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Decomposition of even-hole-free graphs

with star cutsets and 2-joins

Murilo V. G. da Silva ∗ and Kristina Vušković †

November 15, 2008; revised May 25, 2012

Abstract

In this paper we consider the class of simple graphs defined by excluding, as induced
subgraphs, even holes (i.e. chordless cycles of even length). These graphs are known as
even-hole-free graphs. We prove a decomposition theorem for even-hole-free graphs, that
uses star cutsets and 2-joins. This is a significant strengthening of the only other pre-
viously known decomposition of even-hole-free graphs, by Conforti, Cornuéjols, Kapoor
and Vušković, that uses 2-joins and star, double star and triple star cutsets. It is also
analogous to the decomposition of Berge (i.e. perfect) graphs with skew cutsets, 2-joins
and their complements, by Chudnovsky, Robertson, Seymour and Thomas. The similar-
ity between even-hole-free graphs and Berge graphs is higher than the similarity between
even-hole-free graphs and simply odd-hole-free graphs, since excluding a 4-hole, auto-
matically excludes all antiholes of length at least 6. In a graph that does not contain a
4-hole, a skew cutset reduces to a star cutset, and a 2-join in the complement implies a
star cutset, so in a way it was expected that even-hole-free graphs can be decomposed
with just the star cutsets and 2-joins. A consequence of this decomposition theorem
is a recognition algorithm for even-hole-free graphs that is significantly faster than the
previously known ones.

Key words: Even-hole-free graphs, star cutsets, 2-joins, recognition algorithm, decomposition.

1 Introduction

All graphs in this paper are finite, simple and undirected. We say that a graph G contains
a graph F , if F is isomorphic to an induced subgraph of G. A graph G is F -free if it does
not contain F . Let F be a (possibly infinite) family of graphs. A graph G is F-free if it is
F -free, for every F ∈ F .

A hole is a chordless cycle of length at least four. A hole is even (resp. odd) if it contains
an even (resp. odd) number of nodes. A hole of length n is also called an n-hole. In this paper
we study the class of even-hole-free graphs, i.e. graphs that are F-free where F denotes the
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family of all even holes. In this paper we prove a decomposition theorem for even-hole-free
graphs using star cutsets and 2-joins, and we show how it leads to a recognition algorithm
for even-hole-free graphs, that is significantly faster than the previously known ones [19, 10].

Many interesting classes of graphs can be characterized as being F-free, for some family
F . The most famous such example is the class of perfect graphs. A graph G is perfect if for
every induced subgraph H of G, χ(H) = ω(H), where χ(H) denotes the chromatic number
of H, i.e. the minimum number of colors needed to color the vertices of H so that no two
adjacent vertices receive the same color, and ω(H) denotes the size of a largest clique, where
a clique is a graph in which every pair of vertices are adjacent. The famous Strong Perfect
Graph Theorem (conjectured by Berge [4], and proved by Chudnovsky, Robertson, Seymour
and Thomas [11]) states that a graph is perfect if and only if it does not contain an odd hole
nor an odd antihole (where an antihole is a complement of a hole). The graphs that do not
contain an odd hole nor an odd antihole are known as Berge graphs.

The structure of even-hole-free graphs was first studied by Conforti, Cornuéjols, Kapoor
and Vušković in [18] and [19]. They were focused on showing that even-hole-free graphs can
be recognized in polynomial time (a problem that at that time was not even known to be
in NP), and their primary motivation was to develop techniques which can then be used in
the study of perfect graphs. In [18] they obtained a decomposition theorem for even-hole-
free graphs that uses 2-joins and star, double star and triple star cutsets (all these cutsets
are defined in Section 1.3), and in [19] they used it to obtain a polynomial time recognition
algorithm for even-hole-free graphs. This is the same paradigm that was used to obtain
recognition algorithms for balanced matrices [16, 20]. All these algorithms use “cleaning”, a
technique first developed by Conforti and Rao [23] to recognize linear balanced matrices. This
technique was invented to make use of strong cutsets, such as star cutsets, in a decomposition
based recognition algorithm. If one is able to clean the graph for the even-hole-free graph
recognition problem, one can then make use of not only star cutsets, but also double star and
triple star cutsets, and for that reason all these cutsets were used in the decomposition of
even-hole-free graphs in [18]. That decomposition gave the first known recognition algorithm
for even-hole-free graphs, but it was always clear that a stronger decomposition theorem
was possible. At that time that problem was put aside, since the focus now was on perfect
graphs, trying to prove the Strong Perfect Graph Conjecture and obtain a polynomial time
recognition algorithm for Berge graphs.

The Strong Perfect Graph Conjecture was proved by Chudnovsky, Robertson, Seymour
and Thomas in [11], by decomposing Berge graphs using skew cutsets, 2-joins and their
complements. Soon after, the recognition of Berge graphs was shown to be polynomial by
Chudnovsky, Cornuéjols, Liu, Seymour and Vušković in [8].

Note that by excluding a 4-hole, one also excludes all antiholes of length at least 6. So if we
switch parity, the analogous class to even-hole-free graphs are the Berge graphs, rather than
just the odd-hole-free graphs. In a graph that does not contain a 4-hole, a skew cutset reduces
to a star cutset, and a 2-join in the complement implies the star cutset. The decomposition
of Berge graphs with skew cutsets, 2-joins and their complements [11] provided a motivation
to believe that it is also possible to decompose even-hole-free graphs with just the star cutsets
and 2-joins.

As expected, the key to obtaining a polynomial time recognition algorithm for Berge
graphs [8] was the cleaning. What was surprising, as Chudnovsky and Seymour observed, was
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that once the cleaning is performed, one does not need the decomposition based recognition
algorithm, one can simply look for the “bad structure” (in this case an odd hole) directly. So
in [8] two recognition algorithms for Berge graphs are given: an O(n9) Chudnovsky/Seymour
style (that uses the direct method) algorithm, and an O(n18) decomposition based recognition
algorithm. (The high complexity of all of these algorithms is primarily due to cleaning). Then
Zambelli [37] showed that by using the cleaning with the direct method, the complexity of
the recognition algorithm for balanced 0,±1 matrices dramatically drops, in comparison with
their original recognition in [16] that is based on the decomposition method.

Another twist in the story is the case of the recognition algorithm for even-hole-free
graphs. The original algorithm from [19] is of complexity of about O(n40). In [10] Chud-
novsky, Kawarabayashi and Seymour obtain an O(n31) recognition algorithm for even-hole-
free graphs, using cleaning with the direct method. In the same paper they sketch another
more complicated algorithm that, they claim, runs in time O(n15). This algorithm first needs
to test for thetas and prisms in that time (thetas and prisms are defined in Section 1.2). It
turns out that testing for thetas can be done in time O(n11) [12]. Detecting a prism is NP-
complete in general [30]. In [10] it is claimed that under the assumption that the graph does
not contain a theta one can use cleaning to test for prisms in time O(n15). This turns out to
be false. Detecting a theta or a prism using the outlined method ends up being of complexity
O(n35) [9]. In this paper we show that our decomposition of even-hole-free graphs yields an
O(n19) time recognition algorithm. So this is the first example in which a decomposition
based method performs faster. Subsequently, using the same paradigm given here, Chang
and Lu [5] managed to reduce the complexity to O(n11). Their algorithm uses the decompo-
sition theorem from this paper. They obtain an improved complexity by introducing a new
idea of a “tracker” that allows for fewer graphs that need to be recursively decomposed by
star cutsets, and they improve the complexity of the cleaning procedure by first looking for
certain structures, using the three-in-a-tree algorithm from [12], before applying the cleaning.
They also use a recent faster algorithm for detecting 2-joins from [6].

We note that it is still not known whether it is possible to recognize odd-hole-free graphs
in polynomial time. Finding a maximum clique, a maximum independent set and an optimal
coloring are all known to be polynomial for perfect graphs [26, 27]. The complexities of
finding a maximum independent set and an optimal coloring are not known for even-hole-free
graphs nor for odd-hole-free graphs. Finding a maximum clique for odd-hole-free graphs is
NP-complete (follows from 2-subdivision [32]). One can find a maximum clique of an even-
hole-free graph in polynomial time, since as observed by Farber [24] 4-hole-free graphs have
O(n2) maximal cliques and hence one can list them all in polynomial time. In [33] da Silva
and Vušković show that every even-hole-free graph contains a vertex whose neighborhood is
triangulated (i.e. does not contain a hole). This characterization leads to a faster algorithm
(that is also robust) for computing a maximum weighted clique of an even-hole-free graph.
Together with the work in [1], the algorithm ends up being of complexity O(nm).

More recently, Addario-Berry, Chudnovsky, Havet, Reed and Seymour [3], settle a con-
jecture of Reed, by proving that every even-hole-free graph contains a bisimplicial vertex (a
vertex whose set of neighbors induces a graph that is a union of two cliques). This imme-
diately implies that if G is an even-hole-free graph, then χ(G) ≤ 2ω(G) − 1 (observe that
if v is a bisimplicial vertex of G, then its degree is at most 2ω(G) − 2, and hence G can be
colored with at most 2ω(G) − 1 colors). It is interesting that this result is also obtained us-
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ing decomposition, although in [3] not all even-hole-free graphs are decomposed, but enough
structures are decomposed using “fake” double star cutsets (cutsets that when certain edges
are added end up being double star cutsets) to obtain the desired result.

Another motivation for the study of even-hole-free graphs is their connection to β-perfect
graphs introduced by Markossian, Gasparian and Reed [31]. For a graph G, let δ(G) be
the minimum degree of a vertex in G. Consider the following total order on V (G): order
the vertices by repeatedly removing a vertex of minimum degree in the subgraph of vertices
not yet chosen and placing it after all the remaining vertices but before all the vertices
already removed. Coloring greedily on this order gives the upper bound χ(G) ≤ β(G), where
β(G) =max{δ(G′) + 1 : G′ is an induced subgraph of G}. A graph is β-perfect if for each
induced subgraph H of G, χ(H) = β(H).

It is easy to see that β-perfect graphs belong to the class of even-hole-free graphs, and
that this containment is proper. A diamond is a cycle of length 4 that has exactly one
chord. A cap is a cycle of length greater than four that has exactly one chord, and this chord
forms a triangle with two edges of the cycle. In [31] it is shown that (even-hole, diamond,
cap)-free graphs are β-perfect, and in [25] de Figueiredo and Vušković show that (even-hole,
diamond, cap-on-6-vertices)-free graphs are β-perfect. Recently these results were extended
by Kloks, Müller and Vušković who show in [29] that (even-hole, diamond)-free graphs are
β-perfect (implying that this class of graphs can be colored in polynomial time, by coloring
greedily on a particular easily constructable ordering of vertices). This result is obtained by
proving that every (even-hole, diamond)-free graph contains a simplicial extreme (where a
vertex is simplicial if its neighborhood set induces a clique, and it is a simplicial extreme if
it is either simplicial or of degree 2). And the existence of simplicial extremes is obtained
as a consequence of a decomposition of (even-hole, diamond)-free graphs in [29] that uses
2-joins, clique cutsets and bisimplicial cutsets (a special type of a star cutset). We note that
the decomposition theorem for even-hole-free graphs in this paper uses the one in [29] by
reducing the problem to the diamond-free case.

The fact that (even-hole, diamond)-free graphs have simplicial extremes implies that for
such a graph G, χ(G) ≤ ω(G) + 1 (observe that if v is a simplicial extreme of G, then its
degree is at most ω(G), and hence G can be colored with at most ω(G) + 1 colors). So this
class of graphs, as well as the class of even-hole-free graphs by the result in [3], belong to the
family of χ-bounded graphs, introduced by Gyárfás [28] as a natural extension of the family
of perfect graphs: a family of graphs G is χ-bounded with χ-binding function f if, for every
induced subgraph G′ of G ∈ G, χ(G′) ≤ f(ω(G′)). Note that perfect graphs are a χ-bounded
family of graphs with the χ-binding function f(x) = x.

The essence of even-hole-free graphs is actually captured by their generalization to signed
graphs, called the odd-signable graphs, and in fact the decomposition theorem that we prove
in this paper is for the class of graphs that are 4-hole-free odd-signable. In Section 1.1 we
introduce the terminology and notation that will be used throughout the paper, and odd-
signable graphs are introduced in Section 1.2. The decomposition theorem is described in
Section 1.3, where we also give an overview of its proof. The recognition algorithm for even-
hole-free graphs that uses the main decomposition theorem is given in Section 2. All the
other sections of the paper are devoted to the proof of the main decomposition theorem.
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1.1 Terminology and notation

For S ⊆ V (G) and A ⊆ E(G), we denote by G \ (S ∪ A) the subgraph of G obtained by
removing the nodes of S (and all edges with at least one endnode in S) and the edges of A.
S ∪A is a cutset if G \ (S ∪A) contains more connected components than G. For an induced
subgraph H of G, we say that a cutset S of G separates H if there are nodes of H in different
components of G \ S.

For S ⊆ V (G), N(S) denotes the set of nodes in V (G) \S with at least one neighbor in S
andN [S] denotesN(S)∪S. For x ∈ V (G), we also use the following notation: N(x) = N({x})
and N [x] = N [{x}]. For V ′ ⊆ V (G), G[V ′] denotes the subgraph of G induced by V ′. For
x ∈ V (G), the graph G[N(x)] is called the neighborhood of x.

Let S ⊆ V (G) and x ∈ V (G). Node x is adjacent to S, if x is adjacent to some node
of S. Node x is strongly adjacent to S, if x is adjacent to at least two nodes of S. For an
induced subgraph H of G, a node v ∈ V (G) \ V (H) is a twin of a node x ∈ V (H) w.r.t. H,
if N(v) ∩ V (H) = N [x] ∩ V (H).

A path P is a sequence of distinct nodes x1, ..., xn, n ≥ 1, such that xixi+1 is an edge, for
all 1 ≤ i < n. These are called the edges of a path P . Nodes x1 and xn are the endnodes
of the path. The nodes of V (P ) that are not endnodes are called the intermediate nodes of
P . Let xi and xl be two nodes of P , such that l ≥ i. The path xi, xi+1, ..., xl is called the
xixl-subpath of P . Let Q be the xixl-subpath of P . We write P = x1, ..., xi−1, Q, xl+1, ..., xn.
A cycle C is a sequence of nodes x1, ..., xn, x1, n ≥ 3, such that nodes x1, ..., xn form a path
and x1xn is an edge. The edges of the of the path x1, ..., xn together with the edge x1xn are
called the edges of C. The length of a path P (resp. cycle C) is the number of edges in P
(resp. C).

Given a path or a cycle Q in a graph G, any edge of G between nodes of Q that is not an
edge of Q is called a chord of Q. Q is chordless if no edge of G is a chord of Q. As mentioned
earlier a hole is a chordless cycle of length at least 4. It is called a k-hole if it has k edges. A
k-hole is even if k is even, and it is odd otherwise.

Let A,B be two disjoint node sets such that no node of A is adjacent to a node of B. A
path P = x1, . . . , xn connects A and B if either n = 1 and x1 has a neighbor in A and B, or
n > 1 and one of the two endnodes of P is adjacent to at least one node in A and the other
is adjacent to at least one node in B. The path P is a direct connection between A and B if
in G[V (P )∪A∪B] no path connecting A and B is shorter than P . The direct connection P
is said to be from A to B if x1 is adjacent to a node in A and xn is adjacent to a node in B.

In figures, solid lines represent edges and dotted lines represent paths of length at least
one.

A note on notation: For a graph G, let V (G) denote its node set. For simplicity of notation
we will sometimes write G instead of V (G), when it is clear from the context that we want
to refer to the node set of G. We will not distinguish between a node set and the graph
induced by that node set. Also a singleton set {x} will sometimes be denoted with just x.
For example, instead of “u ∈ V (G) \ {x}”, we will write “u ∈ G \ x”. These simplifications
of notation will take place in the proofs, whereas the statements of results will use proper
notation.
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1.2 Odd-signable graphs

We sign a graph by assigning 0, 1 weights to its edges. A graph is odd-signable if there exists
a signing that makes every triangle odd weight and every hole odd weight. To characterize
odd-signable graphs in terms of excluded induced subgraphs, we now introduce two types of
3-path configurations (3PC’s) and even wheels.

Let x, y be two distinct nodes of G. A 3PC(x, y) is a graph induced by three chordless xy-
paths, such that any two of them induce a hole. We say that a graph G contains a 3PC(·, ·)
if it contains a 3PC(x, y) for some x, y ∈ V (G). 3PC(·, ·)’s are also known as thetas, as in
[9].

Let x1, x2, x3, y1, y2, y3 be six distinct nodes of G such that {x1, x2, x3} and {y1, y2, y3}
induce triangles. A 3PC(x1x2x3, y1y2y3) is a graph induced by three chordless paths P1 =
x1, . . . , y1, P2 = x2, . . . , y2 and P3 = x3, . . . , y3, such that any two of them induce a hole.
We say that a graph G contains a 3PC(∆,∆) if it contains a 3PC(x1x2x3, y1y2y3) for some
x1, x2, x3, y1, y2, y3 ∈ V (G). 3PC(∆,∆)’s are also known as prisms, as in [9].

A wheel, denoted by (H,x), is a graph induced by a hole H and a node x 6∈ V (H) having
at least three neighbors in H, say x1, . . . , xn. Such a wheel is also called a n-wheel. Node x
is the center of the wheel. Edges xxi, for i ∈ {1, . . . , n}, are called spokes of the wheel. A
subpath of H connecting xi and xj is a sector if it contains no intermediate node xl, 1 ≤ l ≤ n.
A short sector is a sector of length 1, and a long sector is a sector of length greater than 1.
A wheel (H,x) is even if it has an even number of sectors. See Figure 1.

