entanglements around the short arm. Masubuchi et al.29 examined the relaxation

mechanisms of the branchpoint and their contribution to theviscoelastic relaxation of asymmetric

stars. They observed that the more asymmetric the structureis, the more relevant the contribution

of branchpoint hopping becomes for the overall relaxation of the star.

The above review of the literature reveals that there are a very large range of values reported for

the hopping parameterp2. Why is this? We consider that there are two separate causes,as follows.

Firstly, there are different assumptions made about the branchpoint hopping process itself,

within the context of dynamic dilution theory. These assumptions are about two aspects of the

hopping: i) the length-scale associated with hops– this might be set by the original ("thin") tube

diameter or dilated ("fat") tube diameter, and ii) the direction, or path, of the hopping motion– hops

may be considered to occur along the paths of the thin tube contour or fat tube contour. Different

versions of hierarchical tube-based models make differentchoices on these two characteristics of

the branchpoint hopping motion.11,15–17,19,22,30

Secondly, the appropriate value ofp2 is normally determined by inference from rheological

data, rather than by measuring the branchpoint motion directly. The data are interpreted by mak-

ing use of a suitable (hierarchical) rheological model. In addition to the above assumptions made

about the hopping process itself, such models encode further assumptions about polymer relax-

ation,3,4,31 for example in the mathematical description of deep contourlength fluctuations. See,

e.g., the discussion in Ref.32 As a result, inferences made about the rate of branchpoint diffusion
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are themselves dependent on the model used to interpret the data. So, it is quite possible that this

process deduces the wrong rate of branchpoint diffusion (because the branchpoint motion is not

measured directly) which is then interpreted using the wrong assumptions for the hopping process.

It is therefore not surprising that a wide range of numericalvalues forp2 ensue.

Given the wide range of assumptions on branchpoint hopping introduced by hierarchical mod-

els, we aim in this article to address a fundamental issue: can we rule out some of these assump-

tions? We present a critical analysis of the consistency of the different assumptions for branchpoint

hopping. We perform large-scale molecular dynamics (MD) simulations on several branched ar-

chitectures. These include symmetric stars, asymmetric T-shaped and Y-shaped stars, combs and

mixtures of stars and linear chains. The MD simulations allow us to analyze directly the diffusive

motion of the branchpoints, rather than make inferences from rheology data. We also analyze fric-

tion of the branchpoints and tube dilution. Using these data, we determinep2-values for each set

of specific assumptions for branchpoint hopping.

Since our aim is to rule out some of these assumptions, we state in advance our criterion for

deciding what is a “good” assumption, and what is a poor one. Our criterion is simple, and based

on the requirement of a universal behavior: a good set of assumptions should result in broadly

similar values ofp2 across the different systems studied. So, if a specific assumption regarding

branchpoint hopping requires very different values ofp2 to model the branchpoint diffusion of

different systems, then that particular assumption will beruled out by this exercise. Then, having

arrived at an optimal set of assumptions, we can go on to ask what typical value ofp2 should

be used. Throughout this exercise, we shall pay particular attention to errors in determining the

different physical quantities measured by the simulations. Where possible, we aim to estimate

quantities by more than one method, as a check on the consistency of our results. This allows us

to decide whether differences in thep2-values obtained for different simulations are significant, or

within reasonable error bounds.

As a final check on our conclusions, we discuss simulation results in comparison with lin-

ear rheological data of well-characterized comb polymers with weakly or moderately entangled
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branches. This type of experimental system was chosen for several reasons: (i) the large number

of side arms means that there is a discernible experimental signal of the arm relaxation in the linear

rheology data, allowing an experimental estimate to be madeof the arm relaxation time, and (ii)

following relaxation of the side arms, the combs are geometrically simple (linear) objects, and so

the terminal relaxation can be analyzed using reptation theory. Thus, while direct experimental

measurement of branchpoint motion is not possible we can at least make an estimate of the motion

without resorting to one of the more complicated hierarchical models. In what follows, we discuss

our analysis of the experimental system in parallel with thesimulation results because there are

some similarities in the analysis, for example difficultiesin estimating the arm relaxation time, and

the need to use several different methods as a check on consistency.

The article is organized as follows: in Section 2 we present the simulated systems of branched

polymers, we describe the simulated model and give simulation details. In Section 3 we summarize

the main theoretical predictions for branchpoint motion. This section introduces equations related

to branchpoint motion that are later used for obtainingp2 of the simulated and experimental sys-

tems. In Section 4 and Section 5 we estimate the variables figuring in the equations in Section 3

for different molecular architectures, by analyzing simulation and rheological data, respectively.

Subsequently, we use the obtained variables to calculate the values ofp2 for both the simulated

and experimental systems. Results are summarized and discussed in Section 6. Conclusions are

given in Section 7.

2 Simulation details

The branched polymers in our MD simulations were modeled by the bead-spring Kremer-Grest

model.33 Monomeric units are coarse-grained into beads with diameter σ , massm0 and excluded

volume represented by a repulsive Lennard-Jones (LJ) potential:

ULJ(r) =















4ε
[

(σ
r

)12
−
(σ

r

)6
+ 1

4

]

for r ≤ rc,

0 for r > rc,

(2)
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with cut-off distancerc = 21/6σ . Bonded beads are connected by springs, introduced as a finite-

extension nonlinear elastic (FENE) potential:

UF =−
1
2

KFR2
F ln

[

1−

(

r
RF

)2
]

, (3)

with spring constantKF = 30ε/σ2 and maximum spring lengthRF = 1.5σ . In addition to the

original Kremer-Grest interactions, we applied a bending potential given by:

Ubend(θ) = kθ(1−cosθ) , (4)

whereθ is the angle between three consecutive beads (θ = 0 for a rod). A bending constantkθ =2ε

was imposed to increase slightly the stiffness of the chains. The resulting characteristic ratio at the

simulated density and temperature (see below) isC∞ = 3.68. This choice was made to decrease

the value of the entanglement length in comparison to that ofthe flexible chains (kθ = 0).34 In the

following we assume a nominal value of the entanglement length of Ne ≈ 25. This value is the

average ofNPP
e = 23 andNMSD

e = 27, these being estimated by analysis of the primitive path35 and

monomer mean square displacement,18 respectively. In the following we will use the diameterσ

as the length unit, and time will be expressed in units ofτ0 = (m0σ2/ε)1/2. The corresponding

entanglement timeτe for our model isτe= 1800τ0.18

The simulated systems are illustrated in Figure 1. These include symmetric stars, T- and Y-

shaped asymmetric stars, combs, and mixtures of T-stars with linear chains. Red labels denote the

number of entanglements per arm in each architecture (by using the nominal valueNe = 25 beads

per entanglement segment, as mentioned before). See figure caption for details. The simulated

architectures and used values for the arm lengths have been selected to investigate several effects

on the dynamics, namely: i) the effect of the short-arm length for a fixed architecture (881, 882,

883 and 888 systems), ii) the effect of the branchpoint position for stars with identical backbones

and short arms (882 and Y4212 systems), iii) the effect of adding an identical, short arm to an

asymmetric star (Y4212 vs. comb), iv) the effect of dilutingthe entanglement network by mixing
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with weakly entangled linear chains (883 vs. mix11 and mix21systems).

All the systems were simulated, by using the ESPResSo package,36 at number densityρ =

0.85σ−3 and temperatureT = ε/kB, with kB the Boltzmann constant. The number of beads in

the simulation box for the different investigated systems ranged from 75300 to 107100 (see details

in Figure 1). The polymers were first constructed by joining building blocks that were sampled

from simulations of unentangled stars and linear chains with the same interactions of Eq. (2)-

Eq. (4). The angles at the junction points between building blocks were chosen in order to obtain

the correct distribution of intramolecular distances (seeRef.37 for details). Once the polymers

were constructed and randomly inserted in the simulation box, we equilibrated the system. The

equilibration protocol, based on the method of Auhlet al.37 consisted of three steps: i) a Monte

Carlo run for prepacking of rigid macromolecules, ii) an MD run for progressive introduction of

excluded volume by capped LJ interactions (‘slow push-off’), and iii) a further equilibration MD

run with the full interactions. A detailed description of the protocol can be found in Ref.38 After

equilibration, production MD runs were performed, extending over typically one to five billion

MD steps. The MD runs were integrated by using the velocity-Verlet algorithm with time step

∆t = 0.01τ0. The temperature in the MD runs was controlled by the Langevin thermostat with a

friction constantΓ = 0.5m0/τ0.

