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Abstract

Purpose - The purpose of this paper is to apply the meshless Method of Fundamental Solutions (MFS)
to the two-dimensional time-dependent heat equation in order to locate an unknown internal inclusion.
Design/methodology/approach - The above problem is formulated as an inverse geometric problem,
using non-invasive Dirichlet and Neumann exterior boundary data to find the internal boundary using
a non-linear least-squares minimisation approach. The solver will be tested when locating a variety of
internal formations.
Findings - The method implemented here was proven to be both stable and reasonably accurate when
data was contaminated with random noise.
Research limitations/implications - Due to limited computational time, spatial resolution of internal
boundaries may be lower than some similar case investigations.
Practical Implications - This research will have practical implications to the modelling and monitoring
of crystalline deposit formations within the nuclear industry, allowing development of future designs.
Originality/value - Similar work has been completed in regards to the steady state heat equation,
however to the best of the authors knowledge no previous work has been completed on a time-dependent
inverse inclusion problem relating to the heat equation, using the MFS. Preliminary results presented
here will have value for possible future design and monitoring within the nuclear industry.

Keywords Inverse problem; Method of fundamental solutions; Non-linear optimization; Regularization;
Thermography; Shape identification.
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1 Introduction

The ability to non-invasively detect the morphology of solid deposits which can typically occur within
many industrial processes is an area of prime importance for ensuring safety and reducing unnecessary
risk. This is particularly true within the nuclear industry, where it is critical that safety criteria are
met to extreme standards whilst human interaction is kept to a minimum. As such, non-invasive re-
mote monitoring is highly beneficial when attempting to uphold these standards. This work has direct
application to the safe containment and storage of nuclear waste, in particular for highly active liquors
(HALs). Understanding the potential morphology of these precipitate deposits and the conditions that
lead to them will allow for the future design of appropriate containment and monitoring systems.

Within the nuclear industry when constructing a valid safety case, it is often deemed necessary to carry
out a series of experimental trials with the aim of validating hypothesis on the outcome of possible pro-
cess scenarios. In light of this the National Nuclear Laboratory (NNL) has carried out a variety of these
trials using simulant solutions to investigate the formations from the build up of process liquor, arising
due to pipe leakage. Under different process conditions a wide range of formations are seen to occur,
two such examples are shown in Figure 1. Both the monitoring and prediction of developing deposits
are of interest due to the implications a build up of potentially fissile material could have. Despite the
importance of this, there are currently limited approaches available that provide a means to model or
monitor situations where a solution leaks from a pipe or vessel into an enclosed containment cell. It is
therefore the aim of this paper to develop and evaluate a numerical method that has the potential to
reconstruct the shape of these solid deposits under a variety of environmental conditions, as they develop
through time.

This work investigates the potential for an inverse problem approach to be used in order to reconstruct
an unknown internal moving boundary from external boundary data. As this work poses a preliminary
investigation into modelling a difficult physical problem, it assumes both simplified geometry and physics
in order to gauge the potential of the method. With this in mind the research models, in the first in-
stance, the aforementioned problem mathematically as an inverse geometric problem. The Method of
Fundamental Solutions (MFS) is employed to solve the two-dimensional time dependent heat equation
and reconstruct an internal moving boundary using accessible exterior Neumann and Dirichlet boundary
data. The MFS is a relatively new, powerful meshless numerical method which can be used to obtain
accurate solutions to linear partial differential equations. It has many advantages over other conventional
discretisation methods, e.g. the finite element method (FEM), the finite-difference method (FDM), and
the boundary element method (BEM), one of the primary reasons being that unlike the aforementioned
methods the MFS requires neither domain nor boundary meshing. Due to this, it is very easy to solve
problems involving both irregular domains and moving boundaries. It also presents advantages over
methods such as the BEM as no formulation of complicated integral expressions is necessary. Due to
these reasons it is a highly attractive method when attempting to solve inverse problems that require
the reconstruction of unknown boundaries. This can be seen as the method has also been employed
to solve similar types of problems, governed by equations such as the Laplace and Helmholtz equations
in steady state geometric inverse problems, see Borman et al. (2009), Karageorghis and Lesnic (2009,
2011). Another area of free surface problems where MFS is employed, applicable when finding moving
boundaries, are Stefan problems. However, these are less common when solving inverse problems, see
Chantasiriwan et al. (2009).

Summarising, the inverse problem being tackled here will allow an internal image of the domain to be
reconstructed, non intrusively, enabling both freely moving and stationary boundaries within the domain
to be tracked throughout time. Whilst not exclusive to this problem, this will pose as a preliminary
investigation into the feasibility of monitoring deposit development, as described previously with regards
to the NNL tests, by employing the MFS in order to track the deposits outer boundaries through time.
As previously stated, the exclusivity of this method is not limited to the nuclear industry and application
may be found in other areas where boundary tracking methods are more commonly employed, such as
cavity and inclusion detection, and also medical scanning.
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Figure 1: Experimental crystal formations of sodium nitrate solution, under various conditions.

