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Formal Concept Analysis over

Graphs and Hypergraphs

John G. Stell

School of Computing, University of Leeds, U.K.

Abstract. Formal Concept Analysis (FCA) provides an account of clas-
sification based on a binary relation between two sets. These two sets
contain the objects and attributes (or properties) under consideration.
In this paper I propose a generalization of formal concept analysis based
on binary relations between hypergraphs, and more generally between
pre-orders. A binary relation between any two sets already provides a bi-
partite graph, and this is a well-known perspective in FCA. However the
use of graphs here is quite different as it corresponds to imposing extra
structure on the sets of objects and of attributes. In the case of objects
the resulting theory should provide a knowledge representation technique
for structured collections of objects. The generalization is achieved by an
application of work on mathematical morphology for hypergraphs.

1 General Introduction

1.1 Formal Concept Analysis

We recall the basic notions of Formal Concept Analysis from [GW99] with some
notation taken from [DP11].

Definition 1 A Formal Context K consists of two sets U, V and a binary

relation R ⊆ U × V . The elements of U are the objects of K and the elements

of V are the properties.

The relation can be written in the infix fashion a R b or alternatively as (u, v) ∈
R. The converse of R is denoted R̆.

Definition 2 Given a formal context (U, R, V ) then R△ : PU → PV is defined

for any X ⊆ U by

R△(X) = {v ∈ V : ∀x ∈ X (x R v)}.

This operator provides the set of properties which every one of the objects in
X possesses. Using the converse of R, the operator R̆△ : PV → PU can be
described explicitly by

R̆△(Y ) = {u ∈ U : ∀y ∈ Y (u R y)}

for any Y ⊆ V .

Definition 3 A formal concept belonging to the context (U, R, V ) is a pair

(X, Y ) where X ⊆ U , Y ⊆ V and such that R△(X) = Y and R̆△(Y ) = X. The

sets X and Y are respectively the extent and the intent of the concept.



1.2 Importance of graphs and hypergraphs

The question posed in this paper is what happens when we replace the sets U
and V in a formal context by graphs, or by hypergraphs or more generally still
by pre-orders? The question is not straightforward, partly because there is more
than one possible meaning for a relation between graphs. First, however, we need
to consider why the question might be worth answering.

The idea that properties can have structure is well established within FCA,
see for example the treatment of scales and many-valued contexts in [GW99,
p36]. Suppose however our collection of objects also has structure (rather than
each individual object being structured).

We now consider some examples.

Assemblages An assemblage of individuals where the individuals have inde-
pendent existence. For example, a marriage between two people or a group
of four friends who take a holiday together. Further examples would be al-
liances of nations, twinnings of towns. In all these cases we can consider
attributes of the individuals and also attributes of the groupings. A par-
ticular grouping can have attributes which may not depend solely on the
individuals, and the same set of individuals may participate in a number of
different groupings.

Granules Such groupings could also appear in granulation, equivalence classes
are a simple case but other kinds of granules are also well known. A gran-
ule can have attributes (say some viewpoint that engenders the clustering)
and again the same individuals may appear in different granules for differ-
ent viewpoints. This indicates the need to attach attributes to the granules
themselves as well as to the individuals.

Links In a different kind of example the collection of objects could make up both
the stations and lengths of track joining stations to be found in a railway
system. Similarly there might be cities linked by roads or nodes and links in
a social network. In the case of a railway network it is clear that the railway
line between two stations can require different attributes from the stations
themselves.

All of these examples can be modelled as graphs or hypergraphs, and we shall
restrict to undirected graphs in the present paper.

2 Theoretical Background

2.1 Graphs and Hypergraphs

A hypergraph can be defined as consisting of a set N of nodes and a set E of
edges (or hyperedges) together with an incidence function i : E → PN from E
to the powerset of N . This approach allows several edges to be incident with the
same set of nodes, and also allows edges incident with the empty set of nodes.
An example is shown in Figure 1 where the edges are drawn as curves enclosing
the nodes with which they are incident.



x
y

d

u

a

b c

v w

Fig. 1. Hypergraph with edges E = {a, b, c, d}, and nodes N = {u, v, w, x, y}.

When studying relations on these structures it is more convenient to use an
equivalent definition, in which there is a single set comprising both the edges
and nodes together. This has been used in [Ste07,Ste10] and is based on using a
similar approach to graphs in [BMSW08]. This is illustrated in Figure 2 and set
out formally in Definition 4.
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Fig. 2. Hypergraph from Figure 1 represented as a relation ϕ on the set U of all edges
and nodes.