3 Diffusion of the branchpoint: theoretical background

After the relaxation of the short arm, this effectively actsas a frictional ‘fat bead’. Consequently

the backbone, which in the case of the asymmetric stars is formed by the two long arms, is able to

reptate. The branch point motion at these time scales can be seen as a curvilinear diffusion along a

tube of diametera. The trajectory of the branch point is assumed to be a random walk,

〈r2〉= |L|a, (5)
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Figure 1: Schematic representation of the simulated systems. The numbers at each arm denote the
number of entanglements in the arm, by using the nominal value ofNe= 25 beads per entanglement
segment (see above). In the rest of the paper the different simulated systems will be denoted
according to the big labels. The simulated systems include:i) asymmetric T-shaped stars (881,
882, 883), ii) asymmetric Y-shaped stars (Y4212), iii) symmetric stars (888), iv) comb polymers,
and v) mixtures of 883-stars with linear chains. The fraction of beads in the simulation box that
belong to the stars is 1/2 in the mixture ‘mix11’ and 2/3 in themixture ‘mix21’. The labels 1:1 and
2:1 denote such relative compositions.Ns denote the total number of stars in the simulation box,
Nc denote the number of linear chains in the mixtures.N represents the total number of beads per
macromolecule.

where〈r2〉 is the mean square distance between the start and end points of the trajectory, and|L| is

the length of the primitive path that is explored by the branch point in this trajectory. A Gaussian

distribution is assumed for the diffusion lengthL. Therefore, Eq. (5) can be expressed as

〈r2〉=
2a

√

2π〈L2〉

∫ ∞

0
Lexp

(

−L2

2〈L2〉

)

dL, (6)

which leads to the relation:

〈r2〉= a
√

2〈L2〉/π. (7)

Since we have assumed a diffusive motion of the branch point along the primitive path, we can

relate〈L2〉 and the diffusivityD as

〈L2〉= 2Dt (8)
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where the factor 2 results from the one-dimensional character of the curvilinear diffusion. From Eq. (7)

and Eq. (8) we find:

D =
π

4a2

(

〈r2〉

t1/2

)2

. (9)

Eq. (9) provides a direct way of obtaining the diffusivity for the curvilinear, reptative motion of

the branchpoint. In the reptative regime the mean squared displacement will scale as5 〈r2〉 ∝ t1/2.

Therefore, by obtaining from the simulations the corresponding plateau value of the ratio〈r2〉/t1/2,

the diffusivity can be easily calculated. We note here that when dynamic tube dilution is included,

there are different tube diameters that could be considered. There are a set of nested tubes, each

of which is parameterised by its tube diameter,a. As written, Eq. (9) gives the effective diffusion

constant for the random motion of the branchpoint, when thismotion is mapped onto the path for

the tube with diametera. Thus a particular motion (giving rise to a plateau value of〈r2〉/t1/2) can

be construed either as rapid diffusion along a tube path witha small tube diameter, or as slower

motion along a shorter tube path with a larger tube diameter.

As mentioned in the Introduction, the branchpoint is assumed to hop in the tube every time

the short arm relaxes ( Eq. (1)). This branchpoint hopping may occur in the skinny (a0) or in the

dilated (a) tube. In order to investigate both possible cases, we modify Eq. (1) in the way it was

done in eq. 11 of Ref.:3

D =
p2a4

h

2qτaa2 . (10)

The parameterah denotes the tube diameter (a0 or a) in which the branchpoint hopping takes

place. In deriving Eq. (10), Ref.3 assumes that the lengthah sets both (i) the typical distance of

the hops, and (ii) the tube contour along which the hops take place. This is then converted to an

effective diffusion constantD, for motion mapped on to the tube path set by tube diametera. We

note that, if Eq. (9) and Eq. (10) are equated then the factora2 cancels: the large scale motion

given by〈r2〉/t1/2 will depend only on the tube diameterah within which hops take place. We

equate Eq. (9) and Eq. (10) below if we assume that branchpoint friction dominates the motion.

This is to be contrasted with, for example, Frischknechtet al.,11 who (when considering hops in a
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skinny tube) sometimes consider the length of the hop to be set by a0, but the path of the hop to be

along the dilated tube contour.

Eq. (10) includes an additional factorq. The factorq is the number of side arms attached to

the main backbone (q = 1 for the stars,q = 2 for the simulated combs), and it is introduced for

accounting for all frictional contributions from the relaxed q short arms. In the caseah = a and

q= 1, Eq. (10) reduces to the original Eq. (1).

As mentioned in the Introduction, the hopping parameterp2 used in the expression for the

branchpoint diffusivity was experimentally found to be considerably smaller than unity, reflecting

a stronger drag from relaxed arms than expected. A possible explanation is that Eq. (1) and Eq. (10)

overestimate the diffusivity by missing the friction contribution from the chain itself. We attempt

to correct this point by adding the chain friction for the motion along the skinny tube, allowing for

a rescaling to the dilated tube in the manner of eq. 36 of Ref.39 The corresponding equation for the

diffusivity reads:

D =

(

3π2τeZ

φα a2
0

+
2qτaa2

p2a4
h

)−1

, (11)

whereZ is the number of entanglements along the backbone,a0 is the undilated tube diameter,τe

is the entanglement time, andφα represents the fraction of material giving rise to slow constraints

(see below). As discussed in detail in Ref.39 (building on the earlier work of Viovyet. al40), the

factorφα in the first term on the right hand side of Eq. (11) arises because the ‘solvent’ (giving the

dilated tube) is actually formed by slow moving entangled chains. The fastest mode for diffusion

along the dilated tube isvia chain motion along the skinny tube. Motion directly along the dilated

tube requires many constraint release events and is therefore much slower. The factorφα is due to

projecting chain motion along the skinny tube onto the shorter diluted tube path.

For the mixtures of asymmetric 883-stars (see Figure 1) and linear chains, constraint release

from the solvent (the short, linear chains) is a little faster, and we can refine equation Eq. (11) to

allow for chain motion along the dilated tube, mediated by this constraint release (see eq. 39 of

12



Ref.39):

D =





3π2τeZ

a2
0

[

φα +

(

2
3π2ντe

+
1

1−φα

)−1
]−1

+
2τaa2

p2a4
h





−1

, (12)

whereν = cντ−1
s is the constraint release rate from the linear chains in the mixture, τs is their

relaxation time andcν is the rate constant. In Eq. (12) we have dropped the factorq since for

the 883-starsq = 1. We note that, in the limit of extremely fast constraint release (ν → ∞) the

friction for chain motion along the dilated tube becomes independent ofφα . In practice, even for

the mixtures with short linear chains, Eq. (12) gives only a small correction to Eq. (11).

Again, we contrast Eq. (11) and Eq. (12) with the work of Frischknechtet al.11 When con-

sidering reptation of the backbone along the dilated tube, they assumed that the only friction ex-

perienced by the backbone was the monomeric (or “Rouse”) friction. This neglects the fact that,

for chain motion along the dilated tube, constraint releaseevents need to occur, and these give rise

to drag on the chain. Here we consider two possibilities: that the constraint release events are so

slow, the fastest motion available to the chain is along the skinny tube, but subject to monomeric

friction - this gives Eq. (11). For the blends, we also consider including constraint release events

approximated to be at a fixed rate - this gives Eq. (12). The work of Frischknechtet al. cor-

responds to Eq. (12) in the limitν → ∞. Thus, in using Eq. (11) and Eq. (12), together with

hopping in a dilated tube, we are considering an option not used by Frischknechtet al., namely

branchpoint hopping in the dilated tube, but backbone motion dominated by movement along the

skinny tube. Finally, if we know the tube diameter and use thesimulation value for the reptation

plateau in〈r2〉/t1/2, we can obtain the hopping parameterp2 by combining Eq. (9) with one of

the Eq. (10), Eq. (11), Eq. (12).

Once we have presented equations for branchpoint motion in the simulated systems, we draw

our attention to experiments. We will focus on the illustrative case of experimental comb polymers.

Regarding the analysis of the experimental combs, we have nodirect access to the diffusivityD.

Therefore, we proceed in a related but different manner to obtain p2. As in the other asymmetric

architectures, the combs relax as effective linear chains (by reptation) after the relaxation of the
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short side arms. Likewise, reptation can be considered in a dilated tube (but with an enhanced

friction), due to the faster dynamics of the entanglements of the backbone with short side arms.

