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Abstract

An Element Free Galerkin (EFG) based formulation for limit analysis of rigid-
perfectly plastic plane strain problems is presented. In the paper it is demonstrated
that volumetric locking and instability problems can be avoided by using a stabilized
conforming nodal integration scheme. Furthermore, the stabilized EFG method de-
scribed allows stable and accurate solutions to be obtained with minimal computa-
tional effort. The discrete kinematic formulation is cast in the form of a second-order
cone problem, allowing efficient interior-point solvers to be used to obtain solutions.
Finally, the performance of the stabilized EFG method is illustrated by considering
several numerical examples.

Key words: Limit analysis; meshless methods; volumetric locking; strain
smoothing; nodal integration; second order cone programming.

1 INTRODUCTION

The load required to cause collapse of a body or structure can be directly
estimated using limit analysis. Considering an upper-bound kinematic limit
analysis approach, the flow rule is required to be satisfied everywhere in the
problem domain. This requirement can easily be met using constant strain
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finite elements. However, it is well-known that such elements exhibit volumet-
ric locking phenomena when used in conjunction with von Mises or Tresca
yield criteria, due to the large number of incompressibility constraints im-
posed on the nodal velocities [1-3]. Various solutions have been proposed in
the literature to overcome this problem. These include the use of higher-order
displacement-based finite elements [3,4], mixed formulations [2,5-7] and kine-
matic formulations using discontinuous velocity fields [8-10]. Additionally a
fully discontinuous formulation which involves identification of the critical lay-
out of discontinuities at failure has been proposed [11].

Recently, Le et al. [12] proposed a numerical kinematic formulation using the
cell-based smoothed finite element method (SFEM) and second-order cone
programming (SOCP) to prevent the volumetric locking problem, and also to
furnish good (approximate) upper-bound solutions for plane strain problems
governed by the von Mises failure criterion. Alternately, meshfree methods can
be used. The Element-Free Galerkin (EFG) method, one of the first meshfree
approaches, has been applied successfully to a wide range of computational
problems, proving popular due to its naturally conforming property (with no
nodal connectivity required) and its rapid convergence characteristics [13]. The
EFG method has also been applied successfully to limit analysis problems [14—
16]. It has been shown that the EFG method is in general well suited for limit
analysis problems, allowing accurate solutions to be obtained with relatively
few degrees of freedom. Following this line of research, the main objective of
this paper is to investigate the performance of a stabilized EFG method when
applied to plane strain limit analysis problems, where volumetric locking can
occur as a result of the use of an unbounded yield criterion.

Volumetric (or ‘isochoric’) locking is caused by the use of approximations
which prevent certain velocity fields from being exactly described [17]. When
low-order finite elements are used, the kinematic constraint (or ‘divergence-
free’ or ‘incompressibility’ condition) leads to a reduction in the available
number of degrees of freedom, and therefore the true velocity field cannot be
exactly described. However, meshfree methods generally provide high-order
shape functions [13,18], and therefore volumetric locking in elasto-plastic anal-
ysis problems can be suppressed by increasing the so-called dilation param-
eter [17,19,20], though not entirely removed [21]. The locking problem can
also be relieved by using direct nodal integration or collocation methods, but
these methods often result in rank deficiency and thus can produce spurious
singular modes [22,23]. In order to eliminate the spatial instabilities associ-
ated with nodal integration, a stabilized conforming nodal integration (SCNI)
has been proposed in [24], which has then been applied successfully to various
problems [16,23,25,26]; see also [27] for a description of how kinematic and
equilibrium approaches can be used in combination to closely bracket the ex-
act solution for plate problems. In the present paper, which focuses on plane
strain problems, it will be shown that when the SCNI scheme is employed



in the EFG-based kinematic formulation, the solutions obtained are accurate
and stable, and volumetric locking can also be prevented.

This paper is organized as follows: In the next section, the kinematic limit
analysis formulation is briefly reviewed. The approximation used to describe
the displacement field and the SCNI smoothing technique are then presented,
and the discrete formulation is also given. In Section 4, the underlying opti-
mization problem is cast in the form of a second-order cone problem, allowing
efficient interior-point solvers to be used to obtain solutions. Numerical exam-
ples are provided in Section 5 to illustrate the ability of the proposed method
to prevent volumetric locking, and approximated upper bound solutions are
then compared with those in the literature.