Definition 4 A hypergraph consists of a set U and a relation ϕ ⊆ U ×U such

that for all x, y, z ∈ U ,

1. if (x, y) ∈ ϕ then (y, y) ∈ ϕ, and
2. if (x, y) ∈ ϕ and (y, z) ∈ ϕ then y = z.

From a hypergraph described in this way we can obtain the edges as those u ∈ U
for which (u, u) /∈ ϕ, whereas the nodes satisfy (u, u) ∈ ϕ. A sub-hypergraph

of (U, ϕ) is defined as a subset K ⊆ U for which k ∈ K and (k, u) ∈ ϕ imply
u ∈ K. We will usually say sub-graph rather than sub-hypergraph for brevity.

It is technically convenient to replace the relation ϕ by its reflexive closure
ϕ	. This loses some information, as we cannot distinguish between nodes in-
cident with no edges and edges incident with no nodes. However, this loss is



not significant as Stell [Ste12] shows that the relations we need to define on
hypergraphs are the same in each case.

This means that a hypergraph can be regarded as a special case of a structure
(U, H) where U is a set and H is a reflexive transitive relation on U . In the case
of a graph every edge is incident with at most two nodes, this corresponds to
the set {v ∈ U : u H v} having at most three elements. The need to deal with
hypergraphs and not only graphs comes from their duality. Interchanging the
edges and nodes in hypergraph yields the dual hypergraph. For the structure
(U, H) this corresponds to (U, H̆) where H̆ is the converse of H.

2.2 Mathematical Morphology on Sets

Mathematical morphology [Ser82,BHR07] has been used widely in image pro-
cessing and has an algebraic basis in lattice theory. It can be seen as a way of
approximating images so as to emphasise essential features. At the most abstract
level it depends on the action of binary relations on subsets. Although various
authors [CL05,ZS06,DP11] have analysed several connections between different
approaches to granulation and approximation, the exploration of the links be-
tween mathematical morphology and formal concept analysis is only beginning
to be developed [Blo11].

The fundamental operations used in mathematical morphology have been
described with different names and notions in several fields. The basic setting
consists of two sets, U and V , and a binary relation R ⊆ U × V . Given any
subsets, X ⊆ U and Y ⊆ V we can define

X ⊕ R = {v ∈ V : ∃u (u R v and u ∈ X)}

R ⊖ Y = {u ∈ U : ∀v (u R v implies v ∈ Y )}

These operations are known respectively as dilation and erosion. Dilation by
R acts on the right and erosion acts on the left. This means that given further
relations composable with R, say S ⊆ U ′×U and T ⊆ V ×V ′ then X⊕(R ;T ) =
(X ⊕ R) ⊕ T and (S ; R) ⊖ Y = S ⊖ (R ⊖ Y ).

The basic image processing context of these constructions is usually that the
sets U and V are both Z

2 thought of as a grid of pixels and the relation R is gen-
erated by a particular pattern of pixels. Extensions of the operations to graphs
have been discussed from various viewpoints [HV93,CNS09], and approaches to
morphology on hypergraphs include [Ste10,BB11].

The operation R△, introduced in Definition 2, is related to dilation and ero-
sion as follows. In these constructions R̂ is the converse complement of R, that

is R̂ = R̆ = R̆, where R denotes the complement of the relation R. The comple-
ment of a set X is denoted −X. The proof is a straightforward calculation from
the definitions.

Theorem 1 Let R ⊆ U × V be a relation and X ⊆ U and Y ⊆ V . Then

R△(X) = R̂ ⊖ (−X),

R̆△(Y ) = −(Y ⊕ R̂).



The reason for establishing this result is that it provides a guide for generalizing
formal concept analysis from sets to graphs including the potential of extend-
ing the treatment of decomposition of contexts in [DP11]. It also provides a
foundation for developing correspondences between formal concept analysis and
mathematical morphology. This is clear once the operations of (morphological)
opening and closing, which are derived from combinations of dilation and erosion
are introduced.

Corollary 2 (X, Y ) is a formal concept iff

−X = (R̂ ⊖−X) ⊕ R̂, and

Y = R̂ ⊖ (Y ⊕ R̂).

In other words, −X is open (equal to its own morphological opening) and Y is
closed (equal to its own morphological closing) with respect to the relation R̂.