2 Mathematical Formulation

The mathematical formulation of the inverse geometric problem under investigation requires finding the
temperature u and the moving internal defect D(t) satisfying the heat equation,

∂u

∂t
(x, t)−∆u(x, t) = 0, (x, t) ∈ (Ω \D(t))× (0, T ], (1)

subject to the initial condition,
u(x, 0) = u0(x), x ∈ Ω \D(0), (2)

the Cauchy (Dirichlet + Neumann) boundary conditions on the fixed outer boundary ∂Ω,

u(x, t) = f(x, t), (x, t) ∈ ∂Ω× [0, T ], (3)

∂u

∂n
(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ], (4)

and the Dirichlet or Neumann boundary condition on ∂D(t), namely,

u(x, t) = h(x, t), (x, t) ∈ ∂D(t)× [0, T ], (5)

or
∂u

∂n
(x, t) = h(x, t), (x, t) ∈ ∂D(t)× [0, T ]. (6)

Here Ω and D(t) are simply connected bounded smooth domains such that D(t) ⊂ Ω and Ω \ D(t) is
connected, T > 0 is an arbitrary time of interest and n is the outward unit normal to the boundary.
The functions u0(x), f(x, t), g(x, t) and h(x, t) are known. The related inverse boundary determination
problem which arises in corrosion engineering and in which ∂D consists of an unknown portion of ∂Ω
has been investigated with the MFS in Hon and Li (2008). In (5) or (6) the function h is usually
taken to be uniform, e.g. zero, such that D(t) represents a rigid inclusion for the homogeneous Dirichlet
boundary condition (5) and a cavity for the homogeneous Neumann boundary condition (6). Also the
Neumann boundary condition (4) may be partially limited to a portion Σ× [T0, T1] of ∂Ω× (0, T ]. When
the domain D is independent of time t, the solution of the inverse problem (1)-(5), or (1)-(4), (6) is
unique, see Chapko et al. (1998, 1999), respectively, and for numerical reconstructions, see Chaji and El
Bagdouri (2008) and Chaji et al. (2008). However, the problems are still ill-posed since small errors in
the input data (2)-(4) cause large deviations in the solution. For more comprehensive investigations on
the determination of unknown steady-state or time-varying boundaries for the heat equation, see Bryan
and Caudill (1998), Kawakami et al. (2007), Vessella (2008), and Ikehata and Kawashita (2011).
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3 The Method of Fundamental Solutions

The MFS assumes that the solution of the heat equation (1) can be approximated by a linear combination
of fundamental solutions of the form, see Johansson et al. (2011),

UM,N (x, t) =
2M
∑

m=1

2N
∑

j=1

cmj F (x, t;ym
j , τm), (x, t) ∈ (Ω \D(t))× [0, T ], (7)

where (ym
j )m=1,2M

j=1,2N
are space ’singularities’ (sources) located outside the space domain Ω \D(t), τm are

times located in the interval (−T, T ) and F is the fundamental solution for the two-dimensional heat
equation given by

F (x, t;y, τ) =
H(t− τ)

4π(t− τ)
exp

(

−
|x− y|2

4(t− τ)

)

, (8)

where H is the Heaviside function which is included in order to emphasize that the fundamental solution
is zero for t ≤ τ .

Without loss of generality, based on the conformal mapping theorem, we can assume that the smooth,
bounded and simply-connected domain Ω is the unit disk B(0,1). Furthermore, for simplicity, we assume
that the smooth, simply-connected domain D(t) ⊂ Ω is star-shaped with respect to the origin, hence
its boundary, ∂D(t) can be represented in parametric polar form by a 2π - periodic smooth function
r : [0, 2π)× [0, T ] → (0, 1) as

∂D(t) =
{(

r(θ, t) cos(θ), r(θ, t) sin(θ)
)

| θ ∈ [0, 2π)
}

, t ∈ [0, T ]. (9)

In three-dimensions one can use spherical coordinates.

In the direct problem, when the domain D(t) is known, the unknown coefficients (cmj )m=1,2M

j=1,2N
in the

MFS expansion (7) are determined by collocating the initial condition (2) and either of the boundary

conditions (3) or (4), and (5) or (6). In the inverse problem, the unknown coefficients (cmj )m=1,2M

j=1,2N
and

also some time-dependent radii (rmj )m=0,M

j=1,N
are to be determined by collocating equations (2)-(4), and

(5) or (6).

3.1 Distribution of Source and Collocation Points

In this section, we describe how the source and boundary collocation points are distributed for problems
in which the outer boundary ∂Ω is a circle of radius 1 and the inner boundary ∂D(t) is that of a star-
shaped domain. The outer source points are located outside Ω = B(0, 1) on a circle ∂B(0, R) of radius
R > 1, namely

ym
j = (R cos(θj), R sin(θj)), θj =

2πj

N
, j = 1, N, m = 1, 2M. (10)

We also take

τm =







(2m−1)T
2M , m = 1,M

− [2(m−M)−1]T
2M , m = M + 1, 2M

(11)

The inner source points are located inside D(t), namely,

ym
j+N =

1

2
(rmj cos(θj), r

m
j sin(θj)), j = 1, N, m = 1, 2M, (12)

where the radii r(θj , τm) =: rmj ∈ (0, 1) constitute a radial parameterisation of the star shaped domain
D(t) whose boundary at time t is approximated by, see (9),

∂D(t) =
{(

r(θj , t) cos(θj), r(θj , t) sin(θj)
)

| j = 1, N
}

, t ∈ (−T, T ), (13)
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and we have taken symmetric ∂D(−t) = ∂D(t) for t ∈ (0, T ). From (10) and (12) one can see that a
total of 4MN source points have been specified. We now specify the collocation points.