For each comb, we can deduce the number of effective entanglements,Zdil , in the dilated tube as:

Zdil = Zb
Zb

Zb+qZa
, (13)

whereZb andZa are the number of entanglements along the backbone and at each of theq side

arms, respectively. With this, the effective relaxation timeτe,dil of a diluted entanglement segment

can be obtained as:

τe,dil = τd/rdil , (14)

whereτd is theexperimentallymeasured terminal time of the comb, andrdil is the ratio of the

terminal to the entanglement time of the linear chain with the same number of entanglements,Zdil ,

as the diluted comb. This ratio can be calculated from the Likhtman-McLeish theory for linear

chains as:41

rdil =
τ lin

d

τ lin
e

= 3Z3
dil

(

1−
3.38

Z1/2
dil

+
4.17
Zdil

−
1.55

Z3/2
dil

)

. (15)

In applying Eq. (15) to combs, we are assuming that the combs behave exactly as rescaled linear

polymers in their terminal relaxation. In particular, we assume that the depth of contour length

fluctuations is commensurate with the diluted tube (c.f. thebinary blend case in Ref.39). We also

assume that the rate of contour length fluctuations and terminal reptation are rescaled by exactly

the same time constant (i.e. slowed down compared to the corresponding linear chain by the large

contribution of side arm friction). Thus, the effective rescaled entanglement timeτe,dil includes

contributions from side arm friction, just as the experimentally measured terminal timeτd includes

the side arm friction. So, the diffusion constant we derive below ( Eq. (16)) is the effective diffusion

constant along the diluted tube, including contributions from the side arm friction.

For a linear chain, the entanglement time and curvilinear diffusivity are given respectively by

τe = ζ N2
eb2/(3π2kBT) and D = kBT/(ζ ZNe), whereNe is the total number of monomers per

entanglement segment,ζ is the microscopic bare friction andb is the Kuhn segment length.5
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Moreovera2
0 = Neb2 due to Gaussianity. By combining the former expressions, the diffusivity is

given byD = a2
0/(3π2τeZ). In the reptative regime of the combs, this relation holds for the diluted

number of entanglements (Z → Zdil ), dilated tube (a0 → a), and the effective relaxation time of the

diluted entanglement segment (τe→ τe,dil ):

D =
a2

3π2τe,dil Zdil
. (16)

Thus, our procedure is as follows. We measure, experimentally, the terminal timeτd of the combs.

Using Eq. (14) and Eq. (15), this allows us to obtain the effective entanglement timeτe,dil for the

comb, treating it as a renormalised linear chain. Then, Eq. (16) gives our experimental estimate

of the effective diffusion constant for the comb along the diluted tube contour, which we compare

with Eq. (10), Eq. (11) or Eq. (12) as appropriate. The numberof side arms in the experimental

combs is very large (see Section 5). Therefore, in this case we can neglect the contribution from the

backbone friction and we just use, in combination with Eq. (16), the simple Eq. (10) to calculate

p2. On the other hand, the simulated comb has only two side arms and the backbone friction may

play an important role. In this case we combine Eq. (9) with Eq. (11).

The equations presented in this section establish a direct relation betweenp2 and several ob-

servables that can be directly measured from the simulationand experimental information. We

determine this information in Section 4 (simulations) and Section 5 (experiments), and use it for

obtaining the correspondingp2-values in Section 6.

4 Analysis: simulations

4.1 Branchpoint displacement

The plateau value of〈r2(t)〉/t1/2 for Eq. (9) can be directly obtained from the simulation data, by

analyzing the time evolution of the mean square displacement (MSD, 〈r2(t)〉) of the branchpoint.

However, this MSD has poor statistics because of the limitednumber of branchpoints in the simu-

lation box. In order to improve statistics considerably, without significant effects in the results, we
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have averaged the MSD of the ‘branchpoint’ over ten beads: the actual branchpoint and the three

nearest consecutive beads at each of the three arms stemmingfrom the branchpoint. Figure 2 shows

the so-obtained values divided byt1/2, for the different investigated systems. At long time scales,

beyondt ∼ 106−107 depending on the system, all the data exhibit a plateau, except for the case

of the symmetric stars. This result suggests that asymmetric stars and combs relax in such time

scales by reptation, with the MSD showing the well-known power-law behavior〈r2(t)〉 ∝ t1/2 for

reptating linear chains.5 For symmetric stars relaxation is exclusively mediated by arm retraction.

Hence no plateau in〈r2(t)〉/t1/2 is expected to arise at time scales beyond the simulation window.

In order to obtain a reliable value of the plateau for Eq. (9),we average the simulation data of

〈r2(t)〉/t1/2 ∝ t0 for timest > 5×106, where the plateau is well resolved. The so-obtained values

are indicated as horizontal lines in Figure 2, and are listedin Table 2.
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Figure 2: Symbols: MSD of the branchpoint divided byt1/2, for all the investigated systems. The
solid lines for each data set represent the average value of〈r2(t)〉/t1/2 over the long-time plateau.

4.2 Relaxation times

In this subsection we determine the longest relaxation time, τa, of the short arm. For this, we

analyze its end-to-end correlation function. This is defined as:

C(t) =
〈P(t) ·P(t0)〉

P2(t0)
, (17)
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Figure 3: End-to-end correlators of the short arms for the different simulated systems. Symbols
with error bars are simulation data. Solid lines are fits to a weighted sum of exponentials ( Eq. (18)).
The dotted line indicates the upper level of noise.

whereP(t),P(t0) is the end-to-end vector of the short arm at timest andt0 respectively. When the

correlation function decays to 0 the short arm is fully relaxed. We show the correlation functions

of all the simulated systems in Figure 3. For each system we computed the end-to-end correlator

for 15 equispaced uncorrelated time originst0. Each data set in Figure 3 is the average over the

corresponding 15 correlators. The error bars indicate, foreach timet, the respective upper and

lower value obtained in the 15 correlators. In order to describe accurately the decay of the end-

to-end correlator and to get a reliable value ofτa, we fitted the simulation data of Figure 3 to sev-

eral empirical functions. The stretched exponential Kohlrausch-William-Watts (KWW) function,

gK(t) ∝ exp(−(t/τK)
βK), whereβK < 1 andτK are fit parameters, seems adequate for describing

the observed nonexponential decay ofC(t). KWW fits provided a good description in most cases,

but failed for the 883-stars and for the two mixtures, which exhibit a more complex decay. An

alternative choice is to fit data to a weighted sum of exponential functions. Excellent fits (lines

in Figure 3) were obtained with five exponentials:

f (t) =
5

∑
i=1

Bi exp(−t/τi), (18)
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Even if the fitting function provides a very good descriptionof our data, the strong noise in the final

decay of the correlation function makes the estimation ofτa rather tricky. However, it is evident

that the error bars in Figure 3 do not exceed the valueC(t) = 0.1. We define the longest relaxation

time of the short armτa as the time at which the obtained fitting function drops toC(τa) = 0.1.

This value ofC(t) is rather small and at the same time, the noise at that level does not influence

significantly the estimated value ofτa. The average values ofτa with corresponding errors for the

simulated systems are listed in Table 2. In order to quantifythe error of our estimation ofτa, we

fitted to Eq. (18) the 15 correlators computed for the different time origins. For each correlator we

obtained a relaxation time from the conditionC(τa) = 0.1, and we calculated the standard deviation

of the so-obtained 15 values ofτa.
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Figure 4: Ratio of the MSD of the T/Y-shaped asymmetric starsto the MSD of the reference
symmetric stars as a function of time. The arrows are placed at the short arm relaxation timesτa

obtained by our method (see Table 2).

At this point it is worth studying the possible effect of the chosen method on the final value of

p2, namely by discussing other suggested approaches for obtaining τa from the simulation data.