The calculus of erosion and dilation makes particularly clear the well-known
fact that the intent of a concept determines the extent and vice versa. Given Y
where Y = R̂ ⊖ (Y ⊕ R̂) we can define X = −(Y ⊕ R̂) and immediately obtain
Y = R̂ ⊖ (−X). Similarly if we are just given the extent X We shall see in
Section 3 how the theory of mathematical morphology on hypergraphs allows us
to formulate a generalization of formal concept analysis.

2.3 The algebra of graphs and hypergraphs

Given a graph, by which we mean an undirected multigraph with possible
loops, the set of all subgraphs forms a bi-Heyting algebra, generalizing the
Boolean algebra of subsets of a set. This bi-Heyting structure has been de-
scribed in [Law86,RZ96], but we review it here, in the more general setting of
hypergraphs, as it provides motivation for later sections.

Given a hypergraph (U,H), a sub-graph is any X ⊆ U for which X⊕H ⊆ X.
The sub-graphs form a complete sub-lattice L of the lattice of all subsets of
U . The meet and join operations in L are the usual intersections and meets of
subsets. If X is a sub-hypergraph, then its complement U−X is not necessarily a
sub-hypergraph. There are, however, two weaker operations on sub-hypergraphs:
the pseudocomplement, ¬X, and the dual pseudocomplement,

¬
X. These satisfy

both X ∪
¬

X = U and X ∩ ¬X = ∅ but not necessarily X ∪ ¬X = U or
X ∩

¬
X = ∅.

These can be expressed using dilation and erosion with respect to H:

¬X = H ⊖ (−X),
¬

X = (−X) ⊕ H.

These two weaker forms of the usual Boolean complement provide an expressive
language allowing us to define notions such as boundary, expansion and con-
traction for subgraphs. These are illustrated in the following diagrams where we
have taken a subgraph X of a graph for simplicity, but the constructions have
similar interpretations for subgraphs of a hypergraph.



The boundary of X consists of those nodes incident with some edge which is
not in X. The boundary is

¬
X ∩ X.

The expansion of X contains all of X together with any edges incident
with a node in X and any nodes incident with these edges. Intuitively, this is
X expanded by anywhere accessible along an edge from X. The expansion is
¬
¬X. In the other direction the contraction contains only the nodes which are

not incident with anything in the boundary, and it also contains any edges in X
which are exclusively incident with these nodes.

The other two combinations of the operations, in which one of the weaker con-
verses is repeated twice, provide the node opening,

¬¬
X, and the edge clos-

ing, ¬¬X. The node opening removes from X any nodes which are incident
only with edges which are not in X. The edge closing adds to X any edges all
of whose incident nodes are in X.



When a subgraph X forms the extent of a formal concept the availability of
the four, potentially distinct (as in the above example), subgraphs: ¬

¬
X, ¬¬X,

¬
¬X,

¬¬
X can be expected to produce a much richer theory than the classical

when X is a set. In this classical case of course all four of these reduce to −−X
which is just X itself.

3 Contexts and Concepts for Pre-Orders

3.1 Relations between preorders

A formal context is a relation between two sets. To generalize this to relations
between graphs or hypergraphs we have to consider what should be meant by a
relation between such structures. We find it is convenient to work in the more
general setting of pre-orders, but it is especially useful to work with examples
where the pre-order defines the incidence structure in a graph or a hypergraph.

There are several different possibilities for how to define a relation between
graphs. As relations are subsets of cartesian products we might try defining a
relation between graphs as a subgraph of a product of graphs, where ‘product
of graphs’ would need to be understood in a suitable category of graphs. While
it is straightforward to define products of directed graphs, the undirected case
is more subtle [BL86,BMSW08] requiring some adjustment to the usual notions
of undirected graph and of morphism between such structures. Instead of de-
veloping this approach, we use the notion studied in [Ste12] which generalizes
the characterization of relations R between sets U and V with R ⊆ U × V as
union-preserving functions from PU to PV . This means we use a notion of re-
lation between hypergraphs, (U, H) and (V,K), equivalent to union-preserving
functions from the lattice of subgraphs of (U,H) to the lattice of subgraphs of
(V,K).

We assume in this section that U and V are sets and that H ⊆ U × U and
K ⊆ V × V are both reflexive and transitive relations (often called preorders).
The appropriate generalization of subgraph to this situation is as follows.

Definition 5 If X ⊆ U is any subset, then X is a H-set if X ⊕ H ⊆ X.