On the outer boundary ∂Ω we take the boundary collocation points

(xi, τj) = (cos(θi), sin(θi), τj), i = 1, N, j = 0,M, (14)

where τ0 = 0.
On the inner boundary ∂D(t) we take the boundary collocation points

(xj
i , τj) = (rji cos(θi), r

j
i sin(θi), τj), i = 1, N, j = 0,M. (15)

Collocating the boundary conditions (3)-(5) results in 3(M+1)N equations. Another (K−1)N equations
are obtained by imposing the initial condition (2). We collocate the initial condition (2) in the domain
Ω \D(0) at time t = 0 at the points

xi,j =

((

r0j +
(1− r0j )i

K

)

cos(θj),

(

r0j +
(1− r0j )i

K

)

sin(θj)

)

, i = 1, (K − 1), j = 1, N, (16)

where r0j = r(θj , 0) for j = 1, N .

The full time dependent inverse geometric problem amounts to 4MN+N(M+1) = N(5M+1) unknowns

represented by the 4MN coefficients c = (cmj )m=1,2M

j=1,2N
in the MFS expression (7), and the N(M+1) radii

r = (rmj )m=0,M

j=1,N
. On the other hand the collocation of the conditions (2)-(5) amounts to N(3M +K +2)

equations, namely, (K−1)N equations for the initial condition (2) imposed at the points (16), 2(M+1)N
equations for the Cauchy boundary condition (3) and (4) imposed at the points (14), and (M + 1)N
equations for the boundary condition (5) or (6) imposed at the points (15). From the above counting it
follows that a necessary solution for a unique solution is K ≥ 2M − 1.

3.2 Least-Squares Minimization

As the boundary conditions (3)-(5) and initial condition (2) are known we can fit the approximated data
of the MFS to these values using a nonlinear least-squares formulation to find the unknown values of c
and r, namely, we minimise the functional

S(c, r) = ||UM,N − f ||2 + ||UM,N − h||2 +

∣

∣

∣

∣

∣

∣

∣

∣

∂UM,N

∂n
− g

∣

∣

∣

∣

∣

∣

∣

∣

2

+ ||UM,N − u0||
2. (17)

In discretised form, expression (17) to be minimized can be written as:

S(c, r) =
∑N

i=1

∑M
j=0

[

(UM,N (xi, τj)− f(xi, τj))
2 + (

∂UM,N

∂n
(xi, τj)− g(xi, τj))

2

]

+
∑N

i=1

∑M
j=1

(

UM,N (xj
i , τj)− h(xj

i , τj)

)2

+
∑K−1

i=1

∑N
l=1

(

UM,N (xi,l, 0)− u0(xi,l)

)2

.

(18)

In expressing the third term in (17), the normal derivative of the fundamental solution (7) is needed,
namely

∂F

∂n
(x, t;y, τ) = −

(x− y) · n

8π(t− τ)2
exp

(

−
|x− y|2

4(t− τ)

)

H(t− τ). (19)
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3.3 Regularisation Method

The inverse time-dependent heat problem is severely ill-posed, it has therefore been proven necessary
within previous studies that some form of regularisation is required when solving it. Here we choose to
use the Tikonhov regularisation technique, often employed when solving inverse and ill-posed problems
in order to obtain a stable solution. This technique is imposed by the addition of an extra term to (17),
namely,

Sλ(c, r) = S(c, r) + λ||c||2, (20)

where λ > 0 is a regularisation parameter.

It should also be noted that when solving for the forward, direct linear problem, the above technique
can give an explicit solution of the form,

c = (AtrA+ λI)−1Atrb, (21)

for the original ill-conditioned MFS system of linear equations, generically written as Ac = b.

3.4 Computational Implementation

The minimisation of (18) is performed using the optimisation toolbox function ‘fmincon’ in MATLAB.
The ‘fmincon’ function employs an ‘interior point’ algorithm, see Byrd et al. (2000). In our work this
algorithm minimizes (18) subject to the physical constraints 0 < r < 1 that the defect D(t) stays within
the fixed host domain Ω during the solution procedure.

When using the interior point algorithm, the gradient vectors of both the objective and constraint
functions are required. The MATLAB optimisation toolbox calculates this using finite differencing
and therefore due to the large number of unknowns, the minimisation process is highly computationally
intensive. In order to carry out the computations in a feasible time frame, a parallel computing approach
is required. To achieve this, the solver is implemented into MATLAB which utilises the both inbuilt
parallel and optimisation toolboxes. The parallel toolbox allows this finite differencing process to occur
in parallel and thus speed up the minimisation process. These capabilities allow the solver to harness the
facilities of the University of Leeds ‘ARC1’ high performance computer, running the process in parallel
over 8 cores. To demonstrate the computational benefits of the parallel approach, the times required
to solve the problem outlined in Example 1, of the next section, have been compared for a range of
discretisation sizes (MFS parameters). Figure 2 shows the computational times for N(5M + 1) points
when K = 2M − 1 for increasing values of M and N . It can be clearly seen that the parallel toolbox
speeds up the solver process significantly.