There have been some attempts to determine the longest relaxation time of the short arm,τa,

from slip-link28 and molecular dynamics simulations.18 In the slip-link simulationsτa was defined

as the time when the short arm loses all its entanglements.28 In the MD simulations18 τa was

determined as the time at which the MSD of the branchpoint of the asymmetric stars deviates

from the corresponding data of the symmetric stars. This estimation is based on the assumption
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that, after the short arm relaxation, the branchpoint is allowed to take a random hop along the

confining tube. This change in the branchpoint dynamics leads to a change in the slope of the

MSD. Zhou and Larson observed18 that this change occurred at the time when the end-to-end

correlation functions of the short arms decayed toC(t) ≈ 0.2. However, there is no systematic

method to find an accurate time, where the MSD curves for asymmetric and symmetric stars split

up, so the values ofτa estimated by the naked eye have a significant uncertainty (upto one time

decade). Moreover, in order to obtain theτa for the mixtures we would need a reference system

consisting of a mixture of symmetric stars and linear chains. In Figure 4 we show the results

(arrows) obtained by our method (see above) together with MSD data of the branchpoint(〈r2
i 〉) for

different architectures. The latter are divided by the branchpoint MSD of the reference symmetric

stars(〈r2
888〉). In this representation, deviations from the branchpoint motion of the reference

symmetric stars are reflected by deviations above the horizontal level〈r2
i 〉/〈r

2
888〉 = 1. By direct

inspection of Figure 4 it seems that the precise point at which deviations arise is ill-defined (note

the scatter in the data). Still, it is clear that the so-defined relaxation times are systematically

smaller than those estimated by our method (arrows). As stated in Ref.,18 the time at which the

branchpoint MSD deviates from that of the reference symmetric stars is in very good agreement

with the time at which the short arm correlation function decays toC(t) = 0.2. Obviously this

corresponds to a shorter time scale that the relaxation timeused by us, obtained asC(τa) = 0.1

(see above). Namely, the former is about a 50 % smaller than our corresponding value forτa,

which affects significantly the final value ofp2.

In the case of the mixtures of asymmetric stars and linear chains, p2 is obtained from Eq. (12),

which contains as additional parameter the relaxation timeτs of the short linear chains in the

mixture. We proceeded in a similar manner as for the short arms in the branched polymers, by

analyzing the end-to-end correlator of the linear chains. However, the relaxation time of the linear

chains is obtained in the usual way, asC(τs) = e−1, unlike the conditionC(τa) = 0.1 used for the

longestrelaxation time of the short arms. We findτs= 19000.
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4.3 Tube diameter and tube survival probability

As mentioned in the Introduction, one of the open questions regarding branchpoint dynamics is

whether hopping takes place in the skinny (undilated) or in the fat (dilated) tube. In this subsection

we investigate both cases and estimate from the simulation the corresponding values for the tube

diameter. First we calculate the original skinny tube diameter,a0, in our bead-spring polymers as:

a2
0 = NPP

e C∞b2
0, (19)

whereC∞ is the characteristic ratio,b0 is the average bond length, andNPP
e is the entanglement

length estimated by primitive path analysis. We findb0 = 0.97, and by analyzing the asymp-

totic behavior of intramolecular distances between distant beads (see Ref.37 for details), we obtain

C∞b2
0 = 3.46±0.10 for all systems. We use the valueNPP

e = 23 reported by Everaerset al.,35

which was obtained for a melt of bead-spring chains at the same density and temperature, and with

identical interactions as those used in our work. By inserting the former values in Eq. (19), we

obtain a diametera0 = 8.92±0.13 for the skinny tube.

In order to quantify the diameter of the fat tube for each investigated system, we first need

to analyze the corresponding tube survival probabilityΦ(t).38 The procedure for obtainingΦ(t)

involves the calculation of the tangent correlation functions of polymer segments for the different

investigated architectures. These provide information onthe relaxation times of the primitive path

coordinates, which can be used to determine the time dependence of the tube survival probability.

A detailed description of the procedure is given in the Appendix. The obtained results for the tube

survival probabilities are represented in Figure 5. The dilated tube diameter at the relaxation time

τa of the short arm can be obtained as:6,8

a2 =
a2

0

Φα (τa)
(20)

whereΦ(τa) is the value of the tube survival probability at the average time τa (see above), and
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α is the dilution exponent. In the analysis of the hopping parameterp2 (see below) we will con-

sider the two suggested values of the dilution exponent,8 α = 1 andα = 4/3. As we discussed

in the previous subsection, for each simulated system we usea set of 15 end-to-end correlators

(computed at distinct time origins), yielding their respective values ofτa. Accordingly, we have a

corresponding set of 15 values forΦ(τa). We use these for computing the standard deviations of

Φ(τa) (see below).

The calculated tube survival probability is directly related to the parameterφα in Eq. (11)-

Eq. (12) via:

φα = Φα (τa). (21)

This parameter represents the fraction of the material thatis responsible for the slow constraints in

the system. After the relaxation of the fastest parts in our systems (short arms, and linear chains

in the mixtures), the only slow components to relax are the long arms or main backbone. This

information is contained inΦ(τa), which measures the unrelaxed tube fraction atτa, i.e., at the

time scale of the relaxation of the short arm. This is also thecase for the investigated star/linear

mixtures. Indeed the relaxation time for the linear chains is, at most, that of the short arms, since

both have the same length (three entanglements, see Figure 1), but the short arms have only one

free end.
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Figure 5: Tube survival probability obtained from the simulations (see Appendix) for all the inves-
tigated systems.
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Figure 6: Comparison between the tube survival probabilities obtained from the simulations (solid
line) and from the BoB model with choice of parametersp2 = 1,α = 4/3 (dashed line) andp2 =
1/60,α = 1 (dash-dot line).

Some general trends are inferred from simulation data in Figure 5. The two mixtures exhibit

an abrupt decay in the range 104 . t . 105. The beginning of this decay is consistent with the

estimated relaxation time of the linear chains (τs = 19000, see above). Thus, completion of the

relaxation of the short linear chains leads to a sharp removal of constraints. As expected, the

larger fraction of linear chains in the mixture 1:1 producesa stronger decay ofΦ(t) than in the

mixture 2:1. Differences in the tube survival probabilities of the T-shaped stars (881, 882, and

883) and the Y4212-stars are small at all time scales, which suggests a relatively small role of

the relaxation of the short arms in the totalΦ(t) of these systems, and once the short arms are

relaxed, a similar amount of constraints are removed by reptation. The tube survival probability
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of combs is markedly different from that of the T- and Y-stars. It shows a faster decay up to time

scales of aboutτa. This is consistent with a stronger role of dynamic tube dilution in combs, due

to their higher volume fraction of short arms than in the T- and Y-stars. However, after relaxation

of the short arms, the combs contain two frictional fat beadsclose to the both ends of the linear

backbone. This strongly hinders relaxation andΦ(t) exhibits a very slow decay over the following

time decades, prior to the late decay by reptation.

The tube survival probabilities obtained from the simulations can be directly compared with

theoretical predictions from hierarchical models. Here wecompare our results with those from

the branch-on-branch (BoB) model developed by Daset al. (see Ref.3 for details). The BoB

model makes detailed predictions for linear rheological data of non-looped branched architectures

of arbitrary complexity, by using the entanglement length and entanglement time as external inputs.

Output of the BoB calculation includes the tube survival probability Φ(t). Figure 6 compares BoB

and simulation results ofΦ(t) for some representative cases (882-stars and star/linear mixture 1:1).

BoB assumesa priori values forα andp2. The results in Figure 6 are obtained for two limit cases

p2 = 1/60, α = 1 (dash-dot lines), andp2 = 1, α = 4/3 (dashed lines). These include the two

values used for the scaling exponentα and the lowest and highest value ofp2 reported in the

literature.11 Both the hopping parameterp2 and the scaling exponent (through the factorΦ−α (τa))

determine the friction constant for the final reptation of the system. Therefore, in systems where

final relaxation is mediated by reptation, decreasing the values of p2 andα moves the reptative

regime to longer timescales. Thus, the casesp2 = 1/60, α = 1 andp2 = 1, α = 4/3 provide an

upper and lower bound for the onset of reptation predicted byBoB. Relaxation by reptation in the

BoB curves of Figure 6 corresponds to the final sharp drop to zero.3 This time scale can change by

even one decade according to the specific choice ofp2 andα .

Having noted this, the chosen values ofp2 andα do not significantly affect the obtained BoB

curves in the time window,t ≤ τa (relaxation before arm retraction is independent ofp2 and chang-

ing α from 1 to 4/3 introduces less than 0.1% difference inΦ(t) at τa for the molecules investi-

gated), relevant for our estimations ofp2. Indeed, we estimatep2 from the simulations by using
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information onΦ(t) at the relaxation time of the short armsτa (through equations for the diffusiv-

ity in Section 3 and Eq. (21)), i.e., muchbeforethe onset of reptation. As shown in Figure 6 the

two limit cases ofp2 andα used to generate the BoB curves lead to essentially the same results in

the former time window, differences only arising at much longer times. Still, it must be noted that

α should have a significant effect in that window for long side arms. In the cases investigated here

the effect is negligible because the side arms are weakly entangled and stay in the early fluctuation

regime.