It is easy to see that even wheels, 3PC(·, ·)’s and 3PC(∆,∆)’s cannot be contained in
even-hole-free graphs. In fact they cannot be contained in odd-signable graphs. The following
characterization of odd-signable graphs states that the converse also holds, and it is an easy
consequence of a theorem of Truemper [36].

Figure 1: 3PC(·, ·), 3PC(∆,∆) and an even wheel.

Theorem 1.1 [17] A graph is odd-signable if and only if it does not contain an even wheel,
a 3PC(·, ·) nor a 3PC(∆,∆).

This characterization of odd-signable graphs will be used throughout the paper.

1.3 Decomposition theorem and outline of its proof

A node set S ⊆ V (G) is a k-star cutset of G if S is a cutset and is comprised of a clique C
of size k and nodes with at least one neighbor in C, i.e. C ⊆ S ⊆ N [C]. We refer to C as
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the center of S. A 1-star is also refered to as a star, a 2-star as a double star, and 3-star as
a triple star. If S = N [C], then S is called a full k-star.

A graph G has a 2-join V1|V2, with special sets (A1, A2, B1, B2), if the nodes of G can be
partitioned into sets V1 and V2 so that the following hold.

(i) For i = 1, 2, Ai ∪Bi ⊆ Vi, and Ai and Bi are nonempty and disjoint.

(ii) Every node of A1 is adjacent to every node of A2, every node of B1 is adjacent to every
node of B2, and these are the only adjacencies between V1 and V2.

(iii) For i = 1, 2, the graph induced by Vi, G[Vi], contains a path with one endnode in Ai

and the other in Bi. Furthermore, G[Vi] is not a chordless path.

We now introduce two classes of graphs that have no star cutset nor a 2-join.
Let x1, x2, x3, y be four distinct nodes of G such that x1, x2, x3 induce a triangle. A

3PC(x1x2x3, y) is a graph induced by three chordless paths Px1y = x1, . . . , y, Px2y = x2, . . . , y
and Px3y = x3, . . . , y, such that any two of them induce a hole. We say that a graph G contains
a 3PC(∆, ·) if it contains a 3PC(x1x2x3, y) for some x1, x2, x3, y ∈ V (G). Note that in a
Σ = 3PC(∆, ·) at most one of the paths may be of length one. If one of the paths of Σ is
of length 1, then Σ is also a wheel that is called a bug. If all of the paths of Σ are of length
greater than 1, then Σ is a long 3PC(∆, ·). 3PC(∆, ·)’s are also known as pyramids, as in
[8]. See Figure 2.

Figure 2: A long 3PC(∆, ·) and a bug.

We now define nontrivial basic graphs. Let L be the line graph of a tree. Note that every
edge of L belongs to exactly one maximal clique, and every node of L belongs to at most two
maximal cliques. The nodes of L that belong to exactly one maximal clique are called leaf
nodes. A clique of L is big if it is of size at least 3. In the graph obtained from L by removing
all edges in big cliques, the connected components are chordless paths (possibly of length 0).
Such a path P is an internal segment if it has its endnodes in distinct big cliques (when P is
of length 0, it is called an internal segment when the node of P belongs to two big cliques).
The other paths P are called leaf segments. Note that one of the endnodes of a leaf segment
is a leaf node.

A nontrivial basic graph R is defined as follows: R contains two adjacent nodes x and y,
called the special nodes. The graph L induced by R \ {x, y} is the line graph of a tree and
contains at least two big cliques. In R, each leaf node of L is adjacent to exactly one of the
two special nodes, and no other node of L is adjacent to special nodes. The last condition
for R is that no two leaf segments of L with leaf nodes adjacent to the same special node
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have their other endnode in the same big clique. The internal segments of R are the internal
segments of L, and the leaf segments of R are the leaf segments of L together with the node
in {x, y} to which the leaf segment is adjacent to.

Let G be a graph that contains a nontrivial basic graph R with special nodes x and y. R∗

is an extended nontrivial basic graph of G if R∗ consists of R and all nodes u ∈ V (G) \ V (R)
such that for some big clique K of R and for some z ∈ {x, y}, N(u) ∩ V (R) = V (K) ∪ {z}.
We also say that R∗ is an extension of R. See Figure 3.

x

y

Figure 3: An extended nontrivial basic graph.

In [18] even-hole-free graphs are decomposed into cliques, holes, long 3PC(∆, ·) and non-
trivial basic graphs using 2-joins and star, double star and triple star cutsets. We obtain the
following strengthening of that result.

A graph is basic if it is one of the following graphs:

(1) a clique,

(2) a hole,

(3) a long 3PC(∆, ·), or

(4) an extended nontrivial basic graph.

Theorem 1.2 (The Main Decomposition Theorem) A connected 4-hole-free odd-
signable graph is either basic, or it has a star cutset or a 2-join.

Here is a simple restatement of Theorem 1.2, that will be used in the recognition algorithm
in Section 2. A graph is a clique tree if each of its maximal 2-connected components is a clique.
A graph is an extended clique tree if it can be obtained from a clique tree by adding at most
two vertices.

Corollary 1.3 A connected even-hole-free graph is either an extended clique tree, or it has
a star cutset or a 2-join.

The key difference in the proof of the decomposition theorem in [18] and the one here,
is that in [18] bugs are decomposed with double star cutsets. Since we are using just star
cutsets, it is not possible to decompose all bugs, and hence we needed to enlarge the class of
basic (undecomposable) graphs to include the extended nontrivial basic graphs.

The proof of Theorem 1.2 follows from the following three results.
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Theorem 1.4 [29] A connected 4-hole-free odd-signable graph that does not contain a dia-
mond is either basic, or it has a star cutset or a 2-join.

We note that the star cutsets used in [29] to prove Theorem 1.4, are of very special type:
they either induce a clique or two cliques with exactly one node in common.

A connected diamond (see Figure 4) is a pair (Σ, Q), where Σ = 3PC(x1x2x3, y) and
Q = q1, ..., qk, k ≥ 2, is a chordless path disjoint from Σ such that the only nodes of Q that
have a neighbor in Σ are q1 and qk. Furthermore |N(q1) ∩ Σ| = |N(q1) ∩ {x1, x2, x3}| = 2,
say N(q1) ∩ Σ = {x1, x3}, and one of the following holds:

(i) N(qk) ∩ Σ = {v1, v2} where v1v2 is an edge of Px2y \ {x2}, or

(ii) N(qk) ∩ Σ = {y, y1, y3} where y1 (resp. y3) is the neighbor of y in Px1y (resp. Px3y),
and x1y and x3y are not edges.

Figure 4: Different types of connected diamonds.

Theorem 1.5 Let G be a connected 4-hole-free odd-signable graph. If G contains a diamond,
then G has a star cutset or G contains a connected diamond.

Theorem 1.6 Let G be a connected 4-hole-free odd-signable graph. If G contains a connected
diamond, then G has a star cutset or a 2-join.

Theorem 1.5 is proved in Section 8 and Theorem 1.6 in Appendix A.
The proof of Theorem 1.2 follows the general paradigm for proving a decomposition the-

orem for a class of graphs C: a sequence of structures S1, . . . , Sk is identified, that when
contained in a graph G from C will imply a particular decomposition of G. When a decom-
position theorem is obtained of the form: if G ∈ C contains Si, then G has some cutset (that
in particular separates the nodes of Si); in subsequent decompositions it can be assumed
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that the graph is Si-free. The order in which the structres are decomposed is crucial, and
finding this order is usually the most difficult and most exciting (for the authors at least)
part of proving a decomposition theorem. Once the order that will allow for the sequential
decompositions is identified, then it is down to unfortunately boring case checking to show
that the decompositions can actually be performed. The following are the steps taken in the
proof of Theorem 1.2.

1. In the process of decomposing we will be breaking holes in a graph. We begin with
analyzing how nodes of a hole, at a particular distance from each other on the hole,
can be connected through paths outside of the hole. In Section 3 we analyze how these
particular connections, that we call appendices, relate to each other.

2. In Section 4 certain types of wheels, called proper wheels, are decomposed with star
cutsets. So from this point on we may assume that our graphs do not contain proper
wheels.

3. The remaining structures that will lead to decompositions when present in the graph
will arise from 3PC(∆, ·)’s. In Section 5 we analyze how nodes of a Σ = 3PC(∆, ·) are
connected through paths outside Σ. Here we identify the next sequence of structures
that will be decomposed. They are all of the form: 3PC(∆, ·) together with a particular
connecting path.

4. In Section 6 we decompose with star cutsets bugs with certain connecting paths identi-
fied in Section 5. Note that bugs are wheels but also a particular type of a 3PC(∆, ·).

5. We may now assume that if a graph has a 3PC(∆, ·), then none of the connecting paths
identified in Section 5 exist. In Section 7, given a Σ = 3PC(∆, ·), we analyze how nodes
of G \Σ, that have a neighbour in Σ, ”attach” to Σ in graphs with no star cutsets. In
other words, we prove that some of these nodes lead to decompositions, and for those
that cannot be separated from Σ by star cutsets, there exist paths that connect them to
Σ, which we call attachments. A connected diamond is precisely a 3PC(∆, ·) together
with a node that has particular neighbors in it and its attachment to it.

6. In Section 8 we prove Theorem 1.5.

7. Finally in Appendix A, we decompose connected diamonds with 2-joins (proving The-
orem 1.6).

2 Recognition algorithm for even-hole-free graphs

In this section we give a new recognition algorithm for even-hole-free graphs. As already
discussed in Section 1, two different recognition algorithms are given in [19] and [10].

Let H be a hole, and v ∈ V (G) \ V (H). We say that v is major w.r.t. H if there exist
three of its neighbors in H that are parwise nonadjacent. This is the terminology from [10].

Let H be a smallest even hole of a graph G. We say that H is clean if no vertex of G is
major w.r.t. H.
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Let H be a smallest even hole of G. Let u ∈ G \ H. We say that u is of type gi, for
i = 1, 2, 3, if |N(u) ∩ V (H)| = i and N(u) ∩ V (H) induces a path on i nodes. We say that u
is of type b1 if V (H)∪ {u} induces a 3PC(·, ·); u is of type b2 if (H,u) is a 4-wheel that has
exactly two long sectors and these two long sectors do not have a node in common; and u is
of type b3 if (H,u) is a 4-wheel that has exactly two long sectors and these two long sectors
have a node in common. This is the terminology from [19].

Let H be a smallest even hole of G. Let u be a type g3 node w.r.t. H, with neighbors
u1, u2, u3 in H such that u1u2 and u2u3 are edges. Let H ′ be the hole induced by (V (H) \
{u2}) ∪ {u}. We say that H ′ is obtained from H by a type-g3-node-substitution. Let CG(H)
be the set of all holes obtained from H through a sequence of type-g3-node-substitutions.

A graph G is clean if it is either even-hole-free or it contains a smallest even hole H such
that all holes of CG(H) are clean.

A short 4-wheel is a 4-wheel (H,x) such that either exactly three of the four sectors are
of length 1, or exactly two of the four sectors are of length 1 and they do not have a common
endnode and one of the sectors is of length 3.

In both [19] and [10] a “cleaning procedure” is given, that takes an input graph G and
produces a clean graph G′ that is even-hole-free if and only if G is even-hole-free. In [19] a
smallest even hole is “cleaned” in the sense that all major nodes are eliminated but also the
type b1, b2 and b3 nodes. Here we give the cleaning from [10] that cleans just the major
nodes, and hence has better complexity.

Theorem 2.1 [10] There exists an algorithm with the following specifications:

Input : A graph G.

Output : A sequence of subsets X1, ...,Xr of V (G) with r ≤ |V (G)|9 such that for
every smallest even hole H of G, one of X1, ...,Xr is disjoint from V (H)
and includes all major vertices for H.

Running
Time

: O(|V (G)|10).

Lemma 2.2 Let H be a smallest even hole of G. If x ∈ V (G) \ V (H) has an odd number of
neighbors in H, then x is of type g1 or g3 w.r.t. H.

Proof: Assume that x has an odd number of neighbors in H, and that it is not of type g1 or
g3 w.r.t. H. Then (H,x) is a wheel. If S is any sector of (H,x), then V (S) ∪ {x} induces
either a triangle or a hole that is of length smaller than H. So every sector of (H,x) is of odd
length, and since (H,x) has an odd number of sectors, it follows that H is of odd length, a
contradiction. 2

Lemma 2.3 Assume that G does not contain a short 4-wheel nor a smallest even hole with
a type b3 node. Let H be a smallest even hole of G. If H is clean, then all holes in CG(H)
are clean.
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Proof: Assume that H is clean. Let u be a node that is of type g3 w.r.t. H, with neighbors
u1, u2, u3 in H such that u1u2 and u2u3 are edges. Let H ′ be the hole induced by (V (H) \
{u2}) ∪ {u}. To prove the result, it suffices to show that H ′ is clean.

Suppose that there exists a vertex v that is major w.r.t. H ′. Since v cannot be major
w.r.t. H, it follows that v is adjacent to u, it has at least two nonadjacent neighbors in H,
and it is not adjacent to u2.

Since v is major w.r.t. H ′, by Lemma 2.2 v has an even number of neighbors in H ′. So
v has an odd number of neighbors in H. Since v has at least two neighbors in H, by Lemma
2.2, v is of type g3 w.r.t. H. But then either (H ′, v) is a short 4-wheel or v is of type b3
w.r.t. H ′, a contradiction. 2

Lemma 2.4 [19] Let G be a graph that does not contain a 4-hole nor a short 4-wheel. Let
H be a smallest even hole of G, and suppose that node u is of type b3 w.r.t. H. Let N(u) ∩
V (H) = {u1, u2, u3, u4} such that u1u2 and u2u3 are edges. If v is major w.r.t. H, then
N(v) ∩ {u2, u4, u} 6= ∅.

Theorem 2.5 There exists an algorithm with the following specifications:

Input : A graph G that does not contain a 4-hole, nor a short 4-wheel.

Output : A family L of induced subgraphs of G such that if G contains an even hole,
then for some smallest even hole H of G and some G′ ∈ L, G′ contains H
and all holes in CG′(H) are clean. Furthermore, |L| is O(|V (G)|9).

Running
Time

: O(|V (G)|10).

Proof: Consider the following algorithm:

Step 1: Set L = {G}.

Step 2: For every (P1, P2, u), where P1 = x1, x2, x3 and P2 = y1, y2, y3 are disjoint chordless
paths in G and u ∈ N(x2) ∩N(y2), add to L the graph obtained from G by removing
the node set N({x2, y2, u}) \ (V (P1) ∪ V (P2)).

Step 3: Apply the algorithm from Theorem 2.1 to G, and let X1, ...,Xr be the output
sequence of subsets of V (G). For i = 1, ..., r add to L the graph obtained from G by
removing Xi.

Clearly this algorithm runs in time O(|V (G)|10), and |L| is O(|V (G)|9). Suppose that G
contains an even hole.

First suppose that G contains a smallest even hole H with a type b3 node u. Let N(u)∩
V (H) = {u1, u2, u3, u4} such that u1u2 and u2u3 are edges. Let u′3 (resp. u′1) be the neighbor
of u4 in the sector of wheel (H,u) whose endnodes are u4 and u3 (resp. u1). Let G′ be
the graph obtained from G by removing the node set N({u2, u4, u}) \ V (H). Clearly G′

contains H and is one of the graphs added to L in Step 2. Let H ′ be any hole of CG′(H). By
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construction of G′, H ′ contains u1, u2, u3, u
′
3, u4, u

′
1 and hence u is of type b3 w.r.t. H ′. So

by Lemma 2.4 and since no node of G′ is adjacent to any of the nodes of {u2, u4, u}, it follows
that no node of G′ is major w.r.t. H ′. Therefore CG′(H) is clean, proving the theorem.

Now we may assume that G does not contain a smallest even hole with a type b3 node.
Let H be any smallest even hole of G. By Theorem 2.1, for some graph G′ added to L in
Step 3, G′ contains H and H is clean in G′. By Lemma 2.3, all holes in CG′(H) are clean,
and the theorem holds. 2

2.1 Star decomposition

In this section we decompose clean graphs with star cutsets.
Let S = N [x] be a full star cutset of a graph G, and let C1, ..., Cn be the connected

components of G\S. The blocks of decomposition of G by S are the graphs G1, ..., Gn, where
Gi is the subgraph of G induced by V (Ci) ∪ S.

Lemma 2.6 Assume that G is a graph that does not contain a theta, a short 4-wheel nor a
4-hole. If H∗ is a smallest even hole of G and it is clean, then H∗ contains two nodes that
are at distance at least 3 in G.

Proof: Since G does not contain a 4-hole, H∗ is of length at least 6, and hence it contains
two nodes u and v that are at distance 3 in H∗. Suppose that u and v are not at distance
3 in G. Then there exists a node w ∈ G \ H∗ that is adjacent to both u and v. Since G
does not contain a theta, w has at least 3 neighbors in H∗. By Lemma 2.2, w has at least 4
neighbors in H∗. Since G does not contain a 4-hole nor a short 4-wheel, it follows that w is
major w.r.t. H∗, contradicting the assumption that H∗ is clean. 2

We note that for the result of the above lemma to hold it is not neccessary to exclude
thetas, there is a way to just deal with type b1 nodes as in [19], but since thetas can be
recognized in time O(|V (G)|11) [12], for simplicity of the argument we exclude them here.

We say that u is dominated by v if u is adjacent to v and N(u) ⊆ N [v].

Lemma 2.7 Let G be a clean graph such that for some smallest even hole H∗ of G, all holes
of CG(H

∗) are clean. Assume that G does not contain a short 4-wheel. If node u is dominated
by node v, then G \ {u} contains a hole of CG(H

∗).