6
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Figure 2: Comparison of computational times for runs in parallel and serial for Example 1.

4 Numerical Results and Discussion

Throughout this section we take T = 1 and the initial guess as r = 0.8 and c = 0.1.

4.1 Example 1

Here we attempt to locate a stationary star-shaped inclusion given by the circle, B(0, 0.5) centred at the
origin with radius 0.5 within the unit circle domain Ω = B(0, 1). The initial and boundary conditions
(2), (3) and (5) are given by

u(x, 0) = u0(x) = |x|2, x ∈ Ω \D(0), (22)

u(x, t) = f(x, t) = 4t+ 1, (x, t) ∈ ∂Ω× [0, T ], (23)

u(x, t) = h(x, t) = 4t+ 0.25, (x, t) ∈ ∂D(t)× [0, T ]. (24)

As described previously, the inverse problem here is a challenging non-linear ill-posed problem where
the internal boundary ∂D(t) is unknown, therefore it is necessary that extra information is supplied in
order to determine the additional unknowns relating to the discrete radial parametrisation of the internal
boundary. This will then allow the reconstruction of the moving boundary, ∂D(t), within the domain Ω.
This additional information is in the form of the heat flux on ∂Ω, as described by equation (4), namely

∂u

∂n
(x, t) = g(x, t) = 2, (x, t) ∈ ∂Ω× [0, T ]. (25)

The accuracy of the solution was analysed using the RMS value of the error between the analytical and
estimated internal boundary defined as,

RMS =

√

√

√

√

∑N
j=1

∑M
m=0

(

rmj − 0.5
)2

N(M + 1)
. (26)

As such, if the boundary is located exactly the RMS value would be zero.

7
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4.1.1 Results

The results for Example 1 are presented for a range of discretisation parameters (MFS parameters M

and N). In each of these cases no additional regularisation is imposed (i.e. in (20) λ = 0) and the
minimization process was stopped manually when a suitable level of convergence was obtained.

Figures 3(a) and 3(b) display the value of the objective function (18) minimized by the MATLAB routine
‘fmincon’ and the RMS value (26), as functions of the number of iterations, respectively. Results shown
were obtained taking MFS parameters M = N = 6 and 12, with K = 2M − 1 = 11 and 23, respectively.
In these cases, the objective functional (18) contains N(5M +1) = 186 and 732 conditions, respectively.
Results are summarised in Table 1.
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Figure 3: a) The objective function (18) and b) the RMS values (26) for MFS parameters M = N = 6
and 12, K = 11 and 23, respectively.

From Figure 3, when considering the case M = N = 6, it can be seen that even though the objective
function continues to decrease, the RMS value begins to diverge at a given point. In order to see if this
holds true when we increase the values of the MFS parameters, analysis of the problem with parameters
M = N = 12, K = 2M − 1 = 23 is carried out. The numerical results for the objective function (18)
and the RMS values (26) for these new MFS parameters are also shown in Figure 3. By comparing
the results presented in Figure 3, it can be seen that the RMS value no longer increases as the MFS
parameter values increase. In Figure 3(a), for MFS parameters M = N = 12, after 118 iterations the
objective function (18) appears to reach a stationary value, this can also be confirmed by studying the
RMS values in Figure 3(b).
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In order to demonstrate the performance of the minimisation process, a graphical representation of the
internal boundary at various iteration numbers, for MFS parameters M = N = 12 is shown in Figure
4. From this figure it can be seen that a convergent and stable reconstruction of the moving inclusion is
realised after 118 iterations. This corresponds to the objective function becoming constant.

Figure 4: Plots of the inclusion at iterations: a) 42, b) 90, and c) 118 (final), when trying to locate a
circular inclusion of radius 0.5. d) Shows the initial guess and the final solution.

The solver was run for a variety of MFS parameters. A parameter set of M = N = 12, K = 23 was
deemed sufficiently large for the purposes of achieving an accurate result when balanced with the high
computational time required for larger MFS parameter values. It can be clearly seen from the results
presented in Table 1 that as the parameter size increases, the overall accuracy of the estimated solution
increases. One can also deduce from Table 1, that larger parameter sets require more iterations, in order
to reach a stable solution, the time for each iteration also increases with increasing parameter size.
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Size Obj. Func. RMS CPU Time (s) Iterations
M = N = 6, K = 11 0.92969 0.15021 16.587 65
M = N = 8, K = 15 0.08784 0.03370 72.736 68
M = N = 10, K = 19 0.04311 0.01897 336.55 105
M = N = 12, K = 23 0.02151 0.00852 1116.8 118

Table 1: Numerical results for the objective function (18), the RMS (26), the CPU time and the number
of iterations required for convergence, obtained with various MFS parameter sizes.