In general, the simulation results for the tube survival probability are in qualitative agreement

with the corresponding BoB results. The agreement is even semiquantitative in the case of the

pure T-stars. The BoB model captures the trends observed by simulations, including the crossover

between fast dynamics of the short linear chains/side branches and slow relaxation of the long

backbone. Having said this, it must be noted that for some systems (Y4212-stars and combs)

a significant part of the final relaxation of the backbone occurs at times beyond the simulation

window (t & 4×107), so conclusions about the comparison at such time scales must be taken with

care.

Once the reptation plateau in〈r2〉/t1/2, as well asτa andΦ(τa) have been determined from

the simulations, we can directly obtain the actual value ofp2 (see Section 6). According to the

discussion in Section 3, different expressions will be usedfor p2. These will depend on the specific

architectures and compositions (pure or mixture), as well as on the choice of hopping in the dilated

or in the skinny tube. In the different expressions ofp2, the values ofτa andΦ(τa) will enter

separately and/or through the productτaΦ2α (τa) (see Section 6). Figure 7 shows simulation results

of τa and the productτaΦ2α (τa), for the case of dilution exponentα = 4/3, in comparison with

the corresponding results obtained from the BoB model. A good agreement is again found, with

some tendency for overestimation by BoB. Similar agreementis observed for the caseα = 1. With

all this, we conclude that our procedure provides a robust estimation of tube survival probabilities

and relaxation times of the short arms, allowing for a reliable estimation of the hopping parameter

p2, as will be discussed in Section 6.
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4.4 Branchpoint trajectories

A further test of consistency for the estimated arm relaxation times can be obtained by analyzing

the real-space trajectories of the branchpoints. Hierarchical models postulate branchpoint diffusion

after relaxation of the short side arms. Prior to this, the branchpoint remains strongly localized. In

order to test this hypothesis we have analyzed the shape of the trajectories at different time scales.

Thus, for timest > 105 we have saved the coordinates of the branchpoint everyτ = 2000 time

units. This roughly corresponds to one entanglement time (τe = 1800). At earlier times we have

used shorter intervals for saving the branchpoint positions. Namely we have usedτ = 2×10n−2

for the time decade 10n < t ≤ 10n+1, with 2≤ n≤ 4. With this, we use a large number of points

(at least 50) to characterize the shape of the branchpoint trajectory at any relevant time. This

characterization can be made by computing the asphericity parameter, defined as:

A=
(I2− I1)2+(I3− I1)2+(I3− I2)2

2(I1+ I2+ I3)2 (22)

whereI1, I2, I3 are the semiaxes of the inertia ellipsoid of the trajectory.Thus, at each selected time

t, we compute the asphericityA(t) of the set of points consisting of the saved branchpoint positions

at timest ′ ≤ t. More precisely, for the timet we only use the pointst ′ ≤ t saved everyτ time units,
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with τ the interval for saving used in the time decade whicht belongs to (see above). For example,

for t = 4×103, we use the branchpoint positions att ′ ≤ t saved every 20 time units. For any time

t > 105 we use those saved every 2000 time units. In this way we get a fair characterization of

the asphericity at any time, by always analyzing a set of points equispaced in time, and preventing

‘crowding’ in the regions visited by the branchpoint duringthe early time decades.
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Figure 8: Time dependence of the asphericity of the branchpoint trajectory for all the simulated
systems. The horizontal line represents the limit case of a random walk. The arrows indicate
the relaxation timesτa of the short arms, as determined independently from the analysis of their
end-to-end correlators (see text).

Figure 8 shows the time dependence of the asphericity of the branchpoint trajectory for all

the investigated systems. For comparison we include the value A ≈ 0.15 obtained for a particle

performing a three-dimensional random walk. The evolutionof the asphericity with time reveals

interesting features. In the early stage of the simulation,the asphericity diminishes by increasing

time. This means that new positions of the branchpoint become localized in a limited region of

the space, forming a trajectory that becomes closer and closer to the ideal spherical shape (A= 0).

The asphericity reaches a minimum and then increases with time during the rest of the simulation,

i.e., the branchpoint trajectory becomes progressively unlocalized. The random-walk limit is not

reached at the end of the simulation. This will happen at muchlonger time scales, in thethree-

dimensional isotropicdiffusive regime,〈r2(t)〉 ∝ t. Note that for the asymmetric systems, only one-

dimensional curvilinear diffusion (reptation),〈r2(t)〉 ∝ t1/2, has been reached within the simulation
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window.

The minimum in the asphericity seems to follow several trends. For the three investigated T-

shaped stars, it becomes deeper, i.e., the branchpoint becomes more localized, by increasing the

length of the short arm. As expected, the strongest localization is found for the symmetric 888-

stars. Localization in the 883-stars becomes weaker by mixing with short linear chains. In Figure 8

we have indicated (arrows) the relaxation timesτa of the short arms, as obtained by the method pre-

sented in Section 4B. Within statistical error, there is a clear correlation between these time scales

and the end of the localization of the branchpoint and later increase of the asphericity from the

minimum. This result is consistent with the theoretical assumption of hopping of the branchpoint

after full relaxation of the short arm.

5 Analysis: experiments

We use results from linear rheology measurements on a seriesof polystyrene (PS) and polyisoprene

(PI) combs.17,42 The mastercurves obtained from the dynamic frequency sweepmeasurements

correspond to reference temperaturesTref = 0◦C for polyisoprene andTref = 170◦C for polystyrene.

Similarly to the simulation analysis, estimation of the armrelaxation time from comb experimental

data presents some difficulties. In an effort to identify thearm relaxation time of the combs and to

check the consistency of the obtained values we have used three different methods:

1. Analysis of the tube survival probabilities provided by the BoB computational algorithm. In

this calculations we explicitly use the experimentally determined polydispersity indices in

arm lengths (less than 1.1 in all cases).

2. Analysis of the intermediate peak in the frequency dependence of the experimental loss

tangent tanδ = G′′(ω)/G′(ω).

3. Defining the time at whichG(t) = Geφ2
unr, whereG(t) andGe are the experimental stress

relaxation function and entanglement modulus, respectively. The quantityφunr is the fraction

of unrelaxed material at the arm relaxation time (see below).
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Table 1: Molecular characteristics17,42,45and parameters used in the estimation ofτa of the exper-
imental combs.

system Mb Ma q Zdil GN Me* Me**
(kg/mol) (kg/mol) (MPa) (kg/mol) (kg/mol)

PI254 120.5 18.8 7.1 11.4 0.41 5 4.09
PS642 275 47 29 2.9 0.22 16 13
PS732 860 25.7 26 30.3 0.22 16 13
PS742 860 47 29 20.8 0.22 16 13

*Me was calculated from the plateau modulusGN according to Ferry’s definition, i.e., without the
4/5 prefactor.43

** Me was calculated from the plateau modulusGN according to the definition used in BoB and
Fetterset al.,44 i.e., with the 4/5 prefactor.
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The molecular characteristics of the combs are described inTable 1. All combs have a long

well-entangled backbone (Zb in the approximate range of 17 to 54 entanglements). The armsare

weakly or moderately entangled (Za in the range of 1.6 to 6 entanglements). The values ofZdil

in Table 1 have been calculated by using Eq. (13) and entanglement molar massesMe obtained

from the Ferry’s definition (column 7 in Table 1). The terminal relaxation times of the arms and

backbone (see Table 5) differ by several orders of magnitudeand therefore, it becomes possible

to separate the two relaxation processes by using only linear rheology. The first method used to

identify relaxation times includes the use of the BoB computational algorithm.3 Figure 9 com-

pares experimental data and BoB results for the PI254 comb atreference temperatureTref = 0◦C.

The input parameters required by BoB are the entanglement molecular weightMe, entanglement

time τe, dilution exponentα and hopping parameterp2. We setα = 1 for all the studied sys-

tems. Good agreement with the experimental moduli is achieved by usingMe(PI) = 4.09 kg/mol

and τe(PI) = 10−4 s at Tref = 0◦C. In the case of the PS combs we useMe(PS) = 13 kg/mol

and τe(PS) = 5× 10−4 s at Tref = 170◦C. The entanglement timesτe chosen are shown to be

consistent with previous works for the PS combs17 and for the PI comb.19,46 The plateau moduli

corresponding to this set of parameters (listed in Table 1) are in agreement with published results

of experimentally estimatedGN.47 Whereas the PI microstructure is≥90% 1,4-addition, even a

small variation may slightly change the entanglement modulusGe andτe. This may explain small

variations in the values of these parameters in this and other works, but overall there is consistency.