The lattice of H-sets on (U, H) will be denoted L (U,H).

Proposition 3 The following are equivalent



1. X is an H-set.

2. −X is an H̆-set

Definition 6 Let R ⊆ U × V be a relation. Then R is an (H,K)-relation if

H ; R ⊆ R and R ; K ⊆ R.

This extends the notion of a relation on a hypergraph studied in [Ste12] which
is a special case of the situation when (U, H) = (V,K). The significance of these
relations lies in the following property.

Theorem 4 There is a bijection between the set of (H,K)-relations and the set

of join-preserving functions from L (U, H) to L (V,K). ⊓⊔

The result is proved by a straightforward generalization of the well-known case
of H and V just being the identity relations on U and V respectively (that is
when R is an ordinary relation between sets). The bijection preserves both the
compositional structure and the way relations act on H-sets in U . The appro-
priate setting for the correspondence would be in terms of quantaloids [Ros96]
but this is beyond the scope of this paper.

For the applications to formal concept analysis, we need to consider relations
which are (H̆, K)-relations, while also considering H-sets rather than H̆-sets
in U . It is straightforward to show that the converse of an (H̆, K)-relation is
not necessarily a (K, H̆)-relation, and the complement of an (H̆, K)-relation
is not necessarily a (H̆, K)-relation. However, the operations of converse and
complement do have the properties stated in Proposition 6. In order to establish
these properties we need to recall the properties of the residuals for relations.

Definition 7 Let Q ⊆ U × V and R ⊆ V ×W be relations, and let S ⊆ U ×W
also be a relation.

The Left Residual, \, is defined by Q \ S = Q̆ ; S.

The Right Residual, /, is defined by R / S = R ; S̆.

The following well-known property of these residuals is important.

Q ; R ⊆ S iff R ⊆ Q \ S iff Q ⊆ R / S (1)

Lemma 5 Let R ⊆ U × V and let H and K be pre-orders on U and V respec-

tively. Then

1. H ; R ⊆ R iff H̆ ; R ⊆ R,

2. R ; K̆ ⊆ R iff R ; K ⊆ R. ⊓⊔

Proof. We have H ; R ⊆ R iff R ⊆ H \ R by (1). But we also have H̆ ; R ⊆ R

iff R ⊆ H̆ ; R = H \ R. This gives the first part, and the second is similar using
the other residual.

Proposition 6 The following are equivalent for R ⊆ U × V .

1. R is an (H̆, K)-relation.



2. R is an (H, K̆)-relation.

3. R̆ is a (K̆,H)-relation.

4. R̂ is a (K, H̆)-relation.

Proof. The first two parts are equivalent by Lemma 5. The first and third parts
are equivalent by basic properties of the converse operation. Finally if R is an

(H̆, K)-relation then R is an (H, K̆)-relation, and R̆ is a (
˘̆
K, H̆)-relation so the

first part implies the fourth, and the fourth implies the first since the converse-
complement is an involution. ⊓⊔

Theorem 7 If X ⊆ U and Y ⊆ V are any subsets and R is an (H,K)-relation
then

1. X ⊕ R is a K-set, and

2. R ⊖ Y is an H-set.

Proof. For the first part, we have the calculation

(X ⊕ R) ⊕ K = X ⊕ (R ; K) ⊆ X ⊕ R.

For the second, suppose x ∈ R⊖Y and x H x′. If x′ R v where v ∈ −Y then we
have a contradiction as x R v. ⊓⊔

Using a special case of this (when X is an H-set), it can be shown that dilation
provides a union-preserving mapping from L (U, H) to L (V,K). This dilation
then forms a Galois connection with the erosion of K-sets. This confirms that
we have established an appropriate generalization of mathematical morphology
on sets, and that we can re-capture the usual case by taking H and K to be the
identity relations on U and V .

This generalization of mathematical morphology now allows us to use Theo-
rem 1 and Corollary 2 as the basis of a generalization of formal concept analysis
from sets of properties and objects to hypergraphs of properties and objects.
More generally still the approach works for pre-orders with their associated H-
sets as collections of objects and K-sets as collections of properties.

3.2 Defining Formal Concepts

Definition 8 A pre-order context is a pair ((U, H), (V,K)), where H and K
are pre-orders on the sets U and V respectively, together with an (H̆, K) relation

R ⊆ U × V .