2 KINEMATIC LIMIT ANALYSIS

Consider a rigid-perfectly plastic body of area Q € R? with boundary T,
which is subjected to body forces f and to surface tractions g on the free
portion I'; of I'. The constrained boundary I';, is fixed and 'y UT; = T,

T
I',NI'y = o. Let a = {u | be the velocity or flow fields that belong to

a space Y of kinematically admissible velocity fields, where 4 and v are the
velocity components in the z- and y-directions respectively.

The external work rate associated with a virtual plastic flow 1 is expressed in
linear form as

F(a) :/QfTﬁdQJr [ gadr (1)

If C ={ueY]|F(a)=1}, then the collapse load multiplier A can be deter-
mined by solving the following mathematical programming problem

AT =min [ D(€)dQ (2)



and where the differential operator V is given by
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The plastic dissipation D(€) is defined by

D(e) = gi€E=0.:€ 5

(&) Wo)<0 ‘ (5)

in which o represents the admissible stresses contained within the convex yield

surface and o, represents the stresses on the yield surface associated with any
strain rates € through the plasticity condition.

In the framework of a limit analysis problem, only plastic strains are considered
and are assumed to obey the normality rule

. .0
e=iol (6)

where the plastic multiplier ji is non-negative and the yield function (o) is
convex. In this study the von Mises failure criterion is used (which is equivalent
to the Tresca criterion in plane strain [5]). Thus

1

Y(o) = \/Z(Ufm —oyy)® + 03, — 0o (7)

where o0g is the yield stress.

Then the power of dissipation can be formulated as a function of strain rates
as [5]

D(e) = o\ €@ & (8)
where
1 -10
©=|-110 9)
0 01

Note that condition (6) acts as a kinematic constraint which confines admis-
sible strain rate vectors. Since the yield surface (o) is unbounded, the in-

compressibility condition x’é = 0, where xy = {1 1 0} , must be introduced

to ensure that the plastic dissipation D(€) is finite [2,6,28,29].



3 EFG DISCRETIZATION OF KINEMATIC FORMULATION

3.1 Moving least squares approximation

By using the moving least squares technique [13,30], which is one of the most
frequently used approximations in meshless methods, approximations of the
displacement (or displacement rate) fields can be expressed as

h n

W)= | = | (10)
in which
@) = pT (A ()B; () (1)
AG) = Y wrp0a)p” (x1) (12)
By(x) = wi(x)p(x;) (13

where n is the number of nodes; p(x) is a set of basis functions and w;(x) is
a weight function associated with node [. In this work, an isotropic quartic
spline function is used, which is given by

1 —6s2+8s3—3stifs; <1
wr(x) = e (14)
0 if sy >1

with s; = ”x};—’””, where Rj is the support radius of node [ and determined
by

Ri=8-h (15)

where [ is the dimensionless size of influence domain and h; is the nodal
spacing when nodes are distributed regularly, or the maximum distance to
neighbouring nodes when nodes are distributed irregularly; further details can
be found in [15]. In the next section, a technique will be presented that allows
the required order of differentiation to be reduced by one, with the consequence
that there is no need to calculate shape function derivatives for the stabilized
EFG formulation.

8.2 Strain smoothing stabilization

A strain smoothing method was firstly presented in [31] for regularization of
material instabilities. The strain smoothing method was then modified for



stabilization of nodal integration by [24]

el (x)) = /( | el x —x,)d0 (16)

where é?j is the smoothed value of strains e% at node J, and ¢ is a distribution
(or smoothing) function that has to satisfy the following properties [31,32]
>0 and pdQ =1 (17)
Q
For simplicity, the smoothing function ¢ is assumed to be a piecewise constant

function and is given by
1/AJ,XEQJ (18)

@(va_XJ) =
0, XgQJ

where A is the area of the representative domain of node J.
Substituting equation (18) into the equation (16), and applying the divergence

theorem furnishes

1 1
eh =— [ —(ul. +4")dQ
€z] (XJ) AJ /QJ 2(ul,] + u]»l) d
1 h h
=54 7?, (Uz nj + ujni> dQ (19)

where I'; is the boundary of the representative domain €2 ;.