Proof: Assume that H∗ contains u, and let u1 and u2 be the neighbors of u in H∗. Since u
is dominated by v, node v is adjacent to u1, u2 and u. Since H∗ is clean and G does not
contain a short 4-wheel, v is of type g3 w.r.t. H∗. But then (H∗ \ u)∪ v is in CG(H

∗) and in
G \ u. 2

A 4-wheel (H,x) is decomposition detectable w.r.t. a full star cutset S if S = N [x], x is
of type b2 w.r.t. H and the interior nodes of the two long sectors of (H,x) are contained in
different connected components of G \ S.

Lemma 2.8 Let G be a clean graph such that for some smallest even hole H∗ of G, all holes
of CG(H

∗) are clean. Assume that G does not contain a short 4-wheel nor a theta. When
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decomposing G with a full star cutset S, then either some hole in CG(H
∗) is entirely contained

in one of the blocks of decomposition, or there exists a decomposition detectable 4-wheel w.r.t.
S.

Proof: Let S = N [x] and suppose that nodes of H∗ are contained in different connected
components of G \ S. Then x /∈ H∗ and x has at least two nonadjacent neighbors in H∗.
Since G does not contain a theta, x has at least three neighbors in H∗.

First suppose that x has an odd number of neighbors in H∗. Then by Lemma 2.2, x is
of type g3 w.r.t. H∗. Let H be the hole obtained by substituting x into H∗. Then H is
contained in CG(H

∗) and in one of the blocks of decomposition by S.
So we may now assume that x has an even number of neighbors in H∗, and hence |N(x)∩

H∗| ≥ 4. Since G does not contain a short 4-wheel, and x cannot be major w.r.t. H∗, it
follows that x is of type b2 w.r.t. H∗. But then (H∗, x) is a decomposition detectable 4-wheel
w.r.t. S. 2

Theorem 2.9 There exists an algorithm with the following specifications:

Input : A connected graph G that does not contain a short 4-wheel, a theta, nor a
4-hole.

Output : Either G is identified as not being even-hole-free, or a list L of induced
subgraphs of G is given with the following properties.

(1) The graphs in L do not have a star cutset.

(2) If G contains a smallest even hole H∗ such that all holes of CG(H
∗)

are clean, then one of the graphs in L contains a hole in CG(H
∗).

(3) The number of graphs in L is O(|V (G)|2).

Running
Time

: O(|V (G)|10).

Proof: The algorithm is as follows. Initialize L = ∅ and L′ = {G}, and perform the following
iterative step. If L′ = ∅, then stop. Otherwise, remove a graph F from L′. If the distance
between every pair of vertices of F is strictly less than 3 in G, then discard F and iterate. If
F contains a dominated node u, then add F \ u to L′ and iterate. If F does not have a full
star cutset, then add F to L and iterate. Otherwise, let S be a full star cutset of F . If there
is a decomposition detectable 4-wheel w.r.t. S, then output that G is not even-hole-free and
stop. Otherwise construct the blocks of decomposition by S, add them to L′ and iterate.

Note that if a 4-wheel is found, then clearly G is not even-hole-free. (1) holds by the
construction of the algorithm (note that, as was first observed by Chvátal [15], a graph has a
star cutset if and only if it has a dominated node or a full star cutset). (2) holds by Lemma
2.6, 2.7 and 2.8.

We prove (3) by showing that the number of graphs in L is bounded by the number of
pairs of vertices at distance at least 3 in G. Let S be a full star cutset of a graph F , and
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let F1, ..., Fm be the blocks of decomposition. Let u and v be two vertices of F that are at
distance at least 3 in G (and hence in F ). The pair of vertices {u, v} cannot be contained in
two different blocks of decompostion, since otherwise they would both have to be in S, but
since S is a star, all vertices of S are at distance at most 2. Therefore, no pair of vertices
that are at distance at least 3 in G can be contained in different graphs in L.

Finding a dominated node, or finding a full star cutset and constructing blocks of decom-
position can be done in time O(|V (G)|3). For a given full star cutset S = N [x], checking
whether there exists a decomposition detectable 4-wheel can be done in time O(|V (G)|8) as
follows: let C1, . . . , Ck be the connected components of G\S; for every 4-tuple (x1, x2, x3, x4),
where {x1, x2, x3, x4} ⊆ N(x) and G[{x1, x2, x3, x4}] consists of exactly two edges, x1x2 and
x3x4; and for every 2-tuple (Ci, Cj), where i, j ∈ {1, . . . , k} and i 6= j; check whether x1 and x4
both have a neighbor in the same connected component of Ci \(N(x2)∪N(x3)), and whether
x2 and x3 both have a neighbor in the same connected component of Cj \ (N(x1) ∪N(x4)).
All this is performed at most O(|V (G)|2) times, giving O(|V (G)|10) time complexity. 2

2.2 2-join decomposition

In this section we decompose a clean graph that has no star cutset using 2-join decompositions,
without creating any new star cutsets.

Let V1|V2 be a 2-join with special sets (A1, A2, B1, B2). For i = 1, 2, let Pi be the family of
chordless paths P = x1, ..., xn where x1 ∈ Ai, xn ∈ Bi and xj ∈ Vi\(Ai∪Bi) for 2 ≤ j ≤ n−1.

The blocks of a 2-join decomposition are graphs G1 and G2 defined as follows. Block G1

consists of the subgraph of G induced by node set V1 plus a marker path P2 = a2, ..., b2 that
is chordless and satisfies the following properties. Node a2 is adjacent to all nodes in A1,
node b2 is adjacent to all nodes in B1 and these are the only adjacencies between P2 and the
nodes of V1. Furthermore, let Q ∈ P2. The marker path P2 has length 3 if Q is of odd length,
and length 4 otherwise. Block G2 is defined similarly.

Theorem 2.10 [19] Let G be a graph that does not contain a 4-hole. Let G1 and G2 be
the blocks of a 2-join decomposition of G. G is even-hole-free if and only if G1 and G2 are
even-hole-free. Furthermore, if G does not have a star cutset, then neither do G1 and G2.

Theorem 2.11 There exists an algorithm with the following specifications:

Input : A connected graph G that does not have a 4-hole nor a star cutset.

Output : Either an even hole of G, or a list L of graphs with the following properties:

(1) The graphs in L do not contain a 4-hole, a star cutset nor a 2-join.

(2) G is even-hole-free if and only if all graphs in L are even-hole-free.

(3) The number of graphs in L is O(|V (G)|).

Running
Time

: O(|V (G)|8).
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Proof: The algorithm is as follows. Initialize L = ∅ and L′ = {G}, and perform the following
iterative step. If L′ = ∅, then stop. Otherwise, remove a graph F from L′. If F does not
have a 2-join, then add F to L and iterate. Otherwise, let V1|V2 be a 2-join of F . Construct
the blocks of the 2-join decomposition of F , say F1 and F2. For i = 1, 2, if |Vi| ≤ 7, then
check directly whether Fi contains an even hole. If it does, output this result and stop, and
otherwise discard Fi. If |Vi| > 7, add Fi to L′, and iterate.

By constructing blocks of decomposition we do not create any 4-holes, and by Theorem
2.10 we do not create any star cutsets. So by the construction of the algorithm, (1) holds.
(2) holds by Theorem 2.10.

In [8] and [19] it is shown how with this construction of the algorithm (3) holds.
Finding a 2-join takes time O(|V (G)|7) using the crude implementation in [19], and this

algorithm is applied at most O(|V (G)|) times, yielding an overall complexity of O(|V (G)|8).
2

2.3 Recognition Algorithm

Theorem 2.12 There exists an algorithm with the following specifications:

Input : A graph G.

Output : EVEN-HOLE-FREE when G is even-hole-free, and NOT EVEN-HOLE-
FREE otherwise.

Running
Time

: O(|V (G)|19).

Proof: Consider the following algorithm:

Step 1: Test whether G contains a short 4-wheel, a theta, or a 4-hole. If it does, then output
NOT EVEN-HOLE-FREE and stop.

Step 2: Apply algorithm from Theorem 2.5, and let L1 be the output family of graphs.

Step 3: Let L2 = ∅. For every graph in L1, apply the algorithm from Theorem 2.9. If
the graph is identified as not being even-hole-free, then output the same and stop.
Otherwise merge the output family of graphs with L2.

Step 4: Let L3 = ∅. For every graph in L2, apply the algorithm from Theorem 2.11. If
the graph is identified as not being even-hole-free, then output the same and stop.
Otherwise merge the output family of graphs with L3.

Step 5: Check whether every graph in L3 is an extended clique tree. If some is not then
output NOT EVEN-HOLE-FREE. Otherwise, for each graph in L3 check whether it
contains an even hole. If some does, then output NOT EVEN-HOLE-FREE, and
otherwise output EVEN-HOLE-FREE.
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The correctness of the algorithm follows from Corollary 1.3. Testing whether a graph
contains a short 4-wheel or a 4-hole can be done by brute force in time O(|V (G)|9). Testing
whether a graph contains a theta can be done in time O(|V (G)|11) [12]. So Step 1 can be
implemented to run in time O(|V (G)|11).

By Theorem 2.5, Step 2 can be implemented to run in time O(|V (G)|10) and |L1| =
O(|V (G)|9). By Theorem 2.9 and since |L1| = O(|V (G)|9), Step 3 can be implemented to run
in time O(|V (G)|19) and |L2| = O(|V (G)|11). By Theorem 2.11 and since |L2| = O(|V (G)|11)
Step 4 can be implemented to run in time O(|V (G)|19) and |L3| = O(|V (G)|12).

It is easy to see that in a clique tree there is at most one chordless path between any pair
of vertices. So if G\x is a clique tree, then to determine whether G contains an even hole we
need only test for every pair of neighbors of x whether the chordless path between them in
G \ x contains no other neighbor of x and is of even length. Similarly one can test whether
an extended clique tree contains an even hole. So, since |L3| = O(|V (G)|12), Step 5 can be
implemented to run in time O(|V (G)|17). Therefore the overall running time is O(|V (G)|19).
2

3 Appendices to a hole

Let H be a hole of a graph G. A chordless path P = p1, . . . , pk in G \H is an appendix of H
(see Figure 5) if no node of P \ {p1, pk} has a neighbor in H, and one of the following holds:

(i) k = 1 and (H, p1) is a bug (N(p1) ∩ V (H) = {u1, u2, u}, such that u1u2 is an edge), or

(ii) k > 1, p1 has exactly two neighbors u1 and u2 in H, u1u2 is an edge, pk has a single
neighbor u in H, and u 6∈ {u1, u2}.

Nodes u1, u2, u are called the attachments of appendix P to H. We say that u1u2 is the
edge-attachment and u is the node-attachment.

Let H ′
P (resp. H ′′

P ) be the u1u-subpath (resp. u2u-subpath) of H that does not contain
u2 (resp. u1). H

′
P and H ′′

P are called the sectors of H w.r.t. P .
Let Q be another appendix of H, with edge attachment v1v2 and node-attachment v.

Appendices P and Q are said to be crossing if one sector of H w.r.t. P contains v1 and v2,
say H ′

P does, and v ∈ V (H ′′
P ) \ {u}.

Lemma 3.1 Assume that G is a 4-hole-free odd-signable graph. Let P = p1, ..., pk be an
appendix of a hole H, with edge-attachment u1u2 and node-attachment u, where p1 is adjacent
to u1 and u2. Let H ′

P (resp. H ′′
P ) be the sector of H w.r.t. P that contains u1 (resp. u2).

Let Q = q1, . . . , ql be a chordless path in G \H such that q1 has a neighbor in H ′
P , ql has a

neighbor in H ′′
P , no node of Q \ {q1, ql} is adjacent to a node of H and one of the following

holds:

(i) l = 1, q1 is not adjacent to u, and if u1 (resp. u2) is the unique neighbor of q1 in H ′
P

(resp. H ′′
P ), then q1 is not adjacent to u2 (resp. u1) nor p1.

(ii) l > 1, N(q1) ∩ V (H) ⊆ V (H ′
P ) \ {u}, N(ql) ∩ V (H) ⊆ V (H ′′

P ) \ {u}, q1 has a neighbor
in H ′

P \ {u1}, and ql has a neighbor in H ′′
P \ {u2}.
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Figure 5: An appendix P = p1, ..., pk of a hole H, with edge-attachment u1u2 and node-
attachment u.

Then Q is also an appendix of H and its node-attachment is adjacent to u. Furthermore, no
node of P is adjacent to or coincident with a node of Q.

Proof: Let u′1 (resp. u′2) be the neighbor of q1 in H ′
P that is closest to u (resp. u1). Let

u′′1 (resp. u′′2) be the neighbor of ql in H ′′
P that is closest to u (resp. u2). Note that either

u′1 6= u1 or u′′1 6= u2. Let S′
1 (resp. S′

2) be the u′1u-subpath (resp. u′2u1-subpath) of H
′
P , and

let S′′
1 (resp. S′′

2 ) be the u′′1u-subpath (resp. u′′2u2-subpath) of H
′′
P . Let H

′ (resp. H ′′) be the
hole induced by H ′

P ∪ P (resp. H ′′
P ∪ P ).

First suppose that l = 1. Note that q1 cannot be coincident with a node of P . Suppose
q1 has a neighbor in P . Note that q1 is not adjacent to u, and if q1 is adjacent to p1, then
u′1 6= u1 and u′′1 6= u2. But then P ∪ S′

1 ∪ S′′
1 ∪ q1 contains a 3PC(q1, u). So q1 has no

neighbor in P . Since H ∪ q1 cannot induce a 3PC(u′1, u
′′
1), q1 has at least three neighbors

in H. Since (H, q1) cannot be an even wheel, w.l.o.g. q1 has an odd number of neighbors
in H ′

P and an even number of neighbors in H ′′
P . Since H ′′ ∪ q1 cannot induce a 3PC(u′′1 , u

′′
2)

nor an even wheel with center q1, u
′′
1u

′′
2 is an edge, and thus q1 has exactly two neighbors in

H ′′
P . Since H ′′ ∪ S′

2 ∪ q1 cannot induce an even wheel with center u2 (when u′′2 = u2) nor a
3PC(p1u1u2, q1u

′′
1u

′′
2) (when u′′2 6= u2), u

′
2 is adjacent to u, and the lemma holds.

Now suppose that l > 1. So u′1 6= u1 and u′′1 6= u2. Not both q1 and ql can have a single
neighbor in H, since otherwise H ∪Q induces a 3PC(u′1, u

′′
1). W.l.o.g. u′′1 6= u′′2 .

Suppose that u′′1u
′′
2 is not an edge. A node of P must be adjacent to or coincident with a

node of Q, else H ′′∪Q∪S′
1 contains a 3PC(ql, u). Note that no node of {q1, ql} is coincident

with a node of {p1, pk}, and if a node of Q is coincident with a node of P , then a node of
Q is also adjacent to a node of P . Let qi be the node of Q with highest index that has a
neighbor in P . (Note that qi is not coincident with a node of P ). Let pj be the node of P
with highest index adjacent to qi. If j > 1 and i > 1, then H ∪{pj, . . . , pk, qi, . . . , ql} contains
a 3PC(ql, u). If i = 1, then S′

1 ∪ S′′
1 ∪Q ∪ {pj , . . . , pk} induces a 3PC(q1, u). So i > 1, and

hence j = 1. If i < l, then S′′
1 ∪ S′′

2 ∪ P ∪ {qi, . . . , ql} induces a 3PC(p1, ql). So i = l. Since
H ∪ ql cannot induce a 3PC(u′′1, u

′′
2), (H, ql) is a wheel. But then one of the wheels (H, ql) or

(H ′′, ql) must be even. Therefore u′′1u
′′
2 is an edge, and thus ql has exactly two neighbors in

H ′′
P .
Suppose that u′1 6= u′2. Then by symmetry, u′1u

′
2 is an edge, and hence H ∪Q induces a

3PC(q1u
′
1u

′
2, qlu

′′
1u

′′
2). Therefore u

′
1 = u′2, i.e. Q is an appendix of H. Note that by definition
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of Q, u′1 /∈ {u1, u}.
Suppose that a node of P is adjacent to or coincident with a node of Q. Let qi be the

node of Q with highest index adjacent to a node of P , and let pj be the node of P with lowest
index adjacent to qi. If i > 1 and j < k, then H ∪ {p1, . . . , pj , qi, . . . , ql} induces an even
wheel with center u2 (when u′′2 = u2) or a 3PC(p1u1u2, qlu

′′
1u

′′
2) (when u′′2 6= u2). If i = 1,

then P ∪Q ∪ S′
1 ∪ S′′

1 contains a 3PC(q1, u). So i > 1, and hence j = k.
If pk has a unique neighbor in Q, then Q ∪ S′

1 ∪ S′′
1 ∪ pk induces a 3PC(qi, u). So pk has

more than one neighbor in Q.
Suppose that k = 1. Then either S′

2 ∪ S′′
2 ∪ Q ∪ p1 or S′

1 ∪ S′′
1 ∪ Q ∪ p1 induces an even

wheel with center p1. So k > 1.
Let T ′ (resp. T ′′) be the hole induced by S′

1 ∪ S′′
1 ∪ Q (resp. S′

2 ∪ S′′
2 ∪ Q). If both

(T ′, pk) and (T ′′, pk) are wheels, then one of them is even. So pk has exactly two neighbors
in Q. Since T ′′ ∪ pk cannot induce a 3PC(·, ·), N(pk)∩Q = {qi, qi−1}. (Note that qi−1 is not
coincident with a node of P , since j = k). If no node of P \ pk has a neighbor in Q, then
T ′′ ∪ P induces a 3PC(p1u1u2, pkqiqi−1). So a node of P \ pk has a neighbor in Q. Let pt
be such a node with lowest index. Let qs be the node of Q with highest index adjacent to
pt. If t 6= k − 1 then H ′′

P ∪ {p1, . . . , pt, pk, qs, . . . , ql} induces an even wheel with center ql or
a 3PC(qlu

′′
1u

′′
2 , pkqiqi−1). So t = k − 1, i.e. pk and pk−1 are the only nodes of P that have a

neighbor in Q. If s 6= 1 then (H \S′′
2 )∪P ∪{qs, . . . , ql} induces an even wheel with center pk.