It is sometimes convenient to denote a context as R : (U, H) → (V,K). Here the
arrow is to be understood as indicating not a function between sets, but as a
morphism in the category where the objects are pre-orders and the morphisms
are relations with the appropriate properties.



Because the bi-Heyting algebra of H-sets is more complex than the Boolean
algebra of all subsets of U , as noted at the end of Section 2.3 above, there is
more than one possible definition of a formal concept in the generalized setting.
These will need to be evaluated against potential applications, some of which
are indicated in the following section.

The following is a corollary to Theorem 7 established using Proposition 6.

Corollary 8 Suppose we have a formal context, with notation as in the above

definition. If X and Y are respectively subsets of U and V then

1. R̂ ⊖ X is a K-set in (V,K),
2. −(Y ⊕ R̂) is an H-set in (U, H). ⊓⊔

This means that we can make the following definition for what should be meant
by a formal concept when we have pre-orders and not merely sets.

Definition 9 A formal pre-order concept in the formal context R : (U, H) →
(V,K) is a pair (X, Y ) where X is an H-set, Y is a K-set, and the following

hold:
X = −(Y ⊕ R̂)

Y = R̂ ⊖ (−X).

However, this is not the only possibility because both X and Y have some spatial
structure. The condition on Y characterizes it as

‘all those properties which only objects outside X do not have’.

In Definition 9 the outside of X is expressed by −X, but as Section 2.3 showed
there are other notions of outside, namely ¬X and

¬
X. The next result shows

that the second of these does not lead to a different notion of intent.

Theorem 9 If X is an H-set then

R̂ ⊖ (
¬

X) = {v ∈ V : ∀u (u ∈ X implies u R v)} = R̂ ⊖ (−X).

Proof. In one direction we have R̂ ⊖ (−X) ⊆ R̂ ⊖ (
¬

X) since −X ⊆
¬

X.
For the reverse inclusion we give a proof using the special case of the pre-

order being a graph so it can be visualized using diagrams as in Section 2.3.
Suppose that v ∈ R̂⊖ (

¬
X), and that u ∈ X∩

¬
X. There must be some edge, w,

which lies in X and is incident with u. As w 6∈
¬

X it is impossible that v R̂ w
so w R v holds. Since R is an H̆-relation, this implies u R v. This argument can
be readily extended to the general case of any preorder. ⊓⊔

The following result shows that using the pseudocomplement ¬X as the
formalization of the outside of the extent X does yield a notion of intent as
consisting of those properties holding everywhere in

¬
¬X, the expansion of X.

Theorem 10 If X is an H-set then

R̂ ⊖ (¬X) = {v ∈ V : ∀u (u ∈
¬
¬X implies u R v)}.



Proof. As with Theorem 9 we use the special case of graphs which makes the
underlying ideas easily visualized. The case of an arbitrary pre-order is similar.
Suppose that v ∈ R̂ ⊖ (¬X) and that u ∈

¬
¬X, the expansion of X. If it is not

true that u R v then we have v R̂ u so that u ∈ ¬X, and hence u ∈ ¬X ∩
¬
¬X.

Some edge, say z, must be incident with u and be in
¬
¬X but not in X. From

H̆ ; R ⊆ R we deduce that z R v cannot hold. But we then have v R̂ z with
z 6∈ ¬X which is a contradiction, so u R v.

Conversely, assume that for every u ∈
¬
¬X we have u R v for a particular

v. If v 6∈ (¬X) ⊖ R̂ there is some w 6∈ ¬X for which v R̂ w. Since −¬X ⊆
¬
¬X

we get w ∈
¬
¬X so that w R v which contradicts v R̂ w. ⊓⊔

In the simplest approach to formal concept analysis, an object either has or does
not have a particular property. The use of many-valued attributes and scaling
is one way to model properties which may hold to some degree. In the case of
graphs, hypergraphs and more generally pre-orders, we can distinguish degrees
of possession even for single valued attributes.

Definition 10 Let x ∈ U and y ∈ V in the formal context R : (U, H) → (V,K).
Then we say object x strongly possesses property y if for all x′ where x H x′

or x′ H x we have x′ R y.

In the special case of a graph, a node will posses a property strongly just when
it together with any incident edges possess the property. It follows from the
requirement that R is an (H̆, K)-relation that edges which possess a property
must possess it strongly.

Theorem 10 allows us to define a new kind of formal concept.