4.1.2 Introduction of Noise to the Boundary Flux Data

In reality, the heat flux values (4) on the boundary ∂Ω would be measured using experimental tech-
niques. Due to this, a numerical noise factor is numerically simulated to mimic the inherent errors in
the experimental data that would be used. Noisy data was achieved by using the MATLAB function
normrand(0, σ), which generates a random number from a given normal distribution space, namely,

gη(xj
i , tj) = g(xj

i , tj) + ǫi,j = 2 + ǫi,j , i = 1, N, j = 0,M, (27)

where ǫi,j are normal random variables with mean 0 and standard deviation σ=max|g(xj
i , tj)|p, where p

represents the percentage of noise.

Figures 5(a) and 5(b) display the objective function (18) and the RMS value (26), as functions of the
number of iterations, respectively, for both p = 10% and 25% noise added in the flux data (25), as in
(27). From these figures it can be observed that introducing noise decreases the accuracy and stability
of the solution. In order to further confirm this statement, a graphical representation of the solution is
given in Figure 6. Results are summarised in Table 2.
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Figure 5: a) The objective function (18), and b) the RMS values (26) for MFS parameters M = N =
12,K = 23, for p = 0, 10% and 25% noise.
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Figure 6: Final plot of the inclusion after the final 107 iterations. M = N = 12, K = 23, for a) p = 10%,
and b) p = 25% noise.

From Figure 5 it can be observed, as expected, that the numerical results become less accurate and stable
as the amount of noise increases from for p = 10% to 25% noise. However, the numerical solution for
p = 25% noise is still in reasonable agreement with the exact solution bearing in mind the rather large
amount of noise with which the input flux data has been contaminated. The relatively high robustness
with these large amounts of noise is potentially related to the simple geometry of the inclusion being
reconstructed. It is not anticipated that this would be the case with more challenging geometries, as
investigated in later examples.

By taking a plot of the final solution at the final time, t = T = 1, the effects of increasing the noise
can be seen from Figure 7 and Table 2. It can be observed that as the amount of noise decreases the
numerical solution approximates better the exact solution.

13

Page 13 of 32

http://mc.manuscriptcentral.com/hff

International Journal of Numerical Methods for Heat and Fluid Flow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure 7: Reconstructed inclusion at t = T = 1, with M = N = 12, K = 23, for various levels of noise.

Overall, the numerical results obtained for Example 1 demonstrate that the MFS provides a powerful
method for solving inverse geometric problems concerned with the reconstruction of simple smooth
internal boundaries, such as a circle. The method provides a simpler alternative from using discretisation
methods such as the BEM or the FEM, which can often be complicated when meshing moving geometries.
It has been shown that high levels of accuracy and resolution can be obtained for a simple geometry
such as a circular inclusion, however, the addition of noise in the input data can cause a decrease in the
resolution and stability.

Noise (%) Obj. Func. RMS Iterations
0 0.02151 0.00852 118
5 0.10689 0.02030 109
10 0.27019 0.03119 118
25 1.40198 0.06796 122

Table 2: Numerical results for the objective function (18), the RMS (26) and the number of iterations
required for convergence, obtained with M = N = 12, K = 23 and various levels of noise.

4.2 Example 2

Here we attempt to locate a bean shaped stationary star-shaped inclusion D parametrised by

r(θ) =
0.55 + 0.4cos(θ) + 0.15sin(2θ)

1 + 0.7cos(θ)
, (28)
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within the domain Ω = B(0, 1). This is a typical validation shape when considering inverse geometric
research. The initial and boundary conditions (2), (3) and (5) are given by

u(x, 0) = u0(x) = 0, x ∈ Ω \D(0), (29)

u(x, t) = f(x, t) = xt, (x, t) ∈ ∂Ω× [0, T ], (30)

u(x, t) = h(x, t) = 0, (x, t) ∈ ∂D(t)× [0, T ], (31)

where x = (x, y).

In a first instance, we assume that the inclusion does not move in time, and that this is known a priori.
Note that in the previous example the source and collocation points were placed in relation to the current
location of the inclusion D(t), namely the polar radius r(θ, t) was dependent on both space and time,
however as we are now fixing the inclusion throughout time, this parametrisation of D(t), as a stationary
defect D, can indeed be simplified. Due to this simplification the location of source and collocation
points need to be modified, as described below.

Equation (12) can now be expressed as,

ym
j+N =

1

2
(rj cos(θj), rj sin(θj)), j = 1, N, m = 1, 2M, (32)

where the radii r(θj) =: rj ∈ (0, 1) constitute a radial parameterisation of the stationary star-shaped
domain D whose boundary at any time t ∈ (−T, T ) is approximated by,

∂D =
{(

r(θj) cos(θj), r(θj) sin(θj)
)

| j = 1, N
}

. (33)

By comparing this with equations (9) and (13), one can now observe that the radial parametrisation
is no longer dependent on time, but only on its position in space. Modifications to the position of the
inclusion dependent collocation points will now be stated.