So s = 1. If i > 2, then S′
1 ∪ {q1, . . . , qi−1, pk−1, pk} induces a 3PC(q1, pk). So i = 2. Since

there is no 4-hole, u′1u /∈ E(G). But then H ∪ {q1, pk} induces a 3PC(u′1, u).
Therefore, no node of P is adjacent to or coincident with a node of Q. If u′1u is not an

edge, then (H \ S′′
2 ) ∪ P ∪Q induces a 3PC(u′1, u). Therefore u′1u is an edge. 2

Lemma 3.2 Assume that G is a 4-hole-free odd-signable graph. Let P = p1, . . . , pk be an
appendix of a hole H, with edge-attachment u1u2 and node-attachment u, with p1 adjacent
to u1, u2. Let Q = q1, . . . , ql be another appendix of H, with edge-attachment v1v2 and node-
attachment v, with q1 adjacent to v1, v2. If P and Q are crossing, then one of the following
holds:

(i) uv is an edge,

(ii) u ∈ {v1, v2} and q1 has a neighbor in P , or

(iii) v ∈ {u1, u2} and p1 has a neighbor in Q.

Proof: Let H ′
P (resp. H ′′

P ) be the sector of H w.r.t. P that contains u1 (resp. u2). W.l.o.g.
{v1, v2} ⊆ H ′

P and v1 is the neighbor of q1 in H ′
P that is closer to u1. Assume uv is not an

edge.
By Lemma 3.1 either v2 = u or u2 = v. W.l.o.g. assume that v2 = u. Let S1 (resp.

S2) be the uv-subpath (resp. u2v-subpath) of H
′′
P . A node of P must be coincident with or

adjacent to a node of Q, else H ′
P ∪ S2 ∪P ∪Q induces a 3PC(p1u1u2, q1v1u) (when u1 6= v1)

or an even wheel with center u1 (when u1 = v1). Note that no node of {q1, ql} is coincident
with a node of {p1, pk}. Let qi be the node of Q with lowest index adjacent to P . (So qi is
not coincident with a node of P ). Let pj be the node of P with lowest index adjacent to qi.
If i = 1, then (ii) holds. So assume that i > 1.
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If j < k and i < l, then H ∪ {p1, . . . , pj , q1, . . . , qi} induces a 3PC(p1u1u2, q1v1u) or an
even wheel with center u1. So either j = k or i = l.

Suppose that j = k. If N(pk) ∩ Q = qi, then S1 ∪ Q ∪ pk induces a 3PC(u, qi). So pk
has more than one neighbor in Q. Let T ′ (resp. T ′′) be the hole induced by S1 ∪ Q (resp.
(H \ (S1 \ v)) ∪ Q). Note that (T ′, pk) is a wheel. If (T ′′, pk) is also a wheel, then one of
these two wheels must be even. So (T ′′, pk) is not a wheel, and hence k > 1 and pk has
exactly two neighbors in Q. N(pk) ∩ Q = {qi, qi+1}, else T ′′ ∪ pk induces a 3PC(·, ·). But
then H ′

P ∪ S2 ∪Q ∪ pk induces a 3PC(q1v1u, pkqiqi+1).
So j < k, and hence i = l. In particular, ql is the only node of Q that has a neighbor in

P . If either j > 1 or v 6= u2, then S1 ∪Q ∪ {pj , . . . , pk} contains a 3PC(u, ql). So j = 1 and
v = u2, and hence (iii) holds. 2

4 Proper wheels

A bug is a wheel with three sectors, exactly one of which is short. A twin wheel is a wheel
with exactly two short sectors and one long sector. A proper wheel is a wheel that is neither
a bug nor a twin wheel. A wheel (H,x) is a universal wheel, if x is adjacent to all nodes of
H. See Figure 6.

x x x

Figure 6: A bug, a twin wheel and a universal wheel with center x.

Theorem 4.1 [33] Let G be a 4-hole-free odd-signable graph. If G contains a universal wheel,
then G has a star cutset.

Theorem 4.2 [3] Let G be a 4-hole-free odd-signable graph. If G contains a proper wheel
that is not a universal wheel, then G has a star cutset.

Theorem 4.2 was proved by us and in [3] independently and at the same time. Since [3]
is already published, we do not include our proof of Theorem 4.2 here. We also note that in
[3], the statement of Theorem 4.2 is for even-hole-free graphs, but since in their proof, to
obtain the decomposition they only use the exclusion of 4-holes, even-wheels, 3PC(., .)’s and
3PC(∆,∆)’s, they actually prove the above stated version.

These two theorems imply the following result.

Theorem 4.3 Let G be a 4-hole-free odd-signable graph. If G contains a proper wheel, then
G has a star cutset.
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5 Nodes adjacent to a 3PC(∆, ·) and crossings

Throughout this section Σ denotes a 3PC(x1x2x3, y). The three paths of Σ are denoted by
Px1y, Px2y and Px3y (where Pxiy is the path that contains xi). Note that at most one of the
paths of Σ is of length 1. For i = 1, 2, 3, we denote the neighbor of y in Pxiy by yi. Also let
X = {x1, x2, x3}.

Lemma 5.1 Let G be a 4-hole-free odd-signable graph that does not contain a proper wheel.
If u ∈ V (G) \ V (Σ) has a neighbor in Σ, then u is one of the following types (see Figure 7).

pi for i=1,2,3 : For some path P of Σ, N(u) ∩ V (Σ) ⊆ P and |N(u) ∩ V (Σ)| = i.
Furthermore, if i ≥ 2, then u has two adjacent neighbors in Σ.

crosspath : Node u has exactly three neighbors in Σ. For some i ∈ {1, 2, 3}, u is
adjacent to yi, and the other two neighbors of u in Σ are contained in
Pxjy, for some j ∈ {1, 2, 3}\{i}. Furthermore, V (Pxiy)∪V (Pxjy)∪{u}
induces a bug with center u.

t2 : N(u) ∩ V (Σ) ⊆ X and |N(u) ∩ V (Σ)| = 2.

t3 : N(u) ∩ V (Σ) = X.

d : For some i, j ∈ {1, 2, 3}, i 6= j, N(u) ∩ V (Σ) = {y, yi, yj}.

pseudo-twin of a
node of X

: We define a pseudo-twin of x1: N(u)∩V (Σ) = {x2, x3, v1, v2}, where
v1 and v2 are nodes of Px1y. Furthermore, if {x1, y} = {v1, v2} then
x2y and x3y are not edges. Also if x1 /∈ {v1, v2} then v1v2 is an edge,
and either y /∈ {v1, v2} or x2y and x3y are not edges. Pseudo-twins
of x2 and x3 are defined symmetrically.

pseudo-twin of y : N(u) ∩ V (Σ) = {y, v1, v2, v3}, where for i = 1, 2, 3 vi is a node of
Pxiy \{y}, at least two of yv1, yv2, yv3 are edges, and |N(u)∩X| ≤ 1.

s1 : Σ is a bug, where say xiy is an edge. Node u is adjacent to xi, and for
some j ∈ {1, 2, 3}\{i}, the nodes of N(u)∩(V (Σ)\{xi}) are contained
in Pxjy \ {y}. Furthermore, V (Pxiy) ∪ V (Pxjy) ∪ {u} induces a twin
wheel.

s2 : For distinct i, j, k ∈ {1, 2, 3}, Σ is a bug such that xiy is an edge, and
N(u) ∩ V (Σ) = {xi, xj , y, yk}.

Proof: For i, j ∈ {1, 2, 3}, i 6= j, let Hij be the hole induced by Pxiy ∪Pxjy. We now consider
the following three cases.
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Case 1: |N(u) ∩X| ≤ 1.
If for some i ∈ {1, 2, 3}, N(u) ∩ Σ ⊆ Pxiy, then u is of type p1, p2 or p3, else there is

a 3PC(·, ·) or a proper wheel. So assume w.l.o.g that u has neighbors in both Px1y \ y and
Px2y \ y, and that it is not adjacent to x3.

Suppose u is not adjacent to y. Note that Px3y is an appendix of H12. By Lemma 3.1
applied to H12, Px3y and u, node u is also an appendix of H12 and its node-attachment is
w.l.o.g. y1. Furthermore, no node of Px3y is adjacent to u, and hence u is a crosspath of Σ.

Now assume that u is adjacent to y. Then (H12, u) must be a bug or a twin wheel. Suppose
(H12, u) is a twin wheel. If u has no neighbor in Px3y \ y, then u is of type d. So assume u
has a neighbor in Px3y \ y. Then (H23, u) is either a bug or a twin wheel, and hence u is a
pseudo-twin of y w.r.t. Σ. Suppose now that (H12, u) is a bug. W.l.o.g N(u)∩Px1y = {y, y1}
and N(u) ∩ Px2y = {y, u1}, where yu1 is not an edge. If u has no neighbor in Px3y \ y, then
H23 ∪u induces a 3PC(y, u1). So u has a neighbor in Px3y \ y. If N(u)∩Px3y 6= {y, y3}, then
(H23, u) is a proper wheel. So N(u)∩Px3y = {y, y3}, and hence u is a pseudo-twin of y w.r.t.
Σ.

Case 2: |N(u) ∩X| = 2.
W.l.o.g. N(u) ∩ X = {x1, x2}. Assume u is not of type t2. Then u has a neighbor in

Σ\X. First suppose that u does not have a neighbor in H12\{x1, x2}. Then u has a neighbor
in Px3y \ {x3, y}. Since H13 ∪ u cannot induce a 3PC(·, ·), u has at least two neighbors in
Px3y \{x3, y}. Then (H13, u) is a wheel, and hence it must be a bug, and so u is a pseudo-twin
of x3 w.r.t. Σ.

Now we may assume that u has a neighbor in H12 \ {x1, x2}. Then (H12, u) is a twin
wheel or a bug. In particular, N(u)∩H12 = {x1, x2, u1}. W.l.o.g. assume that u1 ∈ Px1y \x1.
Suppose u1 6= y. Then u cannot have a neighbor in Px3y, since otherwise (Σ \ {x1, x3}) ∪ u
contains a 3PC(u, y). If x2y is not an edge, then (Σ \ x1) ∪ u contains a 3PC(x2, y). So x2y
is an edge. If x1u1 is not an edge, then H13 ∪ u induces a 3PC(x1, u1). So x1u1 is an edge,
and hence u is of type s1.

We may now assume that u1 = y. Note that at least one of x1y or x2y is not an
edge. W.l.o.g. x2y is not an edge. Node u must have a neighbor in Px3y \ y, else H23 ∪ u
induces a 3PC(x2, y). So (H23, u) is a wheel, and hence it must be a bug. In particular,
N(u) ∩ Px3y = {y, y3}, and so u is of type s2 or it is a pseudo-twin of x3 w.r.t. Σ.

Case 3: N(u) ∩X = X.
Assume u is not of type t3. Then u has a neighbor u1 in w.l.o.g. Px1y \ x1. So (H12, u)

is a twin wheel or a bug. Similarly, (H13, u) is a twin wheel or a bug. So N(u) ∩ V (Σ) =
{x1, x2, x3, u1}. If u1 6= y or x2y and x3y are not edges, then u is a pseudo-twin of x1 w.r.t.
Σ. So assume that u1 = y and w.l.o.g. x2y is an edge. Then u is a pseudo-twin of x2 w.r.t.
Σ. 2

Remark 5.2 If a node u is a pseudo-twin of a node of X, say x1, w.r.t. a Σ =
3PC(x1x2x3, y), then (Σ \ {x1}) ∪ {u} contains a Σ′ = 3PC(ux2x3, y). If a node u is a
pseudo-twin of y w.r.t. Σ, then (Σ \ {y}) ∪ {u} contains a Σ′ = 3PC(x1x2x3, u). If a node
u is of type p3 w.r.t. Σ, then Σ ∪ {u} contains a Σ′ = 3PC(x1x2x3, y) that contains u. We
say that in all these cases Σ′ is obtained by substituting u into Σ.
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Figure 7: Different types of nodes adjacent to a 3PC(x1x2x3, y).
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A node u adjacent to Σ is further classified as follows (see Figure 8).

Type p : Node u is of type p1, p2 or p3 w.r.t. Σ.

Type p3t : Node u is of type p3 w.r.t. Σ and N(u) ∩ V (Σ) induces a path of length 2.

Type p3b : Node u is of type p3 w.r.t. Σ and N(u) ∩ V (Σ) does not induce a path of
length 2.

Type dd : Node u is of type d w.r.t. Σ such that if Σ is a bug, then u is not adjacent
to its center.

Type dc : Node u is of type d w.r.t. Σ, where Σ is a bug and u is adjacent to its
center.

x

type dd

x

type dc

Figure 8: Different versions of a type d node w.r.t a 3PC(∆, ·).

A crossing of Σ is a chordless path P = p1, . . . , pk in G \ Σ such that either k = 1 and
p1 is a crosspath w.r.t. Σ; or k = 1, Σ is a bug and p1 is of type s1 w.r.t. Σ; or k > 1 and
for some i, j ∈ {1, 2, 3}, i 6= j, N(p1) ∩ V (Σ) ⊆ V (Pxiy), N(pk) ∩ V (Σ) ⊆ V (Pxjy), p1 has a
neighbor in V (Pxiy) \ {y}, pk has a neighbor in V (Pxjy) \ {y}, and no node of P \ {p1, pk}
has a neighbor in Σ.

We now define three special types of crossings.

A crossing P = p1, . . . , pk of Σ is called a hat if k > 1, p1 and pk are both of type p1 w.r.t.
Σ adjacent to different nodes of {x1, x2, x3} (see Figure 9).

Let P = p1, . . . , pk be a crossing of Σ such that one of the following holds:
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(i) k = 1 and p1 is a crosspath w.r.t. Σ, say p1 is adjacent to yi for some i ∈ {1, 2, 3}, and
it has two more neighbors in Pxjy \ {y}, for some j ∈ {1, 2, 3} \ {i}.

(ii) k = 1, Σ is a bug and p1 is of type s1 w.r.t. Σ, such that for some i ∈ {1, 2, 3} and for
some j ∈ {1, 2, 3} \ {i}, xiy is an edge and N(p1) ∩ {x1, x2, x3} = {xi, xj}.

(iii) k > 1, p1 is of type p1 and pk is of type p2 w.r.t. Σ, for some i ∈ {1, 2, 3}, p1 is adjacent
to yi, and for some j ∈ {1, 2, 3} \ {i}, N(pk) ∩ V (Σ) ⊆ V (Pxjy) \ {y}.

Such a path P is called a yi-crosspath of Σ. We also say that P is a crosspath from yi to
Pxjy. If say x3y is an edge, then Σ induces a bug (H,x), where x = x3 = y3. In this case,
the y3-crosspath (or x-crosspath) of Σ, is also called the center-crosspath of the bug (H,x)
(see Figure 10).

Suppose that Σ is a bug. A crossing P of Σ is an ear if k > 1, p1 is of type p1 w.r.t. Σ
adjacent to the center of bug Σ, and pk is of type p2 w.r.t. Σ adjacent to y (see Figure 9).

P

Q

Figure 9: A hat P and an ear Q of a 3PC(∆, ·).

x1

x3

x2 y

P
y1 x1 = y1

x2 x3

y
y2 y3

P

x1 = y1

x2 x3

y
y2 y3

P

Figure 10: A y1-crosspath P of a 3PC(x1x2x3, y). When x1 = y1, P is also a center-crosspath
of a bug.

We next prove the following sequence of decompositions. The order in which these de-
compositions are obtained is of crucial importance.

Theorem 5.3 Let G be a 4-hole-free odd-signable graph. If G contains a bug with a center-
crosspath then G has a star cutset. In particular, if G has no star cutset, then no node is of
type s1 w.r.t. a 3PC(∆, ·).
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Theorem 5.4 Let G be a 4-hole-free odd-signable graph. If G contains a 3PC(∆, ·) with a
hat, then G has a star cutset.

Theorem 5.5 Let G be a 4-hole-free odd-signable graph. If G contains a bug with an ear,
then G has a star cutset.

Theorem 5.6 Let G be a 4-hole-free odd-signable graph. If G contains a bug with a type s2
node, then G has a star cutset.

We prove Theorems 5.3, 5.5 and 5.6 in Section 6. We close this section by proving Theorem
5.4 (assuming Theorem 5.3 to be true). But first we prove a useful lemma about crosspaths.

Lemma 5.7 Let G be a 4-hole-free odd-signable graph that does not contain a proper wheel.
Then Σ = 3PC(x1x2x3, y) of G can have a crosspath from at most one of the nodes y1, y2, y3.

Proof: Suppose not and let P = u1, . . . , un be a y1-crosspath and Q = v1, . . . , vm a y2-
crosspath. Let u′, u′′ (resp. v′, v′′) be adjacent neighbors of un (resp. vm) in Σ. Note that by
definition of a crosspath, y does not coincide with any of the nodes u′, u′′, v′, v′′. It suffices
to consider the following three cases.

Case 1: u′, u′′ ∈ Px2y and v′, v′′ ∈ Px1y.
Note that in this case neither x1y nor x2y can be an edge and hence neither u1 nor v1

can be of type s1 w.r.t Σ. Let H be the hole induced by Px1y ∪ Px2y. Then P and Q are
crossing appendices of H and their node-attachments are not adjacent. So by Lemma 3.2,
w.l.o.g. y1 ∈ {v′, v′′} and vm has a neighbor in P .