Definition 11 Let R : (U, H) → (V,K) be a formal context. A strong concept

is a pair (X, Y ) where X is an H-set, Y is a K-set, and the following hold:
¬
¬X = −(Y ⊕ R̂)

Y = R̂ ⊖ (¬X).

Conceptually the intent, Y , of a strong concept consists of all those properties
which hold strongly throughout X. The extent X, of such a concept then consists
of those objects which not only have all the properties in Y , but have them
strongly. Another view of the intent is that it consists of the properties not
merely holding throughout X but holding anywhere ‘near’ X.

The ability to define both ordinary concepts and strong concepts for a context
R : (U,H) → (V,K) provides a further indication of the expressive power of the
algebraic operations from Section 2.3. Clearly this style of investigation can be
carried further by considering, for example, the role of the contraction of X in
place of the expansion.

4 Application Domains

We discuss how the structure of an (H̆, K)-relation R can correspond to useful
situations. For the first examples it is sufficient to assume that K is just the
identity relation on V .



1. Take the edges of a graph to be intervals of time. Every interval has two
nodes as its endpoints, but it is also permitted to have nodes (time instants)
that are not the endpoint of any interval. This structure gives us an H-set
in which we use u H u′ to model the idea that edge u is incident with node
u′.
Now consider the principle:

If a property holds throughout a time interval then it must hold
at the end points of the interval.

This principle is just the requirement that H̆ ; R ⊆ R.
2. Instead of intervals of time forming a graph, consider edges in a hypergraph

that correspond to geographic regions. A region here is an abstract entity
that may contain specific point locations, modelled by nodes in the hyper-
graph. It is permitted to have points that lie in no region. Some (but not
all) properties will adhere to this principle:

If a geographical region as a whole has a property then any points
in the region have the property.

To take a simple example, the property of being above a certain altitude, or
the property of lying within a certain administrative region. In such cases
the requirement H̆ ; R ⊆ R formalizes the principle correctly.

3. Granularity provides another example. Suppose we have data about objects
at two levels of detail or resolution. These might be obtained by some remote-
sensing technology. A high-level object can be represented as a node and a
low level one as an edge in a hypergraph. The incidence structure records
which low-resolution objects resolve into what sets of high-level ones. Con-
sider the following example in which passage from more detail to less can
involve closing up small gaps and ignoring narrow linkages.

In the diagram the higher resolution version appears at the top. The principle
here is

If low-resolution object α is known to have property v then a
higher resolution version of α still has v.

Again, the requirement H̆ ; R ⊆ R formalizes the principle correctly.



Considering the case of K not just being the identity on V , the most evident
is when the properties are hierarchical, so that v K v′ means that v is more
specific than v′. To model the principle:

if an object has a specific property then it also has any more general
version of the property

we need to impose the condition R ; K ⊆ R. Of course this in itself can already
be handled by existing techniques in formal concept analysis, but the ability to
combine it with the three examples just mentioned appears to be a strength of
this approach.

5 Conclusions and Further Work

We have combined the extension of mathematical morphology to graphs and
hypergraphs with formal concept analysis to establish a foundation for concepts
where instead of a set of objects having properties there is a graph or a hyper-
graph. Although mathematical morphology has been considered in connection
with hypergraphs and separately with formal concept analysis before, the study
of the interaction between these three models in a single setting is novel. The
whole framework depends on the notion of relation between hypergraphs which
is a special case of the notion of relation between pre-orders.

It should be possible to build on this foundation in terms of relations and
extend some of the work by Priss [Pri06,Pri09] to the relation algebra opera-
tions for relations on hypergraphs described by Stell [Ste12]. As the results in
Section 3 show, there are a number of potential definitions of formal concept in
our generalized setting, and analysing the properties of all of these will take a
significant effort.

Another direction is to extend the studies which have investigated connec-
tions between rough set theory and formal concept analysis. These studies in-
clude [DG03,Yao04,YM09]. The notion of an ‘object-oriented concept’ [Yao04,
secn 2.3] in a context R ⊆ U × V can readily be expressed in terms of the
morphological operations as a pair (X, Y ) where X = Y ⊕ R̆ and Y = R̆ ⊖ X.
However, if we have a context with pre-orders (U, H) and (V,K) and R is an
(H̆, K)-relation, we find that object-oriented concepts provide an H-set X to-
gether with a K̆-set Y . This contrasts with the situation for Definition 9 where Y
is a K-set, so a full account would appear to need to consider the dual subgraphs
as well as the subgraphs.
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