Now introducing a moving least squares approximation of the displacement
fields, the smooth version of the strains can be expressed as

€ (x)
e"(xy) = | &,(xs) | =Bd (20)
oy (X)
where
dT:[u17u27"'7un71)17027"':vn] (21)
(il,:n (i)2,:n s é)n,:r/ 0 0 . 0
B - 0 0 ... 0 él,y (ig’y R i)n,y
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with

1

Dralx) =1 7% i(x)na(x)dT (23)

The boundary integral on the RHS of Eq. (23) can be determined numerically
using the technique presented in [24,33].

3.8  Kinematic limit analysis formulation

The internal dissipation power of the two-dimensional plane domain 2 can
now be determined using a nodal integration scheme and moving least square
approximation of the transverse displacement rates u"(x) as

DEFG _ / ooV e éhdn = > a9 AJ\/EhT(XJ)@ €' (xy) (24)
Q J=1

The smoothed strain rates éh(x ) are also used to enforce the incompressibility
condition, and hence the upper-bound limit analysis problem for plane strain
problems can be formulated as

AT =min ) o AJ\/EhT(XJ)G éh(xy)

J=1
F(a")y =1
st<u"=0 on I', (25)

xTeM(x;)=0J=1,2,...,n

Note that the collocation method presented in [34] is used here to enforce
essential boundary conditions. The nodal integration scheme is also used to
determine the external energy F'(11"). Furthermore, in order to obtain a strict
upper bound solution, the incompressibility constraint in (25) is required to
hold throughout the problem domain. In the present kinematic formulation, an
isotropic quartic spline weight function is used in conjunction with a moving
least-squares approximation, which results in a high-order of the approximated
displacement field. This makes a proof of the strict bound status of the so-
lutions difficult since the incompressibility condition can only be enforced at
a finite number of points. Fortunately, when a stabilized conforming nodal
integration is applied, the smoothed strain rates obtained are constant over
a Voronoi cell. Therefore, the incompressibility constraint only needs to be
enforced at any one point in each cell, and it is then guaranteed to be satisfied



everywhere in the problem domain. Although the strain rates obtained using
the strain smoothing technique relax the compatibility constraints somewhat,
affecting the strict boundedness of the solutions obtained, the collapse loads
computed using the proposed method can under normal circumstances be
expected to bound from above the corresponding exact values.

4 SOLUTION OF THE DISCRETE PROBLEM

The determinant of the matrix © in Equation (9) is equal to zero and its
Cholesky factor does not exist. Therefore, the technique used to formulate
the dissipation function as a sum of norms, as presented in [15], cannot be
applied here. However, it is still possible to transform (25) into a problem of
minimizing a sum of norms, as follows.

First, the objective function in the above optimization problem is rewritten
as

DEFG _ Ji oo (et x0) — 8, x0))” + (32, x.))° (26)

For convenience, a vector of additional variables p is introduced as

P1 €Zz (XJ) - gg}jy (XJ)

2 o ()

The plastic dissipation can then be expressed as
n
DFFE =% " aAs|pll (28)
J=1

Now the optimization problem (25) becomes a problem of minimizing a sum
of norms as

M =min > o094, ]|pl

J=1
F(u") =1
s.t flh =0 on Fu (29)

XTeMx,)=0J=1,2,...,n

In fact a problem of this sort can be cast as a second-order cone programming
(SOCP) problem by introducing auxiliary variables t1, to, ..., t,



AJr =min Z UoAjtj

Jj=1
Fa") =1
" =0 on I',
s.t (30)

xTeM(x;)=0J=1,2,...,n

||p||l§t2 1=1,2,...,n

where the fourth constraint in problem (30) represents quadratic cones, and
p is defined by Equation (27). Note that the number of terms in the objective
function is equal to the number of integration points. When Gauss integration
is used, a large number of integration points would be needed in order to obtain
accurate solutions. This results in an increased number of additional variables
t; and cones ||p||; < t;, and also in a large number of incompressibility con-
straints (the third constraint in Eq. 30), which may cause volumetric locking,
as manifested in numerical results. In contrast, the SCNI scheme used here
reduces the size of the resulting optimization problem, and locking problems
can be avoided.

5 NUMERICAL EXAMPLES

The performance of the proposed solution procedure will be tested by exam-
ining a number of benchmark plane strain problems for which analytical or
previous numerical solutions are available. Linear basis functions are used in
the moving least squares approximation, and the parameter [ in Equation
(15) is set to be equal to 1.5 (note that whilst use of a higher value of § may
sometimes lead to a better upper-bound solution, computational costs will
increase with the size of the domain of influence).