W.l.o.g. u′ is the neighbor of un in Px2y that is closer to x2. Let R′ (resp. R′′) be the
subpath of Px2y with endnodes u′ (resp. u′′) and x2 (resp. y). Since there is no 4-hole, m > 1.
Node vm has a unique neighbor in P , else (Px1y \ y) ∪ P ∪ R′ ∪ vm induces a proper wheel
with center vm. The neighbor of vm in P is u1, else P ∪R′′ ∪ {y1, vm} induces a 3PC(y1, ·).
But then Px1y ∪ Px3y ∪R′′ ∪ P ∪ vm induces an even wheel with center y1.

Case 2: u′, u′′ ∈ Px3y and v′, v′′ ∈ Px3y.
Note that x3y is not an edge, and at most one of x1y, x2y is an edge. Suppose there exists

a path from y1 to y2 in P ∪ Q ∪ (Px3y \ {x3, y3, y}) ∪ {y1, y2}, and let R be a shortest such
path. Then Px1y ∪ Px2y ∪ R induces a 3PC(y1, y2). So no such path exists. In particular,
no node of P is adjacent or coincident with a node of Q, and x3y3 is an edge. In particular,
since there is no 4-hole, Σ cannot be a bug. But then (Σ∪P ∪Q) \ y induces a proper wheel
with center x3.

Case 3: u′, u′′ ∈ Px3y and v′, v′′ ∈ Px1y.
Note that x1y is not an edge and hence u1 is not of type s1 w.r.t. Σ. Let H be the hole

induced by Px1y ∪Px2y. Let P
′ be the shortest path between y1 and x3 in P ∪ (Px3y \ y)∪ y1.

Suppose that v1 is of type s1 w.r.t. Σ. Then x2y is an edge. If v1 has no neighbor in P , then
P ′∪(Px1y\y)∪{x2, v1} induces an even wheel with center x1. So v1 has a neighbor in P and let
ui be such a neighbor with lowest index. Note that since {x1, y1, x2, y} cannot induce a 4-hole,
v1 is not adjacent to y1. But then (H \ x1)∪ {v1, u1, ..., ui} induces a 3PC(y1, v1). Therefore
v1 is not of type s1 w.r.t. Σ, and hence P ′ and Q are crossing appendices of H. Since x3
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does not have a neighbor in Q, by Lemma 3.2 applied to H, Q and P ′, y1 ∈ {v′, v′′} and vm
has a neighbor in P . Let H ′ be the hole induced by P ′ ∪ Px1y \ y. Then (H ′, vm) is a wheel,
and hence it is a twin wheel or a bug. If (H ′, vm) is a bug, then P ∪ (Px3y \ x3) ∪ {y1, y, vm}
contains a 3PC(y1, ·). So (H ′, vm) is a twin wheel. In particular, u1 is the unique neighbor
of vm in P . Since {vm, y1, y, y2} cannot induce a 4-hole, m > 1. But then (Σ \ x3) ∪ P ∪ vm
contains an even wheel with center y1. 2

Proof of Theorem 5.4: Assume G contains a Σ = 3PC(x1x2x3, y) with a hat P = p1, ..., pk,
but G does not have a star cutset. By Theorems 4.3 and 5.3, G does not contain a proper
wheel nor a bug with center-crosspath. For i = 1, 2, 3, let x′i be the neighbor of xi in Pxiy.
W.l.o.g. p1 is adjacent to x1 and pk to x2. Since S = N [x1] \ {p1, x

′
1} is not a star cutset,

there exists a direct connection Q = q1, ..., ql from P to Σ \ S in G \ S. We may assume
w.l.o.g. that P and Q are chosen so that |P ∪Q| is minimized.

By Lemma 5.1 and definition of Q, and since G does not contain a bug with a center-
crosspath, ql is of type p, d, s2 or crosspath w.r.t. Σ or it is a pseudo-twin of x1 or y w.r.t.
Σ.

Let pi (resp. pj) be the node of P with lowest (resp. highest) index adjacent to q1. Note
that x1 has no neighbor in Q, ql has a neighbor in Σ \ {x1, x2, x3}, and the only nodes of
Σ that may have a neighbor in Q \ ql are x2 and x3. If x2 or x3 has a neighbor in Q \ ql,
then let qt be such a neighbor with lowest index. Let R be a chordless path from x1 to ql in
G[(Σ \ {x2, x3})∪ ql] (note that such a path exists since ql has a neighbor in Σ \ {x1, x2, x3}).

Case 1: i = k.
Let H be the hole induced by R∪P ∪Q. Since H ∪x2 cannot induce a 3PC(x1, pk) nor a

proper wheel, (H,x2) must be a bug. In particular, N(x2) ∩Q = q1 and R does not contain
x′2. Node x3 cannot have a neighbor in Q, since otherwise Q∪P ∪{x1, x2, x3} would contain
a 4-wheel with center x2. In particular, ql is not of type s2 w.r.t. Σ nor is it a pseudo-twin
of x1 w.r.t. Σ. If ql has a neighbor in Px3y \ y, then (Px3y \ y)∪P ∪Q∪ {x1, x2, x3} contains
a 4-wheel with center x2. So ql does not have a neighbor in Px3y \ y. In particular, ql is not
a pseudo-twin of y w.r.t. Σ. Suppose that ql is of type d or crosspath w.r.t. Σ. Then ql
has a neighbor in Px1y \ y and a neighbor in Px2y \ y. Hence x1y is not an edge, since by
definition of Q, x1 cannot be adjacent to ql. Let R′ be the chordless path from ql to x3 in
G[(Σ \ {x1, x

′
1, x2) ∪ ql]. Then P ∪Q ∪ R′ ∪ {x1, x2} induces a proper wheel with center x2.

So ql is not of type d or crosspath w.r.t. Σ, and hence ql is of type p w.r.t. Σ.
Suppose that x1y is an edge. Then the neighbors of ql in Σ are contained in Px2y. Since

R does not contain x′2, ql has a neighbor in Px2y \{x2, x
′
2}. Let P

′ be the chordless path from
x2 to y in G[(Px2y \ x

′
2)∪Q]. Then P ′ ∪Px3y ∪ x1 induces a bug with center x1, and P is its

center-crosspath, a contradiction. Therefore x1y is not an edge.
If N(ql) ∩ Σ = x′1, then Px1y ∪ Px2y ∪Q induces a 3PC(x′1, x2). So ql has a neighbor in

Σ \ {x1, x
′
1}. Let P ′ be the chordless path from ql to x3 in G[(Σ \ {x1, x2, x

′
1}) ∪ ql]. Then

P ∪ P ′ ∪ {x1, x2, x3} induces a 4-wheel with center x2.

Case 2: i < k.
First note that if l > 1, then either i = j or j = i+ 1, since otherwise the chordless path

from p1 to pk in (P \ pi+1) ∪ q1 and Q \ q1 contradict the minimality of |P ∪Q|. Let H be
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the hole induced by R ∪Q ∪ {p1, ..., pi}.
Suppose that x2 has a neighbor in Q. Since H ∪x2 cannot induce a 3PC(·, ·) nor a proper

wheel, (H,x2) is a bug. In particular, either l > 1 or {x2, x
′
2} ⊆ N(ql) ∩ Σ ⊆ {x2, x

′
2, x3}.

If j = i + 1, then pj , ..., pk is a center-crosspath of (H,x2). So j 6= i + 1. If i = j, then
P ∪Q ∪ {x1, x2} contains a 3PC(x2, pi). So j > i+ 1. But then l = 1, and hence {x2, x

′
2} ⊆

N(ql) ∩ Σ ⊆ {x2, x
′
2, x3}. By Lemma 5.1 and Theorem 5.3, N(ql) ∩ Σ = {x2, x

′
2}. If x1y is

not an edge, then Px2y ∪Px3y ∪ {x1, q1, p1, ..., pi} induces a 4-wheel with center x2. So x1y is
an edge. But then Σ is a bug and p1, ..., pi, q1 is its center-crosspath. Therefore x2 does not
have a neighbor in Q. In particular, ql is not of type s2 w.r.t. Σ, nor a pseudo-twin of x1
w.r.t. Σ.

Suppose that x3 has a neighbor in Q \ ql. Then paths p1, ..., pi, q1, ..., qt and qt+1, ..., ql
contradict the minimality of |P ∪Q|. So x3 does not have a neighbor in Q \ ql.

Suppose that j = i+1. If ql has a neighbor in Σ\{x1, x
′
1, x2, x

′
2}, then (Σ\{x′1, x

′
2})∪P∪Q

contains a 3PC(q1pipi+1, x1x2x3). So ql does not have a neighbor in Σ\{x1, x
′
1, x2, x

′
2}. Since

ql is not adjacent to x1 nor x2, N(ql) ∩ Σ ⊆ {x′1, x
′
2}. If N(ql) ∩ Σ = x′2, then Px1y ∪ Px2y ∪

Q∪{p1, ..., pi} induces a 3PC(x1, x
′
2). If N(ql)∩Σ = x′1, then Px1y ∪Px2y ∪Q∪{pi+1, ..., pk}

induces a 3PC(x2, x
′
1). So N(ql)∩Σ = {x′1, x

′
2}. By Lemma 5.1, ql must be of type p2 w.r.t.

Σ, and hence either x′2 = y or x′1 = y. But then {x1, x2, x
′
1, x

′
2} induces a 4-hole. So j 6= i+1.

Suppose that i = j. If ql has a neighbor in Σ \ {x1, x2, x3, x
′
1}, then (Σ \ {x′1, x3}) ∪

P ∪ Q contains a 3PC(pi, x2). So ql is adjacent to x′1 and it does not have a neighbor in
Σ\{x1, x2, x3, x

′
1}. Since {x1, x

′
1, x3, ql} cannot induce a 4-hole, N(ql)∩Σ = x′1. If i 6= 1, then

Px1y ∪ Px2y ∪Q ∪ {pi, ..., pk} induces a 3PC(x2, x
′
1). So i = 1. But then Px1y ∪ Px2y ∪ P ∪Q

induces a proper wheel with center x1. So i 6= j. Therefore j > i+ 1, and hence l = 1.
If q1 has a neighbor in Σ\{x2, x

′
2, x3}, then (Σ\{x′2, x3})∪{p1, ..., pi, pj , ..., pk, q1} contains

a 3PC(q1, x1). So q1 is adjacent to x′2 and it has no neighbor in Σ \ {x′2, x3}. But then
{x1, x2, x

′
2, p1, ..., pi, pj, ..., pk, q1} induces a 3PC(q1, x2). 2

6 Bugs

For a bug (H,x) we use the following notation in this section. Let x1, x2, y be the neighbors
of x in H, such that x1x2 is an edge. Let H1 (resp. H2) be the sector of (H,x) that contains
y and x1 (resp. x2). Let y1 (resp. y2) be the neighbor of y in H1 (resp. H2).

Proof of Theorem 5.3: By Theorem 4.3 we may assume that G does not contain a proper
wheel. Choose a bug (H,x) and its center-crosspath P = p1, . . . , pk so that |H ∪ P | is
minimized.

W.l.o.g. p1 is adjacent to x, and let u1, u2 be the neighbors of pk in H. W.l.o.g. u1, u2 ∈
H2 \ y, and u1 is the neighbor of pk in H2 that is closer to y. We now show that S = N [x] is
a star cutset separating H1 from H2.

Assume not and let Q = q1, . . . , ql be a direct connection from H1 to H2 in G \ S. Note
that no node of Q is adjacent to x. So no node of Q is of type t3, s1, s2 nor a pseudo-twin
of x1, x2, x or y w.r.t. (H,x). Also by Lemma 5.7, no node of Q is of type crosspath w.r.t.
(H,x). Hence by Lemma 5.1, either (i) l > 1, and q1 and ql are of type p, or (ii) l = 1 and
q1 is of type d. Suppose (ii) holds. Note that q1 cannot be coincident with a node of P . If q1
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does not have a neighbor in P , then (H \x2)∪P ∪{x, q1} contains a 4-wheel with center y. So
N(q1)∩P 6= ∅. If q1 has more than one neighbor in P , then (H2 \ x2)∪P ∪ {x, q1} contains
a proper wheel with center q1, a contradiction. So q1 has a unique neighbor pi in P . Since
there is no 4-hole, i > 1. But then H2 ∪{x, q1, pi, ..., pk} induces either a 3PC(q1yy2, pku1u2)
or a 4-wheel with center y2, a contradiction. So (i) holds. Furthermore, q1 has a neighbor in
H1 \ {x1, y} and ql has a neighbor in H2 \ {x2, y}. Also, the only nodes of H that may have
a neighbor in Q \ {q1, ql} are x1, x2, y. Since there is no 4-hole, every node of Q \ {q1, ql} has
a neighbor in at most one of the sets {x1, x2}, {y}.

Claim 1: At most one of the sets {x1, x2} or {y} may have a neighbor in Q \ {q1, ql}.

Proof of Claim 1: Assume not. Then there is a subpath Q′ of Q \ {q1, ql} such that one
endnode of Q′ is adjacent to y, the other is adjacent to a node of {x1, x2}, say to x1, and no
intermediate node of Q′ has a neighbor in H. Then H1 ∪Q′ ∪ x induces a 3PC(x1, y). This
completes the proof of Claim 1.

Claim 2: q1 is not of type p3b.

Proof of Claim 2: Assume q1 is of type p3b, and let H ′ be the hole of H ∪ q1 that contains
q1, x1, x2, y. Then (H ′, x) is a bug. If q1 is not adjacent to a node of P , then (H ′, x) and P
contradict the minimality of |H ∪P |. So q1 is adjacent to a node of P . Let pi be the node of
P with lowest index adjacent to q1. Then H1 ∪{x, q1, p1, . . . , pi} contains a 3PC(q1, x). This
completes the proof of Claim 2.

Let H ′
1 (resp. H ′

2) be the subpath of H1 (resp. H2) whose one endnode is x1 (resp. x2),
the other endnode is adjacent to q1 (resp. ql), and no intermediate node of H ′

1 (resp. H ′
2) is

adjacent to q1 (resp. ql). Let v1 (resp. v2) be the neighbor of q1 in H1 that is closest to x1
(resp. y).

By Lemma 3.1 applied to H, x and Q and Lemma 5.7, either y has a neighbor in Q, or a
node of {x1, x2} has a neighbor in Q \ {q1, ql}. We now consider the following two cases.

Case 1: No node of {x1, x2} has a neighbor in Q \ {q1, ql}.
Then y has a neighbor in Q. Let qt be the node of Q with lowest index adjacent to y. By

Claim 2, q1 is of type p1, p2 or p3t. We now consider the following two cases.

Case 1.1: No node of P is adjacent to or coincident with a node of Q.
Let R be a chordless path from ql to x in (H2 \ {x2, y}) ∪ P ∪ {x, ql}.
First suppose that q1 is of type p3t. If t 6= 1, then H1∪{q1, ..., qt, x} contains a 3PC(q1, y).

So t = 1 and consequently v2 = y. Suppose q1 is the unique node of Q adjacent to y. If
N(ql) ∩ H2 6= {y2}, then ql has a neighbor in H2 \ {x2, y, y2} (since x2y2 is not an edge,
else {x, y, x2, y2} induces a 4-hole) and hence Q ∪ R ∪ H ′

1 ∪ y induces a 3PC(q1, x). So
N(ql)∩H2 = {y2}. But then (H \ y1)∪Q induces a 3PC(q1, y2). So N(y)∩ (Q \ q1) 6= ∅. If
N(y)∩(Q\q1) 6= {q2} or N(ql)∩H ⊆ {y, y2}, then Q∪R∪H ′

1∪{x, y} induces a proper wheel
with center y. So q2 is the unique neighbor of y in Q \ q1 and N(ql) ∩H is not contained in
the node set {y, y2}. But then Q ∪H ′

2 ∪H ′
1 ∪ {x, y} induces a 3PC(x1x2x, q1q2y).

So q1 is of type p1 or p2. Suppose that q1 is of type p1. Then, t > 1. Node v1 is adjacent
to y, else H1 ∪ {x, q1, . . . , qt} induces a 3PC(v1, y). But then H1 ∪ Q ∪ R induces a proper
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wheel with center y. Therefore, q1 must be of type p2.
Suppose that q1 is adjacent to y. Then H1 ∪Q∪R must induce a bug with center y, and

hence y2 6∈ R and N(y) ∩Q = q1. In particular, y2 6∈ H ′
2. But then H1 ∪H ′

2 ∪Q ∪ x induces
a 3PC(x1x2x, q1yy1). Therefore, q1 is not adjacent to y.

Since H ′
1 ∪Q ∪R∪ y cannot induce a 3PC(x, qt), it must induce a bug, and hence either

(i) y2 6∈ R and N(y) ∩ Q = {qt, qt+1}, or (ii) y2 ∈ R and t = l. If (i) holds, then y2 6∈ H ′
2,

and hence H1 ∪ H ′
2 ∪ Q induces a 3PC(yqtqt+1, q1v1v2). So (ii) holds. So ql is adjacent to

y and y2. Since there is no 4-hole, ql is not adjacent to x2. If ql is of type p3, then there
exists a chordless path from ql to x in (H2 \ {x2, y}) ∪ P ∪ {x, ql} that does not contain y2,
contradicting the analysis thus far (that shows that y2 ∈ R). So ql is of type p2, and hence
H ∪Q induces a 3PC(q1v1v2, qlyy2).

Case 1.2: A node of P is adjacent to or coincident with a node of Q.
Let qi be the node of Q with lowest index adjacent to a node of P , and let pj (resp. pj′)

be the node of P with highest (resp. lowest) index adjacent to qi. If i < t, then by Lemma
3.1, q1, . . . , qi, pj, . . . , pk is a crosspath, contradicting Lemma 5.7. So i ≥ t.