Equations (15) and (16) now become

(xj
i , τj) = (ri cos(θi), ri sin(θi), τj), i = 1, N, j = 0,M, (34)

xi,j =

((

rj +
(1− rj)i

K

)

cos(θj),

(

rj +
(1− rj)i

K

)

sin(θj)

)

, i = 1, (K − 1), j = 1, N, (35)

The final problem entails to 4MN + N = N(4M + 1) unknowns represented by the 4MN coefficients

c = (cmj )m=1,2M

j=1,2N
in the MFS expression (7), and the N radii r = (rj)j=1,N .

As described previously, the inverse problem here is a difficult non-linear ill-posed problem, and therefore
it is necessary that extra information is supplied in order to satisfy the increased number of unknowns in
order to reconstruct the boundary, ∂D(t), within the domain Ω. This information is in the form of the
heat flux (4) on ∂Ω. Since for the irregular bean shape (28) an analytical solution for the direct problem
(1), (29)-(31) is not available, the forward problem is solved numerically using the MFS and the flux is
generated for the required boundary collocation points on ∂Ω. Figures 8 shows the heat flux values (4) at
times t ∈ { 1

18 , 1}, respectively, obtained by solving the direct problem (1), (29)-(31), with various MFS
parameter sizes M = N ∈ {30, 45, 60} and the regularisation parameter λ = 10−7. It can be deduced
from Figure 8 that the numerical solutions did not change significantly when the MFS parameter sizes
were in excess of M = N = 60.

15

Page 15 of 32

http://mc.manuscriptcentral.com/hff

International Journal of Numerical Methods for Heat and Fluid Flow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

0 1 2 3 4 5 6 7
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

θ

H
ea

t F
lu

x

 

 

30x30

45x45

60x60

a)

0 1 2 3 4 5 6 7
−12

−10

−8

−6

−4

−2

0

2

4

6

θ

H
ea

t F
lu

x

 

 

30x30

45x45

60x60

b)

Figure 8: The heat flux values (4) across ∂Ω at times a) t = 1
18 , and b) t = 1, for various MFS parameters

sizes.

Next, the heat flux values (4) at times t ∈ { 1
18 , 1}, obtained by solving the forward problem with the

MFS parameter size M = N = 60 are plotted in Figure 9, for various regularisation parameters. The
fluxes are output at 18 points across the boundary ∂Ω which will be used as data for the inverse problem
of Example 2. This way, the inverse problem will be run with the MFS parameter size M = N = 18.
This also avoids committing an inverse crime since the direct and inverse solvers have different MFS
parameter sizes.
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Figure 9: The flux values (4) across ∂Ω at times a) t = 1
18 , and b) t = 1, for various regularisation

parameters.

When selecting a suitable regularisation parameter in equation (21) for solving the forward problem,
a compromise value is taken, which should be large enough to remove the effects of ill-conditioning of
the MFS system of equations, and small enough to have minimal effect on the accuracy of the solution.
From Figure 9(a), when λ = 10−9 the ill-conditioning of the system is still visible, however the solution
appears to to be stable for λ = 10−7. As such this value shall be used when solving the forward problem
for the MFS parameter size M = N = 60.
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4.2.1 Results

Analysis of the results for Example 2 follow a similar format to that of Example 1. Results for both the
objective function (18) and the RMS value

RMS =

√

∑N
j=1

(

rj − r∗j
)2

N
, (36)

where

r∗j = r∗(θj) =
0.55 + 0.4cos(θj) + 0.15sin(2θj)

1 + 0.7cos(θj)
, θj =

2πj

N
, j = 1, N. (37)

for various parameter sizes M = N are shown in Figure 10.
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Figure 10: The objective function (18) and the RMS value (36) for various MFS parameters.
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From Figure 10 it can be seen that as the MFS parameter size increases, the accuracy of the solution
also increases. To further confirm the functionality of the optimisation process, an ’inverse crime’ is also
committed (i.e. the heat flux data is generated using the same forward mesh size in the inverse problem).
From these results it can be observed that the error is very small in relation to the other parameter sizes,
hence providing further confirmation that the solver is functioning correctly.

Unlike the majority of previous works where the MFS is used to solve steady state inverse problems, the
time-dependent case produces a much larger system of unknowns and as such, the objective function is
more costly to evaluate. Due to this, parameter sizes typically have to be smaller than those used in
aforementioned works otherwise, the computational time required to solve becomes unfeasibly large. A
parameter size of M = 26, N = 16 has been found to be the largest parameter size when drawing a com-
promise between accuracy and computational expense. A two-dimensional plot of the results obtained
is displayed in Figure 11. As the solution remains stationary in time, it is unnecessary to provide a full
space-time plot of the inclusion.

As one can observe from Figures 10(a) and 11, as the parameter size increases, the accuracy of the
numerical solution also increases. In order to further highlight this, a plot of the absolute errors squared
versus the polar angle θ, is given in Figure 12.
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Figure 11: Plot of the inclusion for various MFS parameter sizes.
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Figure 12: The absolute error squared versus θ for various MFS parameter sizes.