5.1  Prandtl problem

The first example comprises the classical plane strain problem originally inves-
tigated by Prandtl [35], as shown in Figure 1. For a load of 27y, the analytical
collapse multiplier is A = 2 + © = 5.142. The strong discontinuity at the
edge of the indentor presents a severe challenge to many numerical analysis
procedures.

Due to symmetry, only half the domain needs to be considered. A rectangular
region of dimensions B = 5 and H = 2 was used and the indentor (or ‘punch’)
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Fig. 1. Prandtl problem: geometry and loading

was represented by a uniform vertical load. Finally, appropriate boundary
conditions were imposed, all as indicated in Figure 2.
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Fig. 2. Prandtl problem: nodal layout, Voronoi cells and displacement boundary
conditions

Fig. 3. Prandtl problem: background mesh for Gauss integration scheme

First, consider volumetric locking behavior. Three integration schemes were
considered: (i) Gauss integration, (ii) direct nodal integration (DNI), and (iii)
stabilized conforming nodal integration (SCNI). For the Gauss integration
scheme, a background mesh is required, as shown on Figure 3. (Note that
the EFG field nodes are independent of the background mesh). In order to
measure volumetric locking a constraint ratio r will be defined as

p = el (31)

NiCcon
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where ng,y is the total number of degrees of freedom and n,cop, is the number of
incompressibility constraints imposed. Numerical results using various Gauss
rules and different numbers of nodes are reported in Table 1.

Table 1
Prandtl problem: numerical results using Gauss integration
N 2 4 6 8 10
Gauss rule
Ndof 55 x 2 189 x 2 403 x 2 697 x 2 1071 x 2
353 T 0.2730  0.9380 2.0000 under-integration
X
AT inf inf 5.2309 instability
- r 0.1027 0.3529  0.7526 1.3016 2.0000
X
At inf inf inf 5.3060 5.1895
o r 0.0534 0.1836  0.3915  0.6770 1.0403
X

AT inf inf inf inf 5.2088
Key: N = number of divisions under the indentor

inf: no feasible solution satisfying all constraints; i.e. ‘locking” occurred.

It can be observed from Table 1 that, when using Gauss integration, ‘locking’
problems occur when the constraint ratio r is smaller than 1. It is interesting
to note that increasing the size of the domain of influence does not help in this
case. However, it is evident that volumetric locking can be prevented if r > 1.
(i.e. if the number of nodes is sufficiently large in comparison with the number
of integration points.) Note that when r = 2 the number of nodes is equal to
the number of integration points, resulting in direct nodal integration (DNI).
Although DNI can prevent volumetric locking, spatial instabilities can occur.
This problem becomes more serious if Gauss integration with r» > 2 is used
(i.e. under-integration). In contrast, in the SCNI scheme nodal values are de-
termined by spatially averaging field values using the divergence theorem, and
hence the spatial instability problem can be eliminated. Furthermore, when
employing the same number of nodes it will be demonstrated that the collapse
multiplier obtained using SCNI is generally much lower, and more accurate,
than the solution obtained using DNI (e.g. 5.1595 compared with 5.2309 re-
spectively when using 403 x 2 nodes - shown on Tables 2 and 1 respectively).
In summary, there are two main advantages of using SCNI when treating
plane strain limit analysis problems: (i) volumetric locking is prevented, and
(ii) stable and accurate solutions can be obtained at little computational cost.
Due to these advantages, the SCNI scheme will be employed for all problems
considered hereafter.

Collapse multipliers and the corresponding errors for various nodal discretiza-
tions are given in Table 2. It can be observed that accurate solutions can be

11



obtained using the present method. In most cases the computed errors are
smaller than 1%, and when only 189 nodes are used an extremely satisfac-
tory solution can be obtained (0.69% error). Furthermore, it is evident that
all solutions obtained are above the exact value for this problem. Although
it has been pointed out that the procedure cannot be guaranteed to provide
strict upper bound solutions, our numerical results suggest that in practice
the procedure will generally produce upper bounds on the exact collapse load
multipliers.