Architectural variability such as polydispersity in arms and backbone or uncertainty in the num-

ber and position of the branches is another possible source of discrepancy.17 Although the TGIC

(temperature gradient interaction chromatography) characterization on the PS combs confirmed

their high level of purity (> 85% target material),42,48 the samples are still not perfect in terms of

microstructural architecture. However, given the anticipated small effect,24 further fractionation

was not performed and this has not been further pursued in this work.

It must be noticed, that the molecular entanglement length defined in BoB is by a factor 4/5

smaller than the value ofMe used in our calculations (see Table 1). This difference follows from
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the different definitions ofMe (see43 for more details). The value ofp2 was selected to describe

well the low frequency region ofG′ andG′′ 1. It is important to stress, as we discussed in Sec-

tion 4.3, that the value ofp2 chosen for BoB prediction is irrelevant for further estimation of τa.

Once we checked that BoB provides a good description of the linear rheological data we used ad-

ditional output from BoB to estimate the arm relaxation time. Namely, by using the tube survival

probability computed by BoB,3 Φ(t), we obtain the arm relaxation timeτa as the time for which

Φ(τa) = φunr, with φunr given by Eq. (23) below. Similarly to the work of Kapnistoset al.,17 we

include the contribution of the free backbone ends, and calculate the fraction of unrelaxed material

after the full arm retraction as:

φunr = 1− (φa+φe) = 1−
qMa+2Mb/(q+1)

qMa+Mb
, (23)

whereφa andφe are the volume fraction of the arms and dangling backbone ends, respectively. The

factorq is the number of side arms per comb. The quantitiesMb andMa are the molecular masses

of the backbone and of each of the side arms, respectively. The values of all quantities included

in Eq. (23) are given in Table 1.
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Figure 10: Unrelaxed volume fractionΦ(t) obtained from BoB (solid line) and experimental tanδ
(dashed line) versus time, for the PI254 comb. The arrows indicate the values ofτ ′a andτa obtained
by usingΦ(τ ′a) = 1−φa andΦ(τa) = 1− (φa+φe), respectively.

1p2 = 1/40 for PI254,p2 equal to 1/10 in case of PS642 combs,p2 = 1/12 was set for PS732 and PS742 samples

30



We have also determined the timeτ ′a at which the fraction of unrelaxed material is given by

Φ(τ ′a) = 1−φa. This gives us a lower bound for the estimation of the arm relaxation time. Fig-

ure 10 shows the time dependence of the functionΦ(t) obtained by the BoB model for the case of

PI254. We indicate (arrows) the timesτ ′a andτa, obtained from the BoB model as explained above.

For comparison, we plot in the same figure the experimental loss tangent versus inverse frequency.

The intermediate peak in tanδ falls in between the two relaxation timesτ ′a andτa. From the plot of

unrelaxed fraction versus time we can identify two main relaxation processes. The final relaxation

time of the arms is at the transition point between these two processes. We find the same qualita-

tive behavior than in theΦ(t) of the simulated combs ( Figure 5), with a very slow decay after τa

extending over several decades prior to the final reptational decay.

In the second method we determineτa by analyzing the intermediate peak in the frequency

representation of the experimental tanδ. The first step is to fit the curves with, e.g., a Gaussian or a

Lorentzian function. One example of the fitting procedure isshown in Figure 11. Then we estimate

τa as the inverse of the peak of the so-obtained fitting function. Another estimation can be obtained

from the derivative of the experimental tanδ-curve, by definingτa as the inverse frequency at the

point in which the derivative becomes zero.

Figure 11: Symbols: frequency dependence of tanδ for the PS642 comb (log-log representation).
The line is a Gaussian fit of the peak.αT is the horizontal shift factor, for the presented data
(T = 170◦C) αT is equal to 1.
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Finally, we make another estimation of the arm relaxation time by analyzing the experimental

stress relaxation modulusG(t). The tube model in combination with the dynamic dilution the-

ory41 provides an expression for the relaxation modulusG(t) consisting of two contributions: (i)

fast Rouse modes together with longitudinal Rouse modes in the tube that represent 1/5 of theGe

relaxation, (ii) escape from the tube at longer times related to the plateau modulusGN = 4
5Ge. One

may generally assume that, at the times comparable to the relaxation time of the side arms, the first

contribution has already relaxed. However, in the comb architecture where the longitudinal modes

are primarily operative at the backbone, this relaxation mechanism may depend on the number and

position of branchpoints on the backbone. In all experimental combs used for this analysis the

average distances between the branchpoints are very small,in most casesZdil/q ≪ 1. Therefore

the relaxation modes involving the motion of the backbone along the tube are frozen during the

relaxation of the side arms. Only small fluctuations of the backbone between consecutive branch-

points are present. Following this argument and assuming a dilution exponentα = 1,17,19,24at

the end of the arm relaxation the relaxation modulus will beG(τa) = Geφ2
unr instead of the value

G(τa) = GNφ2
unr expected forZdil/q > 1. We would like to draw attention to this issue, because

the suppression of the longitudinal Rouse motion seems to bea general feature of densely grafted

combs. We use in the calculation an entanglement modulusGe =
5
4GN = 5.1×105 Pa for PI and

Ge= 2.8×105 Pa for PS. These values are consistent with the above reported values ofMe, in the

sense that they obey rubber elasticity49 within 15% at reference temperatures given above. Fig-

ure 12 shows experimental results for the relaxation modulus in the different investigated systems.

We indicate by arrows the corresponding values ofτa estimated by this method.

By combining the results obtained by the different methods presented in this section, we de-

termine an upper and lower bound for the arm relaxation timeτa in each of the investigated comb

polymers. These values are given in Table 5.
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Figure 12: Experimental stress relaxation modulus for the investigated comb polymers. The arrows
indicate the arm relaxation times estimated from the relationG(τa) = Geφ2

unr (see text).

Table 2: Summary of the variables obtained from the simulations: reptation plateau in MSD
(〈r2〉/t1/2 ∼ t0), longest relaxation time of the short arm (τa), and tube survival probability at
the timeτa (Φ(τa)).

system 〈r2〉/t1/2 τa Φ(τa)
881 0.066±0.003 37000±9000 0.849±0.011
882 0.031±0.001 439000±65000 0.685±0.013
883 0.023±0.001 2133000±507000 0.500±0.023

Y4212 0.036±0.001 349000±80000 0.678±0.009
mix11 0.064±0.004 962000±265000 0.278±0.021
mix21 0.045±0.002 1193000±221000 0.373±0.014
comb 0.036±0.002 401000±57000 0.593±0.010
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6 Hopping parameter: Results and discussion

Now we use the information obtained from the analysis in Section 4 and Section 5, as input for

obtaining the numerical values ofp2 for each of the investigated systems. The values of the observ-

ables estimated from simulations — reptation plateau in MSD(〈r2〉/t1/2 ∼ t0) longest relaxation

time of the short arm (τa), and tube survival probability at the timeτa (Φ(τa)) — are summarized

in Table 2. By inserting these values, together with the tubediameter, into the equations presented

in Section 3, we can calculate the hopping parameterp2. If the backbone friction is not considered,

by combining Eq. (9) and Eq. (10) for the diffusivity we obtain:

p2 =
qπτa
2a4

h

(

〈r2〉

t1/2

)2

. (24)

In this equation we usea4
h = a4

0 if hopping is assumed to occur in the skinny undilated tube. In the

case of hopping in the dilated tube, according to Eq. (20) we usea4
h = a4

0/Φ2α (τa).

If we consider the backbone friction, then we make use of Eq. (11) for the pure branched

systems and Eq. (12) for the star/linear mixtures. By combining each of these cases with Eq. (9)

we obtain the general expression for the hopping parameter:

p2 =
2qa4

0πτa
a4

h

[

(〈r2〉/t1/2)2

4a4
0−3π3τeZQ(〈r2〉/t1/2)2

]

. (25)

Again, a4
h = a4

0 or a4
h = a4

0/Φ2α (τa) if hopping takes place in the skinny or dilated tube, respec-

tively. The number of entanglements along the backbone isZ = 16 for all the simulated systems

(see Figure 1). The number of side arms isq = 1 in star-like structures andq = 2 in the case of

combs. The factorQ is equal to 1 in the case of the pure systems, whereas for the mixtures it stands

for:

Q= Φα 2τs(1−Φα )+3π2cν τe

2τsΦα (1−Φα )+3π2cν τe
. (26)

We assume a constraint-release rate constant39 cν = 0.1 in the two investigated mixtures of T-stars

and short linear chains.
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The reciprocal values of the hopping parameter 1/p2 for the simulated systems, calculated by

using Eq. (24) (no backbone friction) and Eq. (25) (including backbone friction) are summarized

in Table 3 and Table 4 respectively, for both dilution exponents α = 1 and 4/3. In both Tables

we just give the minimum and maximum possible values ofp2 in each system. For getting these

values, we have made the corresponding combinations of the upper and lower values (given by

their respective error bars, see Section 4) of the parameters entering in the former equations forp2,

and have selected the minimum and maximum output of such equations. This allows us to estimate

p2 within an uncertainty of typically about a factor 2.