Suppose t = 1. Then, by Claim 2, q1 is of type p2 or p3t. Suppose q1 is of type
p2. Since H1 ∪ {x, y, q1, . . . , qi, p1, . . . , pj′} cannot induce a proper wheel with center y, q1
is the unique neighbor of y in q1, . . . , qi. But then H ∪ {q1, . . . , qi, pj , . . . , pk} induces a
3PC(∆,∆). So q1 is of type p3t. If q1 is the unique neighbor of y in {q1, . . . , qi}, then H ′

1 ∪
{q1, ..., qi, p1, ..., pj′ , y} induces a 3PC(q1, x). So y has a neighbor in {q2, . . . , qi}, and hence
H ′

1 ∪ {q1, ..., qi, p1, ..., pj′ , y} induces a bug with center y. In particular N(y) ∩ {q1, ..., qi} =
{q1, q2}. Let R be an x2u2-subpath of H2. Since P is a crosspath, yu2 is not an edge, and
hence H1 ∪R ∪ {q1, ..., qi, pj , ..., pk} induces an even wheel with center q1. So t > 1.

H ′
1 ∪ {x, y, q1, . . . , qi, p1, . . . , pj′} must induce a bug with center y (since it cannot induce

a 3PC(qt, x) nor a proper wheel, and it cannot induce a twin wheel because y is not adjacent
to any node of P ∪x1), and hence y1 /∈ H ′

1 and N(y)∩{q1, . . . , qi} = {qt, qt+1}. If q1 is of type
p1 or p3, then H1∪{x, q1, . . . , qt} either induces a 3PC(v1, y) or contains a 3PC(q1, y). So q1
is of type p2. If i < l then (H \ y2) ∪ {q1, . . . , qi, pj, . . . , pk} contains a 3PC(q1v1v2, yqtqt+1)
(recall that since P is a crosspath, pk has a neighbor in H2 \ {y, y2}). So i = l. If ql has a
neighbor in H2 \ {y, y2}, then (H \ y2) ∪Q contains a 3PC(q1v1v2, yqtqt+1). So ql does not
have a neighbor in H2 \ {y, y2}. Suppose t+ 1 = l. Let H ′ be the hole induced by P ∪ x and
the yu1-subpath of H2. Since (H ′, ql) cannot be a proper wheel, j′ = j. Since there is no
4-hole, j > 1. But then (H2 \ y2) ∪ P ∪ ql contains a 3PC(pj, x). So t+ 1 < l. In particular
N(ql) ∩H = y2.

Suppose j′ = k and pk is adjacent to y2. If k = 1, then {x, pk, y, y2} induces a 4-hole. So
k > 1. But then H2 ∪ {x, qt+1, ..., ql, pk} induces a 4-wheel center y2. So either j′ 6= k or pk
is not adjacent to y2. But then {x, y, y2, qt+1, . . . , ql, p1, . . . pj′} induces a 3PC(y, ql).

Case 2: A node of {x1, x2} has a neighbor in Q \ {q1, ql}.
By Claim 1, y has no neighbor in Q \ {q1, ql}. Let qi be the node of Q \ q1 with lowest

index adjacent to a node of {x1, x2}. Note that i < l.
Suppose that qi is not adjacent to x1. If q1 is of type p1 or p3t, then H ∪ {q1, . . . , qi}

either induces a 3PC(x2, ·) or contains a 3PC(x2, q1). So q1 is of type p2. But then x and
q1, . . . , qi are crossing appendices of H, and since x2y is not an edge and N(x) ∩ Q = ∅,
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Lemma 3.2 is contradicted. Therefore, qi is adjacent to x1.
Let qj be the node of Q with highest index adjacent to x1. Let R be the chordless path

from ql to y in H2 ∪ ql. Note that R does not contain x2, since by definition of Q, ql has a
neighbor in H2 \ {x2, y}. Let H ′ be the hole induced by H1 ∪ R ∪ {qj , . . . , ql}. Then H ′ ∪ x
induces a 3PC(x1, y). 2

Lemma 6.1 Let G be a 4-hole-free odd-signable graph. If G contains a bug (H,x) and has
no star cutset, then G has a path P = p1, ..., pk disjoint from V (H) ∪ {x} such that no node
of P is adjacent to x, no node of H \ {y} has a neighbor in P \ {p1, pk}, p1 has a neighbor in
H1 \{x1, y}, pk has a neighbor in H2 \{x2, y} and P is one of the following types (see Figure
11).

A: P and x are crossing appendices of H. Node y is adjacent to the node-attachment of P
in H and N(y) ∩ P = ∅.

D: k = 1 and p1 is a node of type dd w.r.t. (H,x).

C: k > 1 and one of the following holds.

(i) P is of type C1: nodes p1, pk are of type p2 not adjacent to y, node y has precisely
one neighbor in P , and that neighbor lies in P \ {p1, pk}.

(ii) P is of type C2: nodes p1, pk are of type p2, exactly one of them, say p1, is adjacent
to y, and N(y) ∩ P = {p1, p2}.

(iii) P is of type C3: one of {p1, pk} is of type p3t adjacent to y and the other is of
type p2. Say p1 is of type p3t. Then N(y) ∩ P = p1.

(iv) P is of type C4: k = 2, one of {p1, pk}, is of type p3t and the other is of type p2.
Both p1, pk are adjacent to y.

(v) P is of type C5: k = 2; one of {p1, pk} is of type p3b and the other is of type p2.
Both p1, pk are adjacent to y, say p1 is of type p3b. The node-attachment of p1 in
H is y.

T: Node y has exactly 3 neighbors in P , that are furthermore consecutive in P . Nodes p1
and pk are of type p2 or p3 w.r.t. (H,x). If p1 (resp. pk) is of type p3, then it is
adjacent to y. If p1 (resp. pk) is of type p2, then it is not adjacent to y.

Furthermore, any direct connection from H1 to H2 in G \N [x] is of type A,D,C or T.

Proof: By Theorems 4.3 and 5.3 we may assume that G does not contain a proper wheel
nor a bug with a center-crosspath. Since N [x] is not a star cutset separating H1 from H2,
let P = p1, ..., pk be a direct connection from H1 to H2 in G \ N [x]. So no node of P is
adjacent to x and hence no node of P is of type t3, s1, s2, dc w.r.t. (H,x) nor a pseudo-twin
of x1, x2, x or y w.r.t. (H,x). By Theorem 5.3, no node of G is of type s1 w.r.t (H,x). If
k = 1, then, by Lemma 5.1, p1 is either of type crosspath w.r.t. (H,x) not adjacent to x or
of type dd w.r.t. (H,x). So P is either of type A or D w.r.t. (H,x). So assume that k > 1.

By Lemma 5.1, p1 and pk are of type p w.r.t. (H,x). Note that the only nodes of H that
may have a neighbor in P \ {p1, pk} are x1, x2, y . Also p1 has a neighbor in H1 \ {x1, y} and
pk has a neighbor in H2 \ {x2, y}.
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Claim 1: At most one of the sets {x1, x2} or {y} may have a neighbor in P \ {p1, pk}.

Proof of Claim 1: Assume not and let P ′ be a shortest subpath of P \ {p1, pk} with the
property that one endnode of P ′ is adjacent to y and the other endnode of P ′ is adjacent to
a node of {x1, x2}. W.l.o.g. x1 is adjacent to an endnode of P ′ . Then H1 ∪P ′ ∪ x induces a
3PC(x1, y). This completes the proof of Claim 1.

Claim 2: No node of {x1, x2} has a neighbor in P \ {p1, pk}.

Proof of Claim 2: Assume not. By symmetry, w.l.o.g we may assume that x2 has a
neighbor in P \ {p1, pk}. Let pi be such a neighbor with lowest index. By Claim 1,
y does not have a neighbor in P \ {p1, pk}. Let R be the subpath of H1 whose one
endnode is y, the other endnode is adjacent to p1, and no intermediate node of R is adjacent
to p1. Then H2∪R∪{x, p1, ..., pi} induces a 3PC(x2, y). This completes the proof of Claim 2.

So by Claim 2, no node of H \ y has a neighbor in P \ {p1, pk}. If N(y) ∩ P = ∅, then
by Lemma 3.1, P is of type A. So we may assume that N(y) ∩ P 6= ∅. Let pi (resp. pj) be
the node of N(y) ∩ P with lowest (resp. highest) index. Let v1 (resp. v2) be the neighbor of
p1 in H1 that is closest to x1 (resp. y). Let v′1 (resp. v′2) be the neighbor of pk in H2 that is
closest to x2 (resp. y). Let H ′

1 (resp. H ′
2) be the x1v1-subpath (resp. x2v

′
1-subpath) of H1

(resp. H2). Let H
′ be the hole induced by H ′

1 ∪H ′
2 ∪ P .

Claim 3: p1 and pk are not of type p1.

Proof of Claim 3: Suppose p1 is of type p1. If v1y is not an edge, then H1 ∪ {x, p1, ..., pi}
induces a 3PC(v1, y). So v1y is an edge. Suppose i 6= j. Since there is no proper wheel and
p1 is of type p1, (H ′, y) must induce a bug. But then x is its center-crosspath. So i = j.
Note that v′1 6= y. If v′1 = y2, then (H ′, y) is either a proper wheel or a bug that has a
center-crosspath x. So v′1 6= y2. But then H ′ ∪ y induces a 3PC(v1, pi). So p1 is not of type
p1, and by symmetry neither is pk. This completes the proof of Claim 3.

By Claim 3 it suffices to consider the following two cases.

Case 1: At least one of {p1, pk} is of type p3.
Assume w.l.o.g. that p1 is of type p3. If v2 6= y, then H1 ∪ {x, p1, ..., pi} contains a

3PC(p1, y). So v2 = y.
Suppose that pk is not of type p2. So, by Claim 3, pk is of type p3. Then by symmetry

v′2 = y. If k = 2, then H1 ∪ H ′
2 ∪ P induces a 4-wheel with center p1. So k > 2. If

N(y)∩ (P \ {p1, pk}) = ∅, then H ′ ∪ y induces a 3PC(p1, pk). So N(y) ∩ (P \ {p1, pk}) 6= ∅.
Since there is no proper wheel, (H ′, y) is either a bug or a twin wheel. If (H ′, y) is a bug,
then x is its center-crosspath. So (H ′, y) is a twin wheel and hence P is of type T.

So we may assume that pk is of type p2.
Suppose that p1 is of type p3b. If N(y)∩ (P \p1) = ∅, then (H, p1) is a bug and P \p1 is

its center-crosspath. So N(y)∩ (P \ p1) 6= ∅. If k = 2, then either P is of type C5 or (H, p1)
is a bug with a center-crosspath p2. So k > 2. Since v2 = y and N(y) ∩ (P \ p1) 6= ∅, y has
at least two neighbors in H ′. In particular, j ≥ 2. Suppose |N(y) ∩H ′| = 2. If j = 2, then
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H ′
1∪H2∪P induces a 3PC(p1p2y, v

′
1v

′
2pk). So j > 2. But then H ′∪ y induces a 3PC(p1, pj).

So |N(y) ∩ H ′| > 2. Since there is no proper wheel and k > 2, (H ′, y) must be a bug or a
twin wheel. If (H ′, y) is a bug, then x is its center-crosspath. So (H ′, y) is a twin wheel, and
hence P is of type T.

So we may assume that p1 is of type p3t. Suppose v′2 = y. If k = 2, then P is of type
C4. So assume k > 2. Since (H ′, y) cannot be a proper wheel, (H ′, y) is a bug. But then
x is its center-crosspath. So we may assume that v′2 6= y. If p1 is the unique neighbor of y
in P , then P is of type C3. So we may assume that j > 1. If pj is the unique neighbor of
y in P \ p1, then either H ′ ∪ y induces a 3PC(p1, pj) (if j > 2) or H ′

1 ∪ H2 ∪ P induces a
3PC(p1p2y, v

′
1v

′
2pk) (if j = 2). So y has at least three neighbors in H ′. Since (H ′, y) is not a

proper wheel nor a bug that has a center-crosspath x, (H ′, y) is a twin wheel, and hence P
is of type T.

Case 2: p1 and pk are both of type p2.
Suppose that p1, pk are not adjacent to y. So i 6= 1 and j 6= k. If i = j, then P is of type

C1. So i < j. If pipj is an edge, then H ′ ∪{x, y} induces a 3PC(x1x2x, pipjy). So pipj is not
an edge. If pi, pj are the only two neighbors of y in P , then H ′ ∪ y induces a 3PC(pi, pj). So
y has at least three neighbors in H ′. Since (H ′, y) cannot be a proper wheel or a bug that
has a center-crosspath x, (H ′, y) is a twin wheel, and hence P is of type T.

Suppose now w.l.o.g that p1 is adjacent to y. Node pk is not adjacent to y, since otherwise
(H ′, y) is a proper wheel. If N(y) ∩ P = p1, then H ∪ P induces a 3PC(v1v2p1, v

′
1v

′
2pk).

Therefore, since (H ′, y) is not a proper wheel nor a bug that has a center-crosspath x, (H ′, y)
is a twin wheel and hence N(y) ∩ P = {p1, p2}. So P is of type C2. 2

A path as described in Lemma 6.1 is called a bridge of (H,x).

Proof of Theorem 5.5: Assume G does not have a star cutset. Then by Theorems 4.3, 5.3
and 5.4, G does not contain a proper wheel, a bug with center-crosspath nor a 3PC(∆, ·)
with a hat.

Let (H,x) be a bug and P = p1, ..., pk its ear. W.l.o.g. N(pk) ∩H = {y, y2}. Let H ′ be
the hole induced by (H2 \ y) ∪ P ∪ x. Then (H ′, y) is a bug and H1 \ y its ear.

Claim 1: If u is a node of type p2 or p3 w.r.t. (H,x) such that {y} ⊆ N(u)∩ (H ∪x) ⊆ H1,
then u does not have a neighbor in P . Furthermore, if N(u) ∩ (H ∪ x) = {y}, then u does
not have a neighbor in P \ pk.

Proof of Claim 1: Let u be one of the types from the statement of the claim. If u has a
neighbor in P \ pk, then by Lemma 5.1 u must be of type s1 or crosspath w.r.t. (H ′, y), and
hence u is a center-crosspath of (H ′, y), a contradiction. So u does not have a neighbor in
P \ pk.

Suppose that u is of type p2 w.r.t. (H,x) such that N(u) ∩H = {y, y1}. If u is adjacent
to pk, then H1 ∪ P ∪ {u, x} induces a 4-wheel with center y. So u cannot have a neighbor in
P .

Now suppose that u is of type p3 w.r.t. (H,x) such that {y} ⊆ N(u) ∩ (H ∪ x) ⊆ H1.
Suppose u is adjacent to pk. If u is of type p3t w.r.t. (H,x), then (H1 \ y1) ∪ P ∪ {u, x}
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Figure 11: Bridges of a bug (H,x).
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induces a bug with center y, and node y1 is its center-crosspath. Similarly, if u is of type p3b
w.r.t. (H,x) not adjacent to y1, then H1 ∪ P ∪ {u, x} induces a bug with center y with a
center-crosspath. So we may assume that u is of type p3b w.r.t. (H,x) and u is adjacent to
y1. Then (H,u) is a bug and pk its center-crosspath. This completes the proof of Claim 1.

Claim 2: There exists a bridge of type D w.r.t. (H,x).

Proof of Claim 2: Assume not. Then by Lemma 6.1 there exists a bridge Q = q1, ..., ql w.r.t.
(H,x) of type A, C or T. W.l.o.g. q1 has a neighbor in H1 \ y and ql in H2 \ y. Note that the
only nodes of p1, pk, q1 and ql that may coincide are pk and ql.

Case 1: Q is of type A.
Then N(y) ∩Q = ∅. First suppose that no node of P is adjacent to or coincident with a

node of Q. If N(q1) ∩H1 = y1, then (H \ y) ∪ P ∪Q ∪ x induces a 3PC(∆,∆) or a 4-wheel
with center x2. Otherwise, N(ql) ∩H2 = y2 and hence H1 ∪ P ∪ Q ∪ {x, y2} induces a bug
with center y with a center-crosspath.

So a node of P is adjacent to or coincident with a node of Q. Let pi be the node of P
with lowest index adjacent to a node of Q, and let qj be the node of Q with lowest index
adjacent to pi.

Suppose that i < k. If N(q1) ∩ H1 = y1, then H1 ∪ {x, p1, ..., pi, q1, ..., qj} induces a
3PC(y1, x). Otherwise N(ql) ∩H2 = y2. If j < l, then {p1, ..., pi, q1, ..., qj} induces a center-
crosspath of bug (H,x). So j = l. But then ql and (H ′, y) contradict Lemma 5.1. Therefore
i = k.

IfN(ql)∩H2 = y2, then (H1\y1)∪P∪{x, q1, ..., qj} contains a 3PC(x, pk). SoN(q1)∩H1 =
y1. If j = l, then H2 ∪ {x, pk, ql} induces a 3PC(∆,∆) or a 4-wheel with center y2. So j < l.
But then H1 ∪ P ∪ {x, q1, ..., qj} induces a proper wheel with center y.

Case 2: Q is of type C or T.
Then y has a neighbor in Q. First suppose that no node of P is adjacent to or coincident

with a node of Q. Let R be the chordless path from ql to y2 in (H2 \ {y, x2}) ∪ ql, and let S
be the chordless path from q1 to x1 in (H1 \ y) ∪ q1. Then R ∪ S ∪Q ∪ P ∪ {x, y} induces a
proper wheel with center y.