Table 2
Prandtl problem: computed collapse multipliers using regular nodal layouts

N: number of divisions under the indentor

Models (total number of EFG nodes)

2 4 6 8 10 12 14 16
(55)  (189)  (403)  (697) (1071) (1525) (2059) (2673)

EFG 5.2877 5.1776  5.1595 5.1528 5.1502 5.1486 5.1478 5.1473
Error (%)  2.84 0.70 0.35 0.22 0.17 0.14 0.12 0.11
CPU (s)* 048 0.52 0.56 0.75 1.01 1.40 2.29 5.72

*Solution time taken by MOSEK solver on a 2.8GHz Pentium 4 PC

In Table 3 the solutions obtained using the present method are compared
with previously reported literature solutions. Considering previously obtained
upper bound solutions, the present method provides lower (i.e. more accurate)
upper bound solutions than those presented in [9,36,37]. The solution obtained
using the finest nodal discretization presented used here is also lower than the
best upper bound presented in [37] using a mesh of up to 18719 six-node
triangle elements, and generated using a mesh with reduced element size near
the indentor. In comparison with the smoothed finite element method (SFEM)
solution presented in [12], the best solution presented here is higher (i.e. less
accurate), although a far smaller number of nodes are employed here (2673
EFG nodes compared with 10465 SFEM nodes).

The pattern of plastic energy dissipation and collapse mechanism correspond-
ing to the present EFG solution are shown in Figure 4(a) and 4(b) respectively.

12



Table 3
Prandtl problem: comparison with literature solutions

Approach Authors Collapse multiplier Error (%)
Kinematic Vicente da Silva and Antao [36] 5.264 +2.38
Sloan & Kleeman [9] 5.210 +1.33
Makrodimopoulos & Martin [37] 5.148 +0.12
Le et al. [12] 5.143 +0.03
Present method 5.147 +0.11
Analytical solution Prandtl [35] 247 -
Mixed formulation Capsoni & Corradi [5] 5.240 +1.91
Static Makrodimopoulos & Martin [38] 5.141 -0.01

5.2 Notched tensile specimen

The double notched tensile specimen problem was originally considered by
Nagtegaal et al. [1] in order to illustrate the locking phenomena, and has since
become a popular benchmark, particularly in the field of rigid-plastic limit
analysis [39-41]. The problem consists of a rectangular specimen with two
external thin symmetric cuts under in-plane tensile stresses T, as shown in
Figure 5. Taking advantage of symmetry, only the upper-right quarter of the
specimen needs to be modelled (Figure 5).

The problem was solved using both regular and irregular nodal distributions,
as shown on Figure 6. The degree of irregularity of interior node placement is
controlled by
r=x+r- - Az
(32)
Yy =y+r- - Ay
where r € [—1, 1] is a computer-generated random number, the o, parameter
is used to adjust the degree of nodal irregularity and Ax, Ay are initial regular
nodal spacing in x and y directions respectively.

Collapse multipliers obtained using the present procedure with different nodal
distributions are reported in Table 4. It can be seen that the computed collapse
multiplier obtained when using a regular nodal distribution is lower than when
using irregular nodal distributions. This can be explained by the fact that a

13



(b)

Fig. 4. Prandt] problem: (a) plastic dissipation and (b) collapse mechanism

2W r -7 ———— T,

\ 2L |

Fig. 5. Notched tensile specimen: geometry (W = L = 1) and loading

better (lower) collapse load multiplier is obtained if the majority of nodes are
concentrated in zones where slip-lines form in the real mechanism [26], and
simply distributing the nodes randomly is unlikely to achieve this.

In order to demonstrate the efficacy of the proposed method the solutions ob-
tained using regular nodal distributions will be compared with those obtained
previously. A convergence analysis is presented in Table 5, and in Table 6
the best solution obtained using the present method is compared with liter-
ature solutions. It can be observed from Table 6 that the present solutions
are generally in reasonably good agreement with those obtained previously.
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Fig. 6. Notched tensile specimen: nodal distribution and associated Voronoi dia-
grams, (a) regular, oy, = 0; (b) oy = 0.2 and (¢) oy = 0.4
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Table 4
Notched tensile specimen: influence of nodal irregularity on collapse multiplier (24 x
24 nodes, a = 1/2)

Qir 0 0.1 0.2 0.3 0.4 0.5
AT 1.1801 1.1838 1.1850 1.1874 1.1820 1.1820
Diff. (%)* - +0.31  +0.42 +0.62 +0.16 +0.16

*compared with ;- = 0 case

Although the approximate upper bound solutions obtained here are slightly
higher, though all within 2 percent, of those e.g. in [2,6,12], the number of
primal variables (degrees of freedom) in the underlying optimisation prob-
lem is much smaller than in [2.,6,12] (i.e. 2 x 60 x 60 variables compared
with 4 x 240 x 240, 4 x 120 x 120 and 2 x 160 x 160 variables in [2,6,12],
respectively). The solutions obtained by Christiansen and Andersen [2] and
Andersen et al. [6] are widely considered as reference values, so convergence
rates towards these for different values of a are illustrated in Figure 7. It is
evident that the numerical solutions appear to broadly converge towards the
reference values as the mesh size h tends towards zero.