Table 3: Results of the calculation of 1/p2 in the simulated systems without considering additional
friction of the backbone (i.e., by using Eq. (24)). Underlined data are further compared to experi-
mental results ( Figure 14). First column: simulated systems. Second to fourth columns: values of
1/p2. In the first two lines we indicate the used values of the dilution exponent (α = 1 or 4/3), and
whether hopping occurs in the skinny tube (ah = a0) or in the dilated one (ah = a).

α 1 4/3 1 4/3
1/p2 ah = a0 ah = a0 ah = a ah = a
881 17-38 17-38 25-51 28-56
882 7-13 7-13 16-27 21-35
883 3-5 3-5 11-20 18-30

Y4212 6-13 6-13 14-28 19-36
mix11 1-2 1-2 10-19 25-42
mix21 1-2 1-2 9-16 19-31
comb 3-5 3-5 9-15 12-20

Table 4: As in Table 3, but considering the additional friction of the backbone (i.e., by us-
ing Eq. (25)).

α 1 4/3 1 4/3
1/p2 ah = a0 ah = a0 ah = a ah = a
881 8-23 8-23 11-30 13-34
882 7-12 7-12 14-25 19-32
883 2-5 2-5 11-19 17-29

Y4212 5-12 5-12 12-25 16-32
mix11 1-2 1-2 9-18 25-41
mix21 1-2 1-2 9-16 18-30
comb 2-5 2-5 7-13 10-18

The values of 1/p2 calculated from the simulation results are plotted in Figure 13. There is
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a big gap between the values obtained by assuming hopping in the skinny or in the dilated tube.

The gap in the 1/p2-values is indeed proportional to the factor 1/Φ2α (τa) arising from assuming

a4
h = a4

0 or a4
h = a4

0/Φ2α (τa) in Eq. (24) and Eq. (25). The effect of the tube widening on the

former gap is, therefore, more pronounced in the systems where a significant part of the molecule

has been relaxed at the timeτa. One clear example is the mixture 1:1. In this system, and for

dilution exponentα = 1, the value of 1/p2 for hopping in the dilated tube is about 10 times bigger

than the corresponding value for hopping in the skinny tube.
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Figure 13: Representation of the results of Table 3 and Table4 for α = 1. Symbols are the averages
of the respective upper and lower values of 1/p2.

The question of the apparent high friction exerted by the slightly entangled short arms seems

to be rationalized if one accounts for the effect of the backbone friction on the branchpoint diffu-

sivity. This effect is nicely illustrated in the case of the 881-stars, where the short arm is only one

entanglement long, and therefore the contribution of the backbone friction is expected to play a

relevant role in the diffusion of the branchpoint along the tube. For the case ofα = 1 and hopping

in the dilated tube, the value of 1/p2 for the 881-stars without including the backbone friction is

about 40. If we include the backbone friction in the diffusion constant the value of 1/p2 is lowered

to approximately 20, which is much closer to the respective values obtained for the other systems.

We now restate our criterion, presented in the Introduction, for what constitutes a good set

of assumptions about branch-point hopping: a good set of assumptions should result in broadly

similar values ofp2 across the different systems studied. By inspection of Table 3 and Table 4
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and Figure 13, we conclude that a comparatively low dispersion in the values of 1/p2 is found

only if the backbone friction is included in the diffusivity and hopping is assumed to occur in the

dilated tube. This set of assumptions leads to roughly a factor 2 variation in the value of 1/p2

across the systems studied, which is within the error boundsof our analysis. As is emphasized

by the logarithmic axis in Figure 13, results for other combinations of specific assumptions for

branchpoint hopping are very disperse, suggesting that they are inconsistent and can be ruled out

in models. For example, setting the length scale associatedwith the hops to the bare (skinny) tube

diameter leads to a very wide range of thep2 values for different branched structures (variation by

a factor of 10, which is significantly beyond the error boundsof our analysis).

With the assumptions of both inclusion of backbone frictionand hopping in the dilated tube, the

mean values of 1/p2 (defined for each system as the mean of the upper and lower bound) fluctuate

between 10 and 20.5 if we use the dilution exponentα = 1, and between 14 and 33 if we use

α = 4/3. Thus, the diffusion of the branch point in the dilated tubewith incorporated backbone

friction points to an universal behavior described in many experimental studies with parameter

1/p2 = 12.12,13,19

Now we discuss results for the experimental combs. The corresponding expression for the

hopping parameterp2 can be obtained, by combining Eq. (10), Eq. (13), Eq. (14) andEq. (15), as:

p2 =
2τaqZ2

dil

π2τd

(

1−
3.38

Z1/2
dil

+
4.17
Zdil

−
1.55

Z3/2
dil

)

. (27)

By using in Eq. (27) the upper and lower bounds ofτa and τd we determine the minimum and

maximum possible values of the hopping parameter. See Table5 for the values of the quantities

in Eq. (27) (Zdil is calculated from Eq. (13) and is placed in Table 1). The terminal time τd was

calculated as the product of the zero-shear viscosityη0 and the zero-shear recoverable compliance

J0.49 The expression forτd reads:

τd = η0J0 = η0
1

η 2
0

lim
ω→0

G′

ω2 =
limω→0(G′/ω2)

limω→0(G′′/ω)
. (28)
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Both zero-shear limits of the linear rheology data were approximated by fitting to the empir-

ical Carreau and Cross models.50 Then the lower and upper bounds of the obtained limits were

combined in order to get the range ofτd values (see Table 5). This method of determination of

the relaxation time is more prone to error when the terminal relaxation (G′ ∼ ω2 andG′′ ∼ ω) has

not yet been attained as is the case of the comb PS742. In the case of this comb, the uncertainty

in the terminal time is much higher than in the other combs. The relaxation timesτd determined

from Eq. (28) are larger than the relaxation times estimatedfrom the crossover ofG′ andG′′ to

terminal relaxation.48 This is expected for combs with entangled branches since there is an addi-

tional mode of relaxation in the terminal regime. More details about the determination ofτd can

be found in.48

Table 5: Summary of relaxation times and hopping parametersobtained for the experimental
combs. The particular method used for the estimation ofτa is written in square brackets.

system τd τa [BoB] τa [tanδ] τa [G(t)] 1/p2

(s) (s) (s) (s)
PI254 580-730 0.4-2.5 0.9-1.2 1.9 4-30
PS642 84-93 1.7-1.9 2.2-2.5 5.3 5-8
PS732 3200-3900 0.07-0.11 0.04-0.05 0.16 8-39
PS742 7700-13000 0.8-1 0.7-0.9 1.3 5-16
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Figure 14: Hopping parameters for the combs. Symbols are theaverages of the respective upper
and lower values of 1/p2 for the experimental combs. Green lines indicate the lower and upper
value obtained from the simulation data, without considering the backbone friction (underlined
data in Table 3). Blue lines represent the analogous resultsif backbone friction is considered
(underlined data in Table 4).
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In Figure 14 we compare the estimated values for 1/p2 in the five experimental comb polymer

melts with the results in the simulated comb. For the latter we include the upper and lower lim-

its, for the case ofα = 1 and hopping in the dilated tube, without considering backbone friction

(underlined data in Table 3) and considering backbone friction (underlined data in Table 4). The ex-

perimental data lay close or within the bounds given by the simulation values. The only exception

is the PS732 sample. It must be noted that, except for the relaxation timesτa andτd, the numerical

values of the quantities entering in Eq. (27) are known with high accuracy. The strong discrepancy

between the 1/p2 value obtained for the PS732 comb and the values obtained forthe other combs

might originate from a poor estimation of itsτa. By comparing theτa andp2 values obtained from

different methods we found that the highest value of 1/p2 in case of the PS732 arises from the tan-

gent loss peak analysis. This analysis is based on the assumption that the two relaxation processes

of the short side branches and the backbone areindependent and well-separated. If this assump-

tion is not fulfilled, the tanδ-peak will contain more contributions than the simple arm relaxation,

what will bias the analysis. This seems plausible since the side branches in the PS732 comb are

weakly entangled (Za ∼ 2). Incidentally, same issues may arise if the branches are too long and

effectively dilute the backbone too much. This is the case when the arm and backbone relaxation

times are too close.17,51Hence, the precise determination of the arm relaxation timeof the combs

remains a subtle issue and cannot be accomplished without combining experiments and modeling.