So a node of P is adjacent to or coincident with a node of Q. Let pi be the node of P with
lowest index adjacent to a node of Q, and let qj be the node Q with lowest index adjacent
to pi. Let H

′
1 be the subpath of H1 whose one endnode is x1, the other is adjacent to q1 and

no intermediate node of H ′
1 is adjacent to q1. We now consider the following 2 cases.

Case 2.1: q1 is of type p3 w.r.t. (H,x).
Then q1 is adjacent to y. Suppose that i < k and j < l. If no node of q2, ..., qj is adjacent

to y, then (H1 \ y1)∪{x, p1, ..., pi, q1, ..., qj} contains a 3PC(x, q1). So y is adjacent to a node
of q2, ..., qj , and hence Q is a bridge of type T. In particular, N(y) ∩ Q = {q1, q2, q3}. By
Claim 1, j > 3. But then H ′

1 ∪ {x, y, p1, ..., pi, q1, ..., qj} induces a proper wheel with center
y. So either i = k or j = l.

Suppose that i = k. By Claim 1, j > 1. But then if j < l, H ′
1∪P ∪{x, y, q1, ..., qj} induces

a proper wheel with center y. So j = l. Note that since j > 1, pk and ql cannot coincide. If
ql is adjacent to y, then H ′

1 ∪ P ∪ Q ∪ {x, y} induces a proper wheel with center y. So ql is
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not adjacent to y, and hence it is of type p2 w.r.t. (H,x). But then H2 ∪ {x, pk, ql} induces
a 3PC(∆,∆) or a 4-wheel with center y2.

So i < k, and hence j = l. Suppose that ql is adjacent to y. Then H ′
1∪Q∪{x, y, p1, ..., pi}

induces a wheel with center y. This wheel must be a bug. In particular l = 2, i.e. Q is
a bridge of type C4 or C5, and hence ql is of type p2 w.r.t. (H,x). Let P ′ = p1, ..., pi, ql.
Then P ′ is an ear of (H,x) and q1 is of type p3 w.r.t. (H,x) adjacent to y and a node of P ′,
contradicting Claim 1. So ql cannot be adjacent to y. But then |N(y) ∩ Q| = 1 or 3, and
hence H ′

1 ∪Q ∪ {x, y, p1, ..., pi} induces a 3PC(q1, x) or a proper wheel with center y.

Case 2.2: q1 is of type p2 w.r.t. (H,x).
First suppose that q1 is not adjacent to y. Suppose that i < k and j < l. If no node

of q2, ..., qj is adjacent to y, then {p1, ..., pi, q1, ..., qj} induces a center-crosspath of (H,x).
So a node of q2, ..., qj is adjacent to y. If y has a unique neighbor in q2, ..., qj , then H ′

1 ∪
{x, y, p1, ..., pi, q1, ..., qj} induces a 3PC(x, ·). So y has more than one neighbor in q2, ..., qj .
In particular, Q is a bridge of type T. By Claim 1 y has three neighbors in q2, ..., qj and hence
H ′

1 ∪ {x, y, p1, ..., pi, q1, ..., qj} induces a proper wheel with center y. Therefore, either i = k
or j = l.

Suppose that i = k and j < l. If no node of q2, ..., qj is adjacent to y, thenH∪{pk, q1, ..., qj}
induces a 3PC(∆,∆). So a node of q2, ..., qj is adjacent to y. So H ′

1∪P ∪{x, q1, ..., qj} induces
a wheel with center y. This wheel must be a bug. But then H1\(H

′
1∪y) is a center-crosspath

of this bug.
Suppose that i = k and j = l. Then pk and ql do not coincide. If ql is not adjacent to

y, then ql is of type p2 w.r.t. (H,x) and hence H2 ∪ {x, pk, ql} induces a 3PC(∆,∆) or a
4-wheel with center y2. So ql is adjacent to y. Then H ′

1∪P ∪Q∪{x, y} induces a wheel with
center y, which must be a bug, and hence H1 \ (H

′
1 ∪ y) is its center-crosspath.

Therefore i < k and j = l. If ql is of type p3 w.r.t. (H,x), then ql is adjacent to y and
hence (H2 \ y2) ∪ {x, p1, ..., pi, ql} contains a 3PC(x, ql). So ql is of type p2 w.r.t. (H,x).
If ql is not adjacent to y, then p1, ..., pi, ql is a center-crosspath of (H,x). So ql is adjacent
to y, and hence Q is a bridge of type C2. In particular, N(y) ∩ Q = {ql, ql−1}. But then
H1 ∪Q∪ {x, p1, ..., pi} induces a bug with center y with a center-crosspath (namely the path
induced by H1 \ (H

′
1 ∪ y)).

Finally we may assume that q1 is adjacent to y. So Q is a bridge of type C2, C4 or
C5. By Claim 1, q1 does not have a neighbor in P and hence j > 1. Suppose that ql is
of type p3 w.r.t. (H,x). Then Q is a bridge of type C4 or C5, and in particular l = 2
and ql is adjacent to y. Note that j = l = 2, and hence H1 ∪ Q ∪ {x1, p1, ..., pi} induces
a proper wheel with center y. So ql must be of type p2 w.r.t. (H,x), and hence Q is a
bridge of type C2. In particular, ql is not adjacent to y and N(y) ∩ Q = {q1, q2}. But then
H1 ∪ {x, p1, ..., pi, q1, ..., qj} induces a proper wheel with center y. This completes the proof
of Claim 2.

By Claim 2, let u be a bridge of (H,x) of type D. Then N(u)∩ (H ∪ x) = {y, y1, y2}. By
analogous argument applied to bug (H ′, y) and its ear H1 \ y, (H ′, y) has a bridge of type
D, say v. So N(v) ∩ (H ′ ∪ y) = {x, p1, x2}. Node u must have a neighbor in P \ pk, else
H1 ∪ P ∪ {x, y2, u} contains a proper wheel with center y. By symmetry, v has a neighbor
in H1 \ x1. Since {x, y, u, v} cannot induce a 4-hole, uv is not an edge. By Lemma 5.1,
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u is a pseudo-twin of pk w.r.t. (H ′, y), and hence it has two neighbors in P . But then
(H1 \ x1) ∪ P ∪ {u, v} contains a 4-wheel with center u. 2

Proof of Theorem 5.6: Assume not. Choose a bug (H,x) and a type s2 node u so that |H| is
minimized. W.l.o.g. u is adjacent to x, x1, y, y2. By Theorems 4.3 and 5.3 we may assume
that G does not contain a proper wheel nor a bug with a center-crosspath (and in particular
no bug with a type s1 node). By Lemma 6.1, there is a direct connection P = p1, ..., pk from
H1 to H2 in G \ N [x] of type A, D, C or T w.r.t. (H,x). Let v1 (resp. v2) be the node of
N(p1) ∩ H1 (resp. N(pk) ∩ H2) that is closest to x1 (resp. x2). Let H ′

1 (resp. H ′
2) be the

subpath of H1 (resp. H2) with endnodes x1 (resp. x2) and v1 (resp. v2). We now consider
the following cases.

Case 1: P is of type A w.r.t. (H,x).
Suppose that the node-attachment of P in H is y1. Suppose that N(u)∩P = ∅. Then P

and u are crossing appendices of H, and since y1x1 cannot be an edge (otherwise there is a
4-hole), Lemma 3.2 is contradicted. So N(u) ∩ P 6= ∅. Let pi be the node of N(u) ∩ P with
lowest index. Then H1 ∪{p1, ..., pi, u} induces a 3PC(u, y1). So the node-attachment of P in
H is y2. But then H ′

1 ∪ P ∪ {x, u, y, y2} induces a proper wheel with center u.

Case 2: P is of type T w.r.t. (H,x).
Let pi−1, pi, pi+1 be the neighbors of y in P . Let Σ1 be the 3PC(xx1x2, y) induced by

H1 ∪ H ′
2 ∪ {pi+1, ..., pk} and Σ2 be the 3PC(xx1x2, y) induced by H ′

1 ∪ H2 ∪ {p1, ..., pi−1}.
Since u is strongly adjacent to Σ1, by Lemma 5.1, N(u)∩{pi+1, ..., pk} = {pi+1}. By Lemma
5.1 applied to Σ2, N(u) ∩ {p1, ..., pi−1} = ∅. Let H ′ be the hole induced by H ′

1 ∪ H ′
2 ∪ P .

If upi /∈ E(G), then H ′ ∪ u induces a 3PC(x1, pi+1). So upi ∈ E(G) and hence (H ′, u) is a
bug. If pk is of type p3t, then i + 1 = k and y2 is of type s1 w.r.t. (H ′, u), a contradiction.
Suppose that pk is of type p3b w.r.t. (H,x). Then i+ 1 = k. Let H ′′ be the hole contained
in (H \ y2) ∪ pk. Then (H ′′, x) and u contradict our choice of (H,x) and u. So pk is not of
type p3 w.r.t. (H,x), and hence it is of type p2 w.r.t. (H,x) not adjacent to y. But then
H2 \ (H

′
2 ∪ y) induces a center-crosspath of bug (H ′, u).

Case 3: P is of type D w.r.t. (H,x).
So k = 1 and p1 is a node of type dd w.r.t. (H,x). If up1 is not an edge, then H1 ∪

{u, p1, y2} induces a 4-wheel with center y. So up1 is an edge.
Since (H,u) is a bug and G does not have a star cutset, by Lemma 6.1 there is a path

Q = q1, ..., ql of type A, D, C or T w.r.t. (H,u). W.l.o.g. q1 has a neighbor in H1 \ {x1, y}
and ql in H2 \ {y2, y}. Note that x is of type s2 w.r.t. (H,u). By symmetry and Cases 1 and
2 applied to (H,u) and Q, path Q cannot be of type A or T w.r.t. (H,u).

Suppose that Q is of type D w.r.t. (H,u). If xq1 is not an edge, then H1 ∪ {x, x2, q1}
induces a 4-wheel with center x1. So xq1 is an edge. Since {q1, p1, x, y} cannot induce a
4-hole, p1q1 is not an edge. But then H ′

1 ∪ {q1, p1, x, u} induces a 4-wheel with center x1. So
Q must be of type C w.r.t. (H,u).

Note that p1 cannot be coincident with a node of Q. Let H ′′ be the hole induced by
(H \ y)∪ p1. By Lemma 6.1 applied to (H ′′, u) and Q, no node of Q \{q1, ql} can be adjacent
to p1. Let R1 (resp. R2) be the subpath of H1 (resp. H2) whose one endnode is y, the other
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endnode of R1 (resp. R2) is adjacent to q1 (resp. ql), and no intermediate node of R1 (resp.
R2) is adjacent to q1 (resp. ql).

Suppose N(x) ∩ Q = ∅. Suppose that ql has a neighbor in H2 \ x2. Then ql must in
fact have a neighbor in H2 \ {x2, y, y2}, and hence Q is a direct connection from H1 to H2 in
G \N [x], and hence by Lemma 6.1 applied to (H,x) and Q, nodes x1 and x2 do not have a
neighbor in Q \ {q1, ql}. Since x1 does not have a neighbor in Q \ {q1, ql}, and Q is of type
C w.r.t. (H,u), Q must be of type C3, C4 or C5 w.r.t. (H,u). Suppose that Q is of type
C4 or C5 w.r.t. (H,u). Since we are assuming that ql has a neighbor in H2 \ x2, it follows
that ql is of type p3 w.r.t. (H,u) and hence q1 is of type p2 w.r.t. (H,u), and both q1 and
ql are adjacent to x1. But then (H,x) and Q contradict Lemma 6.1. Therefore Q must be of
type C3 w.r.t. (H,u). If ql is of type p3t w.r.t. (H,u), then (H,x) and Q contradict Lemma
6.1. So ql is of type p2 w.r.t. (H,u) and q1 is of type p3t w.r.t. (H,u) adjacent to x1. But
then by Lemma 6.1 applied to (H,x) and Q, Q is of type C3 w.r.t. (H,x), q1 is of type p3t
w.r.t. (H,x) and q1 is adjacent to y. But then {x1, y, x, q1} induces a 4-hole. So ql does not
have a neighbor in H2 \ x2 and hence Q must be of type C2, C4 or C5 w.r.t. (H,u) and
N(ql) ∩ H = {x1, x2}. But then Q ∪ R1 ∪ {x1, x2, x} is a proper wheel with center x1. So
N(x) ∩Q 6= ∅.

Suppose that Q is of type C1 or C3 w.r.t. (H,u). Let qi be the neighbor of x1 in
Q. Suppose that x has a unique neighbor in Q. If q1 is not adjacent to both x and y,
then Q ∪ R1 ∪ R2 ∪ x induces a 3PC(y, ·). So q1 is adjacent to both x and y. If i < l, then
H2∪{x1, x, q1, ..., qi} induces a 4-wheel with center x. So i = l, and hence ql is of type p3t w.r.t.
(H,u) (i.e. ql is adjacent to x1, x2 and the neighbor of x2 in H2). But then H2 ∪ {ql, x1, x}
induces a 4-wheel with center x2. Therefore |N(x) ∩Q| ≥ 2. If N(x) ∩ {q1, ..., qi} 6= ∅, then
R1 ∪{q1, ..., qi, x1, u, x} induces a proper wheel with center x. So N(x)∩{q1, ..., qi} = ∅, and
hence |N(x) ∩ {qi, ..., ql}| ≥ 2, But then (R2 \ y) ∪ {qi, ..., ql, x1, u, x} induces a proper wheel
with center x.

So Q is of type C2, C4 or C5 w.r.t. (H,u). SupposeN(ql)∩H = {x1, x2}. If N(x)∩Q 6= ql,
then Q ∪R1 ∪R2 ∪ x induces a proper wheel with center x. So N(x) ∩Q = ql. Note that p1
is not adjacent to ql, else {p1, ql, x, y} induces a 4-hole. But then Q ∪ {x1, x, u, p1} ∪ (R1 \ y)
contains a proper wheel with center x1. So N(ql)∩H 6= {x1, x2}, and hence ql has a neighbor
in H2 \ {x2, y} and q1 is of type p2 w.r.t. (H,u) adjacent to x1. Let qi be the neighbor of
x in Q with lowest index. Note that p1 cannot be adjacent to q1, else {p1, q1, x1, u} induces
a 4-hole. Also p1 cannot be adjacent to qi, else {p1, qi, x, u} induces a 4-hole. But then
{q1, ..., qi, x1, x, u, p1} ∪ (R1 \ y) induces a proper wheel with center x1.

Case 4: P is of type C w.r.t. (H,x).
Suppose that P is either of type C1 or C3. Let pi be the neighbor of y in P . Let Σ

be the 3PC(x1x2x, pi) contained in H ∪ P ∪ x. Note that pi cannot be adjacent to x1, else
{x1, x, y, pi} induces a 4-hole. Similarly pi is not adjacent to x2. In particular Σ is not a bug.
But then since node u is strongly adjacent to Σ, Lemma 5.1 is contradicted. So P is of type
C2, C4 or C5 w.r.t. (H,x).

Suppose that N(p1) ∩H = {y, y1} and pk has a neighbor in H2 \ {y, y2}. Let R be the
subpath of H2 \ y whose one endnode is y2, the other endnode of R is adjacent to pk, and
no intermediate node of R is adjacent to pk (note that possibly R = y2). If N(u) ∩ P = ∅,
then H1 ∪ R ∪ P ∪ u induces a proper wheel with center y. So N(u) ∩ P 6= ∅. Let pi be
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the node of N(u) ∩ P with lowest index. If i > 1, then H1 ∪ {u, p1, ..., pi} induces a 4-wheel
with center y. So i = 1. If p1 is the unique neighbor of u in P , then P ∪ R ∪ {y, u} induces
a 4-wheel with center y. So |N(u) ∩ P | ≥ 2. Let H ′ be the hole induced by H ′

1 ∪ H ′
2 ∪ P .

Since (H ′, u) cannot be a proper wheel and y1 6= x1, (H
′, u) must be a bug. In particular,

N(u) ∩ P = {p1, p2}. Suppose that pk is of type p3b w.r.t. (H,x). Then k = 2. Let H ′′ be
the hole contained in (H \ y2) ∪ pk. Then (H ′′, x) and u contradict our choice of (H,x) and
u. So pk is not of type p3b w.r.t. (H,x) and hence it is of type p2 or p3t w.r.t. (H,x). But
then R is the center-crosspath of (H ′, u).

So p1 has a neighbor in H1 \ {y, y1} and N(pk) ∩ H = {y, y2}. If N(u) ∩ P = ∅, then
H ′

1 ∪ P ∪ {u, y, y2} induces a 4-wheel with center y. So N(u) ∩ P 6= ∅. Let H ′ be the hole
induced by H ′

1 ∪H ′
2 ∪ P . Since (H ′, u) cannot be a proper wheel and y2 6= x2, (H

′, u) must
be a bug. So N(u) ∩ P = {pk}.

Since (H,u) is a bug, and G has no star cutset, and x is a node of type s2 w.r.t. (H,u),
by Lemma 6.1 and by symmetry, there is a path Q = q1, ..., ql of type C2, C4 or C5 w.r.t.
(H,u), such that N(ql) ∩H = {x1, x2}, N(x) ∩Q = {ql}, q1 has a neighbor in H1 \ {x1, x

′
1}

(where x′1 is the neighbor of x1 in H1) and no neighbor in H2 \ y. Note that since p1 is of
type p2 or p3 w.r.t. (H,x), p1 has a neighbor in H1 \ {x1, y}. Similarly, q1 has a neighbor
in H1 \ {x1, y}. Let R be the shortest path from ql to pk in P ∪ Q ∪ (H1 \ {x1, y}). Then
R ∪ (H2 \ y) ∪ {x, u} induces a 3PC(qlx2x, pky2u). 2

7 Attachments

In the section we use the following notation. Let Σ = 3PC(x1x2x3, y). The three paths of Σ
are denoted Px1y, Px2y and Px3y (where Pxiy is the path that contains xi). For i = 1, 2, 3, we
denote the neighbor of y (resp. xi) in Pxiy by yi (resp. x

′
i). For i, j ∈ {1, 2, 3}, i 6= j, let Hij

be the hole induced by Pxiy ∪ Pxjy.