The pattern of plastic energy dissipation and the collapse mechanism corre-
sponding to the present EFG solution for the case when a = 1/3 are shown in
Figures 8(a) and 8(b) respectively, giving a clear indication as to the form of
the real slip line failure mechanism.

15



Table 5
Notched tensile specimen: influence of nodal density on collapse multiplier (a;, = 0)

a=1/3 a=1/2 a=2/3
N At Diff (%)* AT Diff. (%) At Diff. (%)
6 1.0662 154 1.3081 15.6 1.5907 15.0
12 0.9980 8.0 1.2223 8.0 1.4927 7.9
24 0.9627 4.2 1.1801 4.3 1.4411 4.2

48  0.9447 2.2 1.1581 2.3 1.4150 2.3
60 0.9412 1.9 1.1535 1.9 1.4097 1.9

*cf. results obtained by Richardson extrapolation in [2]

10.0 -
— -+-a=1/3
X
g ~a=1/2
8
S --a=2/3
pet
©
k]
ael
3
3 1.0 -
€
8
£
S
i
0.1 ; :
0.001 0.01 0.1

Mesh size (h)

Fig. 7. Notched tensile specimen: convergence behaviour, showing approximate slope
values (a;, = 0 case)

5.8 Thick clamped beam problem

The last example involves a thick clamped beam tested under plane strain
conditions, of the same geometry as examined previously [5]; see Figure 9.
Upper and lower bound solutions have been identified analytically by Capsoni

16



Table 6
Notched tensile specimen: comparison with literature solutions (N = 60)

Approach Authors a=1/3 a=1/2 a=2/3
Kinematic Ciria et al. [41] 1.1390
Le et al. [12] 0.9259 1.1374 1.3837
Present method 0.9412 1.1535 1.4097
Mixed formulation Christiansen and Andersen [2] 0.9276 1.1358 1.3884
Andersen et al. [6] 0.9271 1.1366 1.3894
Pastor et al. [7] - 1.1315/w — 1.1338% -
Static Ciria et al. [41] 1.1315
Krabbenhoft and Damkilde [42] - 1.1315 -

(b)

Fig. 8. Notched tensile specimen: (a) plastic dissipation and (b) collapse mechanism

(a=1/3)

& Corradi [5] as

T ifB<38s
At =20, A = (33)
16
if B> 3.82
(B_1)(B+3) = 3.828

17



Symmetry means that only half the beam needs to be modelled and a dis-
cretization involving 9 nodes through the thickness of the beam was employed,
comparable to the finest finite element resolution used in [5].

Collapse multipliers obtained for different values of B are shown in Figure 10.
In all cases the solutions obtained using the present method were very slightly
lower (better) than those obtained previously using finite elements [5]. This
appears to indicate that the EFG method can provide higher accuracy for the
same number of nodes used.

Fig. 9. Thick clamped beam: geometry and loading

Y
221 —v—FE [5]
AT [5) ——EFG
2

0.8

0.6

04 . . . . . . .
1 1.5 2 25 3 3.5 4 4.5 5
B

Fig. 10. Thick clamped beam: comparison of collapse multipliers

6 Conclusions

An EFG-based formulation for plane strain limit analysis problems has been
described. The EFG method is used in combination with the stabilized con-
forming nodal integration (SCNI) scheme to ensure that volumetric locking
is avoided, and that stable and accurate solutions are obtained with minimal
computational effort. The discrete kinematic formulation is cast in a form

18



which involves second-order constraints so that the underlying optimization
problem can be solved using highly efficient second-order cone programming
algorithms. Although the procedure cannot be guaranteed to produce strict
upper bound solutions (due to the use of somewhat relaxed compatibility con-
ditions employed), for all the plane strain problems investigated solutions were
in practice always higher than known exact solutions. To improve the accu-
racy of solutions and to speed-up the computational process, a posteriori error
estimation and development of a h-adaptive EFG scheme will be the subject
of future research.
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