Regarding the PS642 combs, it must be noted that the dilutionof the backbone is beyond the limits

captured by the models (Zdil = 2.9). Nevertheless, by assuming, even in this limiting case, that

after the relaxation of the side arms the branched polymer isreduced to an effective linear chain

described by the Likhtman-McLeish theory,41 the values of the hopping parameter obtained from

the analysis of the linear rheology data are comparable to those found in the simulations.
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7 Conclusions

We have performed large-scale molecular dynamics simulations of melts of entangled branched

polymers: symmetric stars, asymmetric T-shaped and Y-shaped stars, combs and mixtures of stars

and linear chains. An analysis of the branchpoint trajectories reveals that delocalization of the

branchpoint begins at the relaxation time of the respectiveside arm. The results for the mean

squared displacement, at times far beyond the relaxation time of the short side arms, are consistent

with reptation of the diluted linear backbone. Both observations are in qualitative agreement with

assumptions invoked in hierarchical tube models for branched polymers.

We have analyzed the diffusive motion and friction of the branchpoints, as well as dynamic

tube dilution, by using direct information from the simulation data. We have determined the values

of the hopping parameter,p2, for each set of specific assumptions made by hierarchical models

for branchpoint hopping. Including the contribution from the backbone friction, and considering

hopping in the dilated tube, provides the only consistent set of hopping parameters in the different

architectures, with 1/p2 found to be in the range 10−20 for dilution exponentα = 1, and in the

range 14−33 for α = 4/3. Other combinations of specific assumptions for branchpoint hopping

lead to disperse, inconsistent sets ofp2-values, suggesting that they can be ruled out in the imple-

mentation of hierarchical tube models. The analysis of linear rheological data for comb polymers

confirm the findings obtained from simulations.
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A Calculation of the tube survival probability

As first proposed by Doi and Edwards, and examined in the simulation work of Stephanouet al.,52

the tube survival probability can be obtained from the tangent correlation function. This function

can be expressed as:

φℓ(t) = 〈uα ,ℓ,0 · (R
e
α ,t +B′Re

β ,t +C′Re
γ,t)〉. (29)

The indicesα ,β ,γ ∈ {1,2,3} label the three arms in the case of the star (T- and Y-) architecture,

and the two short arms and half of the backbone in the case of the comb. For simplicity, in the

following we will also refer to the half-backbone in the combas ‘arm’. The vectorRe
α ,t is the

end-to-end vector of the particular armα at timet. The tangent vectoruα ,ℓ,0 = ∂rα ,ℓ,0/∂ℓ, at the

ℓth segment of the armα at time 0, is approximated in the simulation analysis by the end-to-end

vector of theℓth segment (see below). The numerical coefficientsB′ andC′ express the weight of

the correlation between the partsα , β andγ of the molecule. We consider three possible values of

the coefficients: 0 (no correlation), -1 (full correlation)or -1/2 (half correlation). In our previous

work, we confronted our choice of the coefficients with the predictions of the Rouse model.38 It

turned out that, in the case of the 3-armsymmetricstars two neighboring arms contribute equally

with a prefactor -1/2 to the correlation with the third arm. The introduction of the full correlation

(B′ = C′ = −1) led to artificial peaks in the correlation function of the segments close to the

branch point. Following this argument, in this work we useB′ = C′ = −1/2 for the case of the

Y-shaped stars. However, the situation is a bit different inthe case of T-shaped stars, where there

are two equally long arms and one short arm. The tangent correlator of each of the long arms is

largely dominated by correlations with the segments of bothlong arms. Hence, we can omit the

correlations with the short arm in the tangent correlators of the long arms, taking the corresponding

coefficient as zero. We treat the linear chains in the star/linear mixtures as 2-arm stars, and we

use the same coefficients as in the case of the T-shaped stars (Figure 15a). In the case of the

comb we use a similar procedure based on the decomposition ofthe molecule into symmetric

and asymmetric regions. Figure 15 shows an schematic representation of all the correlations and
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corresponding coefficients for the T-shaped stars and comb.

Figure 15: Schematic representation of the weight of the correlations used for the tangent corre-
lator: a)T-stars, b) and c) comb. Numbers labelling particular segments are the prefactors used
in Eq. (29). The partα containing theℓth segment in this equation is represented with red color.
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Figure 16: Symbols: tangent correlation functions of threesegmentssℓ = 0.4 (red),sℓ =0.6 (green)
andsℓ = 0.8 (blue) in the long arms of the 882 T-shaped (squares) and Y-shaped Y4212 (circles)
asymmetric stars. Lines are two representative KWW fits.

We calculate the tangent correlation function according toEq. (29), where we defineuα ,ℓ,0 as

the end-to-end vector of finite segmentℓ. We use segments of length of ten beads, which constitutes

a good compromise. The choice of longer or shorter segments does not change the character of

the correlation function, but the so-obtained function lacks of good statistics or is biased by fast

monomer fluctuations (not captured in the original tube survival probability). Figure 16 shows the

functionsφℓ(t) of three selected segments in the 882 T-shaped stars and Y4212 Y-shaped stars. In

both cases the selected segments are placed in the long arms.The segmental tangent correlation
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Figure 17: Illustration of the procedure for obtaining the tube survival probability in the 883-
star. The data[sℓ;τℓ] for the long (red symbols) and short (green symbols) arms arefitted to
KWW functions. The dashed line represents a single exponential function. The final tube survival
probability, calculated according to Eq. (31), is given by the blue line.

functions were fitted to a KWW function ( Figure 16),

φℓ(t) = exp(−(t/τℓ)β) (30)

whereτℓ andβ are fit parameters. The spectrum of the relaxation timesτℓ of all theℓth-segments

provides us the information about the progressive relaxation of the molecule. We use the set of

points[sℓ;τℓ] to construct the tube survival probabilityΦ(t). By countingℓ = 1 to ℓ = ℓmax from

the branch point to the outermost segment, the ‘path cordinate’ is defined assℓ = ℓ/ℓmax.

The procedure to construct the tube survival probabilityΦ(t) is illustrated in Figure 17 for the

T-shaped 883-stars. The discrete set of data[sℓ,τℓ] for each arm can be described by an empirical

function, which allows us to assign, in a continuous way, a fraction of unrelaxed arm to every

time t. It is evident from Figure 17 that the time evolution of this fraction does not follow a

single exponential decay (dashed line). Instead, a KWW function (red and green lines) provides

an excellent description of the data. We use the so-obtainedKWW functions to construct the

smooth, continuous functionsΞα ,β ,γ(t) corresponding to the tube survival probability of each arm

α ,β ,γ. The function starts atΞα ,β ,γ(0) = 1 (when the whole arm is unrelaxed), and decays to zero,
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Ξα ,β ,γ(τa) = 0, at the longest relaxation time of the arm. In the case of theT-shaped asymmetric

stars the tube survival probabilities of the two long arms are identical (only one of both is shown

in Figure 17). There is a straightforward relation between the obtained partial functionsΞα ,β ,γ(t)

and the final tube survival probability:

Φ(t) =
Zα Ξα (t)+ZβΞβ (t)+ZγΞγ(t)

Zα +Zβ +Zγ
. (31)

In this equationZα ,β ,γ stands for the number of entanglements of the distinct armsα , β andγ

respectively. In the star/linear mixtures (mix21, mix11) we have to add the tube survival prob-

ability of the linear chains with the appropriate weight. Thus, the final tube survival probabil-

ity of the 2:1 mixture isΦ(t) = (2Φ883+ Φlin)/3, and in case of the 1:1 mixture it is equal

to Φ(t) = (Φ883+ Φlin)/2, where the functionsΦ883 and Φlin are obtained separately by us-

ing Eq. (31) with their respective values ofZα ,β ,γ andΞα ,β ,γ(t). The tube survival probabilities

of all the simulated systems, calculated according to Eq. (31), are shown in Section 4.3 of the

manuscript ( Figure 5).
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