From examining Figure 12 it can be observed that as the mesh size increases the accuracy generally
increases. One can also observe that the level of error from performing the inverse crime is very small,
providing reassurance that the computational code and methodology are correct.

As explained in section 4.1.2, it is deemed necessary to consider noise in order to simulate data similar
to that obtained from physical means of measurements. Previous works using the MFS for steady state
problems have shown it beneficial to use Tikhonov regularisation (see section 3.3) for solving inverse
problems with noisy data.

Trials were carried out using the generated noisy data for a variety of regularisation parameters λ. The
residual (18) and RMS values (36) for these trials are shown in Figure 13. Note that the residual takes
the form of (18), where (20) is the regularised objective function being minimised. The residual (18) was
plotted in Figure 13(a) rather than the usual objective function (20), as this is necessary in order to use
a discrepancy principle, the details of which are explained in later text.
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Figure 13: a) The residual (18), and b) the RMS values (36) for various regularisation parameters when
the heat flux data (4) is contaminated with 1% noise.

In physical applications where the input data is likely to be contaminated with noise it is necessary to
have a stopping criterion for the iterative procedure in order to prevent the solution becoming unstable.
For trials were no regularisation was imposed, i.e. the objective function (18) is minimised, the iteration
was stopped at the iteration number for which the residual (18) attains approximately the noise level,

ǫ2 =

N
∑

i=1

M
∑

j=0

(gη(xj
i , tj)− g(xj

i , tj))
2. (38)

This is known as the discrepancy principle and it is graphically illustrated in Figure 13(a) where the
value of ǫ2 is shown as the horizontal line. In cases where regularisation was imposed, a fixed number of
iterations were used (300 in Example 2) where the objective function (20) becomes stationary. Residuals
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were plotted in Figure 14 for various values of λ, and λ was chosen based on which residual after 300
iterations was closest to the value of ǫ2(= 3.9 for 1% noise in Example 2). This is also termed as the
discrepancy principle. Figure 14 shows that this value is between λ = 10−3 and 10−2.
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Figure 14: Residuals after 300 iterations for various values of λ.

RMS values for trials with 1% noise and Tikhonov regularisation in conjunction with the two discrepancy
principles described above are shown in Table 3. The corresponding numerical reconstructions of the
inclusion are shown in Figure 15.

Noise (%) RMS Regularisation (λ) Iteration@Final Result
0 0.043 0 220
1 0.069 0 131
1 0.0616 0.001 300
1 0.1151 0.01 300

Table 3: Numerical results for the RMS (36) obtained with M = 28, N = 16 and K = 55.
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Figure 15: a) Plot of the inclusion for 0 and 1% noise. The iteration process is stopped according to the
first discrepancy principle. b) Plot of the inclusion for 1% noise. The regularisation parameter is chosen
according to the second discrepancy principle.

Figure 15(a) demonstrates that the method proposed is stable with respect to small amounts of noise in
the input data. Results presented within this figure show that the formation shape, with no regularisation
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and stopped using the first discrepancy principle (based on Figure 15(a)) is very close to the optimal
solution shown when using 0% noise, i.e. exact data. Both 0 and 1% input data generate good likeness
to the target solution, with the largest error occurring near the cusp region. The numerical results
presented in Figure 15(b), obtained using the regularisation parameter λ chosen according to the second
discrepancy principle (based on Figure 14), do not show much improvement over the results presented
in Figure 15(a).

4.3 Example 3

As in Example 2, we attempt to locate a stationary star-shaped inclusion D parametrised by

r(θ) =
0.55 + 0.4cos(θ) + 0.15sin(2θ)

1 + 0.7cos(θ)
, (39)

within the domain Ω = B(0, 1). However, this time we impose no assumption that the boundary ∂D(t)
is stationary throughout time t ∈ (0, T = 1). The initial and boundary conditions are given by equations
(29)-(31). In order to ensure a unique solution it is imposed that D(0) is known, see Kawakami and
Tsuchiya (2010), and therefore we solve for a non-linear system of 5MN unknowns.

4.3.1 Results

Analysis of the results for Example 3 follow a similar format to that of the previous examples. The RMS
now takes the form,

RMS =

√

√

√

√

∑N
j=1

∑M
m=0

(

rmj − r∗j
)2

N(M + 1)
, (40)

where r∗j are given by equation (37). Initial results presented correspond to MFS parameters of varying
sizes.
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Figure 16: a) The objective function (18), and b) the RMS values (40) for various MFS parameter sizes.

Figure 16(a) shows the objective function decreasing, and the solver attempting to locate the interior
formation. Unlike Example 2, there only appears to be a small correlation between increasing the mesh
size and RMS values. The minimum achievable RMS value, using the MFS parameters presented here, in
Figure 16(b), appears to be around 0.1. In order to further understand the reasoning for these relatively
low accuracies, Figure 17 plots the errors in both time and space. From Figure 17 it can be observed
that the errors predominate close to the initial time (t = 0) and also close to the concave region of the
cusp, but accuracy in other regions is generally of a good standard. In order to further confirm that this
statement applies for all tested cases, Figure 18 shows the average absolute error for each given time.
From this figure it can be seen that for all MFS parameters attempted within Example 3, the error is
largest at times close to t = 0, and slowly decreases as time increases.
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Figure 17: The absolute error between the target and obtained solution for M = N = 18 at iteration
171.
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Figure 18: The mean absolute error between the target and obtained solution over time for a variety of
MFS parameters at optimal stopping iterations.

Finally, Figure 19 shows a full plot for the inclusion, as a function of x and t. From this figure it can be
seen that the accuracy of the solution increases as one moves further away from the initial time.
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Figure 19: Plot of the inclusion for M = N = 18 after 171 iterations.

Despite the aforementioned problems when using the method proposed for Example 3, excluding the
initial solution times, where noticeable errors were observed, the solver’s ability to reconstruct the internal
structure appears to function well. An example of such a solution at the final time t = T = 1 is shown
in Figure 20.

27

Page 27 of 32

http://mc.manuscriptcentral.com/hff

International Journal of Numerical Methods for Heat and Fluid Flow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

16x16
18x18
28x16
Target

Figure 20: Plot of the inclusion at the final time t = T = 1, for various MFS parameter sizes.

It was considered unnecessary to illustrate trials with artificial noise imposed on the input data, though
we report that the same stable numerical solutions, as in Example 2, are expected. Instead of this, we
consider in the next example the case of a fully moving internal target.

4.4 Example 4

In this final example, we attempt to reconstruct an internal moving boundary star-shaped inclusion D(t)
parametrised by

r(t) = 0.9−
t

2
, t ∈ [0, T ], (41)

within the domain Ω = B(0, 1). The initial and boundary conditions (2) and (5) are given by (29) and
(31), and the Dirichlet boundary condition is taken as,

u(x, t) = f(x, t) = t, (x, t) ∈ ∂Ω× [0, T ]. (42)

As in Example 3, in order to ensure a unique solution to the inverse problem, we assume that the circular
shape r(0) = 0.9 of the inclusion D(0) at the initial time t = 0 is known.

In this example we have chosen to remove the added complexity of the bean shaped formation, to see
if the method has the ability to reconstruct a simple moving circular formation, as parametrised by
equation (41). Due to the simplicity of the shape, MFS parameter sizes similar to those in Example 1
were used. Input data was obtained by solving the forward problem, as described in Example 2, specific
parameters and resulting figures for which are omitted here.

4.4.1 Results

Results for the inverse problem can be found in Figure 21. RMS values will be presented and take the
same form as in Example 3, as given by equation (40).
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Figure 21: a) The objective function (18), and b) the RMS values (40) for various MFS parameters.

From Figure 21, numerical results with lower MFS parameter sizes appear to produce different results
to what the previous examples would imply. Generally, the smaller parameter sizes produce more stable
results. In order to look for reasoning behind this, Figure 22 shows the absolute error across the interior
reconstruction for the MFS parameter sizes M = N = 8 and 12. From Figure 22 it can be seen that
as the MFS parameter size increases, the effects of the ill-conditioning start to become apparent. These
effects appear to be dominant close to t = 0, as in Example 3. The small MFS parameter sizes appear
to reduce this error, however the errors remain larger at times away from t = 0 than those for the larger
MFS parameter sizes. In order to illustrate more clearly this point, Figure 23 shows the mean absolute
errors, between the target and obtained solution at the various times.
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Figure 22: The absolute error between the target and obtained solution for a) M = N = 8, and b)
M = N = 12 at optimal stopping iterations.
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Figure 23: The mean absolute error between the target and obtained solution over time for a variety of
MFS parameters at optimal stopping iterations.

Finally in order to further visualise and interpret the above numerical results, Figure 24 shows the full
space-time solution for parameters M = N = 8 and 12.

30

Page 30 of 32

http://mc.manuscriptcentral.com/hff

International Journal of Numerical Methods for Heat and Fluid Flow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure 24: The moving inclusion for: a) M = N = 8, and b) M = N = 12 at the optimal stopping
iterations.

5 Conclusions

This paper has used a variety of examples to test both the accuracy and stability of the proposed
regularised MFS for solving a non-linear geometric inverse problem, namely the two-dimensional time
dependent heat equation to locate an unknown internal boundary.

Example 1 demonstrates that simple boundaries can be located to high degrees of accuracy and sta-
bility.

Example 2 demonstrates, assuming the boundary remains fixed in time, that complex ’bean-shaped’
boundaries can be located with a reasonable high level of accuracy and stability.

Example 3 no longer assumes that the boundary was fixed in time, removing this constraint severely
impaired accuracy of the inclusion reconstruction, increasing mesh size had little effect rectifying this.
Despite this, inclusions were approximated to a reasonable level of accuracy, with the largest errors ap-
pearing at times close to t = 0.

Example 4 shows that the method presented here can successfully locate simple moving boundaries,
however like Example 3, large errors are present at times close to t = 0. It was shown that these can be
partially removed by using smaller MFS parameter sizes, however this was at the expense of both the
accuracy when considering times away from the initial point and of the overall formation resolution.

Extension of the method to three-dimensions is a viable option and will likely provide useful to the
practical application discussed in the introduction.
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