Lemma 7.1 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
u be a type p1 node w.r.t. Σ adjacent to x1. Let P = p1, ..., pk be a chordless path in G \ Σ
such that p1 is adjacent to u, pk has a neighbor in Σ \ {x1, x2, x3}, no node of P \ {p1} is
adjacent to u and no node of P \ {pk} has a neighbor in Σ. Then pk is one of the following
types:

(i) pk is of type p2 with neighbors in Px1y.

(ii) pk is of type p1 adjacent to x′1.

(iii) pk is of type d and it has no neighbor in Px1y \ {y}.

(iv) pk is adjacent to x1 and it is either of type p3 or d, or it is a pseudo-twin of x1, x2, x3
or y w.r.t. Σ, or it is a crosspath w.r.t. Σ adjacent to x1, x

′
1 and a node of {y2, y3}.

Proof: By Theorems 4.3, 5.3, 5.5 and 5.6 we may assume that G does not contain a proper
wheel, a bug with a center-crosspath, a bug with an ear nor a 3PC(∆, ·) with a type s1 or
s2 node. Since pk has a neighbor in Σ \ {x1, x2, x3}, pk cannot be of type t2 nor t3 w.r.t. Σ.
So, for the node pk, it sufices to examine the following remaining possibilities of Lemma 5.1.
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Case 1: pk is of type p1 w.r.t. Σ.
Let v be the node of N(pk) ∩ Σ. Note that v /∈ {x1, x2, x3}. If v 6= x′1, then Σ ∪ P ∪ u

contains a 3PC(x1, v). So v = x′1 and hence (ii) holds.

Case 2: pk is of type p2 w.r.t. Σ.
If N(pk) ⊆ Px1y, then (i) holds. So w.l.o.g. assume that N(pk) ⊆ Px2y. If x1y is not an

edge, then H23 ∪ P ∪ u induces a 3PC(x1x2x3,∆) or a 4-wheel with center x2. So x1y is an
edge. But then u, P is either a center-crosspath or an ear of bug Σ.

Case 3: pk is of type p3 w.r.t. Σ.
If pkx1 is not an edge, then Σ∪P ∪u contais a 3PC(x1, pk). So pkx1 is an edge and hence

(iv) holds.

Case 4: pk is of type crosspath w.r.t Σ.
Let v (resp. v1v2) be the node-attachment (resp. edge-attachment) of pk in an appropriate

hole of Σ. Note that since there is no bug with a center-crosspath, v /∈ {x1, x2, x3}. Suppose
v = y1. W.l.o.g. v1v2 is an edge of Px2y. ThenH23∪P∪{x1, u} induces a 3PC(x1x2x3, pkv1v2)
or a 4-wheel with center x2. So v = y2 or v = y3. W.l.o.g. let v = y2. Suppose v1v2 ∈ Px3y.
Let R be the subpath of Px3y with one endnode x3 and the other endnode adjacent to pk.
Then Px1y ∪ R ∪ P ∪ {u, y2} induces a 3PC(x1, pk). So v1v2 ∈ Px1y. Let R be the subpath
of Px1y with one endnode x1 and the other endnode adjacent to pk. If pkx1 is not an edge,
then (Px2y \ y) ∪R ∪ P ∪ u induces a 3PC(x1, pk). So pkx1 is an edge, and hence (iv) holds.

Case 5: pk is a pseudo-twin of x1, x2 or x3 w.r.t. Σ.
Suppose that pk is not adjacent to x1. Then pk has two adjacent neighbors in Px1y. Let R

be the subpath of Px1y with one endnode x1 and the other endnode is adjacent to pk. Then
P ∪R ∪ {u, x2} induces a 3PC(x1, pk). So pk is adjacent to x1, and hence (iv) holds.

Case 6: pk is of type d w.r.t. Σ, or it is a pseudo-twin of y w.r.t. Σ.
W.l.o.g. pk has a neighbor in Px2y \ y. If pkx1 is not an edge and pk has a neighbor in

Px1y \ y, then (Σ \Px3y)∪P ∪ u contains a 3PC(x1, pk). So either pkx1 is an edge and hence
(iv) holds, or pk does not have a neighbor in Px1y \ y and hence (iii) holds. 2

Lemma 7.2 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
u be a type t2 node w.r.t. Σ adjacent to x2 and x3. Let P = p1, ..., pk be a chordless path in
G \Σ such that p1 is adjacent to u, pk has a neighbor in Σ \ {x1, x2, x3}, no node of P \ {p1}
is adjacent to u, and no node of P \{pk} has a neighbor in Σ. Then pk is one of the following
types:

(i) pk is of type p2 w.r.t. Σ and its neighbors in Σ are contained in Px1y.

(ii) x3y is an edge and pk is of type p1 w.r.t. Σ adjacent to x′2, or x2y is an edge and pk is
of type p1 w.r.t. Σ adjacent to x′3.

(iii) pk is of type p3 w.r.t. Σ, and either pkx2 and x3y are edges, or pkx3 and x2y are edges.

(iv) pk is of type d not adjacent to y1 and neither x2y nor x3y is an edge.

(v) pk is a pseudo-twin of x1, x2 or x3 w.r.t. Σ.
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Proof: By Theorems 4.3, 5.3 and 5.6 we may assume that G does not contain a proper wheel,
a bug with a center-crosspath nor a 3PC(∆, ·) with a type s1 or s2 node. Since pk has a
neighbor in Σ \ {x1, x2, x3}, pk cannot be of type t2 nor t3 w.r.t. Σ.

Claim 1: pk is not of type crosspath or a pseudo-twin of y w.r.t. Σ.

Proof of Claim 1: Suppose that pk is of type crosspath. Let v (resp. v1v2) be the node-
attachment (resp. edge-attachment) of pk in an appropriate hole of Σ. Suppose v = y1.
W.l.o.g. {v1, v2} ⊆ Px3y. Then H23 ∪ P ∪ u induces a 3PC(ux2x3, pkv1v2) or a 4-wheel with
center x3. So v 6= y1. W.l.o.g. v = y3. Note that since pk cannot be a center-crosspath of
bug Σ, y3 6= x3. Suppose v1v2 is an edge of Px1y. Let R be the subpath of Px1y with one
endnode x1 and the other adjacent to pk. Then Px2y ∪R∪P ∪{u, y3} induces a 3PC(x2, pk).
So v1v2 is an edge of Px2y. But then (P \ pk)∪u is the center-crosspath of the bug (H23, pk).
So pk is not of type crosspath w.r.t. Σ.

Now suppose that pk is a pseudo-twin of y w.r.t. Σ. Then either pkx2 or pkx3 is not an
edge. W.l.o.g. pkx3 is not an edge. But then (Σ \Px2y)∪P ∪u contains a 3PC(x3, pk). This
completes the proof of Claim 1.

Suppose that (v) does not hold. Then by Claim 1 and Lemma 5.1, pk is of type p or d
w.r.t. Σ.

Suppose that pk is of type d. Suppose that pky1 ∈ E(G). So w.l.o.g. N(pk) ∩ Σ =
{y, y1, y2}. If x2y /∈ E(G), then (H12 \ y) ∪ P ∪ u induces a 3PC(x2, pk). So x2y ∈ E(G).
But then (Px1y \ y) ∪ P ∪ {u, x2, x3} induces a 4-wheel with center x2. So pky1 /∈ E(G).
Suppose that one of {x2y, x3y} is an edge (note that by definition of 3PC(∆, ·), at most one
of {x2y, x3y} can be an edge). W.l.o.g. x2y ∈ E(G). But then H12 ∪ P ∪ {u, x3} induces a
proper wheel with center x2. So no one {x2y, x3y} is an edge, and hence (iv) holds.

Suppose that pk is of type p1. Let v be the neighbor of pk in Σ. Note that v /∈ {x1, x2, x3}.
If v ∈ Px1y, then H12∪P ∪u induces a 3PC(x2, v). So v /∈ Px1y. W.l.o.g. v ∈ Px2y. If v 6= x′2,
then H12 ∪ P ∪ u induces a 3PC(x2, v). So v = x′2. If x3y is not an edge, then H12 ∪ P ∪ x3
induces a 4-wheel with center x2. So x3y is an edge and hence (ii) holds.

Suppose that pk is of type p2. Let v1, v2 be the nodes of N(pk) ∩ Σ. Suppose that v1v2
is not an edge of Px1y. W.l.o.g. v1v2 is an edge of Px2y. Then H23 ∪ P ∪ u induces a
3PC(ux2x3, pkv1v2) or a 4-wheel with center x2. So v1v2 is an edge of Px1y, and hence (i)
holds.

Suppose that pk is of type p3. IfN(pk)∩Σ ⊆ Px1y, thenH12∪P∪u contains a 3PC(x2, pk).
So w.l.o.g. assume N(pk) ∩ Σ ⊆ Px2y. If pkx2 is not an edge, then H12 ∪ P ∪ u contains a
3PC(x2, pk). So pkx2 is an edge. If x3y is not an edge, then H12 ∪ P ∪ {u, x3} contains a
4-wheel with center x2. So x3y is an edge and hence (iii) holds. 2

Lemma 7.3 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
u be a type t3 node w.r.t. Σ. Let P = p1, ..., pk be a chordless path in G \ Σ such that p1 is
adjacent to u, pk has a neighbor in Σ \ {x1, x2, x3}, no node of P \ {p1} is adjacent to u, and
no node of P \ {pk} has a neighbor in Σ. Then pk is one of the following types:

(i) pk is of type p1, p3t, or it is a pseudo-twin of x1, x2 or x3 w.r.t. Σ.
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(ii) pk is a pseudo-twin of y w.r.t. Σ. Furthermore, if N(pk) ∩ Σ 6= {y, y1, y2, y3}, then pk
is adjacent to a node of {x1, x2, x3} and Σ is not a bug.

(iii) pk is of type p3b adjacent to xi, for some i ∈ {1, 2, 3}, but not to x′i.

Proof: By Theorems 4.3, 5.3 and 5.6 we may assume that G does not contain a proper wheel
nor a bug with a center-crosspath nor a 3PC(∆, ·) with a type s1 or s2 node. Since pk has a
neighbor in Σ \ {x1, x2, x3}, pk cannot be of type t2 nor t3 w.r.t. Σ.

Claim 1: pk is not of type p2, crosspath nor d w.r.t. Σ.

Proof of Claim 1: Suppose that pk is of type p2. W.l.o.g. N(pk) ∩ Σ ⊆ Px3y. But then
H23 ∪ P ∪ u induces a 3PC(∆, x2x3u) or a 4-wheel with center x3. So pk is not of type p2
w.r.t. Σ.

Suppose that pk is of type crosspath. W.l.o.g (H23, pk) is a bug and y2 is the node-
attachment of pk in H23. Note that since pk cannot be a center-crosspath of Σ, y2 6= x2. But
then (P \ pk) ∪ u is a center-crosspath of (H23, pk). So pk is not of type crosspath w.r.t. Σ.

Finally suppose that pk is of type d w.r.t. Σ. W.l.o.g. N(pk) ∩Σ = {y, y1, y3}. But then
H23 ∪ P ∪ u induces a 3PC(ux2x3, pkyy3) or a 4-wheel with center x3. This completes the
proof of Claim 1.

Assume (i) does not hold. Then by Claim 1 and Lemma 5.1, pk is of type p3b or it is a
pseudo-twin of y w.r.t. Σ. Suppose first that pk is of type p3b. W.l.o.g. N(pk)∩Σ ⊆ Px3y. If
x3 is not the node-attachment of pk in H23, then (P \pk)∪u is a center-crosspath of (H23, pk).
So x3 is the node-attachment of pk in H23, and hence (iii) holds.

Suppose now that pk is a pseudo-twin of y w.r.t. Σ. We may assume that N(pk) ∩ Σ 6=
{y, y1, y2, y3}, else (ii) holds. W.l.o.g. N(pk) ∩ Σ = {y, y1, y3, v}, where v is a node of
Px2y \ {y, y2}. If v 6= x2, then (P \ pk)∪u is a center-crosspath of (H23, pk). So v = x2. Since
pk is a pseudo-twin of y w.r.t. Σ, |N(pk)∩ {x1, x2, x3}| ≤ 1 and hence Σ cannot be a bug, so
(ii) holds. 2

8 Connected diamonds

In this section we prove Theorem 1.5. Recall the definition of a connected diamond (Σ, Q)
from Section 1. Note that if Q = q1, ..., qk, then q1 is of type t2 w.r.t. Σ and qk is of type p2
or d w.r.t. Σ.

Lemma 8.1 Let G be a 4-hole-free odd-signable graph. If G contains a 3PC(∆, ·) with a
node of type dd, then either G has a star cutset or G contains a connected diamond.

Proof: Assume not. By Theorems 4.3, 5.3 and 5.6, G does not contain a proper wheel nor a
bug with a center-crosspath nor a 3PC(∆, ·) with a type s1 or s2 node. Let u be a type dd
node w.r.t. a Σ = 3PC(x1x2x3, y) of G, such that w.l.o.g. N(u) ∩ Σ = {y, y1, y3}. So x1y
and x3y are not edges.

Since S = N [y] \ {u, y2} is not a star cutset separating u from Σ \ S, there is a direct
connection P = p1, ..., pk from u to Σ in G \ S. So p1 is adjacent to u and pk has a neighbor
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in Σ \ S. Note that the only nodes of Σ that may have a neighbor in P \ pk are y1 and y3.
For i, j ∈ {1, 2, 3}, i 6= j, let Hij be the hole induced by Pxiy ∪Pxjy. By Lemma 5.1 and since
pk is not adjacent to y, pk is of type p, t2, t3, crosspath or it is a pseudo-twin of x1, x2 or x3
w.r.t. Σ.

Claim 1: At most one of y1, y3 has a neighbor in P \ pk.

Proof of Claim 1: Suppose both y1, y3 have a neighbor in P \pk. Let R be a shortest subpath
of P \ pk with one endnode adjacent to y1 and the other to y3. Then H13 ∪ R induces a
3PC(y1, y3). This completes the proof of Claim 1.

We now consider the following cases.

Case 1: pk does not have a neighbor in Px2y \ x2.

Case 1.1: No node of {y1, y3} has a neighbor in P \ pk.
Then no node of Σ has a neighbor in P \ pk.

Case 1.1.1: pk is of type crosspath w.r.t. Σ.
Since pk cannot be a center-crosspath of bug Σ, pk is not adjacent to x2. W.l.o.g. N(pk)∩

Px1y = y1 and pk has two adjacent neighbors in Px3y. If k = 1, then (H13 \ y) ∪ {u, p1}
induces a 4-wheel with center p1. So k > 1. Let R be the shortest path from u to pk in
(Px3y \ y) ∪ {u, pk}. Then P ∪R ∪ {y1} induces a 3PC(u, pk).

Case 1.1.2: pk is of type t2, t3 or it is a pseudo-twin of x1, x2 or x3 w.r.t. Σ.
If pk is of type t2 adjacent to x1 and x3, then Σ ∪ P ∪ u induces a connected diamond.

Note that since pk does not have a neighbor in Px2y \ x2, pk cannot be a pseudo-twin of x2
w.r.t. Σ. So w.l.o.g. pk is adjacent to x1 and x2 and N(pk) ∩ (Σ \ {x1, x2}) ⊆ Px3y. Recall
that pk cannot be adjacent to y. But then H12 ∪ P ∪ u induces a 3PC(uyy1, x1x2pk).

Case 1.1.3: pk is of type p w.r.t. Σ.
Suppose pk is of type p1 and let p′ be the neighbor of pk in Σ \ S. If p′ = x2, then

Σ∪P ∪u induces a connected diamond (Σ′, Q), where Σ′ = 3PC(yy1u, x2) and Q = Px3y \ y.
So p′ 6= x2. But then (H13 \ y) ∪ P ∪ u induces a 3PC(u, p′). So pk is not of type p1. So the
neighbors of pk in Σ \S lie in either Px1y or Px3y. W.l.o.g. N(pk)∩Σ ⊆ Px3y. If pk is of type
p2, then H23 ∪ P ∪ u induces either a 3PC(uyy3,∆) or a 4-wheel with center y3. So pk is of
type p3. If k = 1, then (H13 \ y) ∪ {u, p1} induces a 4-wheel with center p1. So k > 1. But
then (H13 \ y) ∪ P ∪ u contains a 3PC(u, pk).

Case 1.2: A node of {y1, y3} has a neighbor in P \ pk.
By Claim 1, exactly one of {y1, y3} has a neighbor in P \ pk. Note that k > 1.

Case 1.2.1: pk is of type p.
If pk is of type p1 adjacent to x2, then Σ∪P contains a 3PC(x2, y1) (if y1 has a neighbor

in P \ pk) or a 3PC(x2, y3) (if y3 has a neighbor in P \ pk). So by symmetry w.l.o.g.
N(pk) ∩ Σ ⊆ Px3y \ y. Let p

′ (resp. p′′) be the node of N(pk) ∩ Px3y closest to y3 (resp. x3).
Note that if pk is of type p1, then p′ ∈ Px3y \ {y, y3}. Let R be the subpath of Px3y between
p′′ and x3. Let H be the hole induced by Px2y ∪ P ∪R ∪ u.
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Suppose N(y3) ∩ (P \ pk) 6= ∅. Since (H, y3) is not a proper wheel, |N(y3) ∩ P | = 1 and
p′′y3 is not an edge. Let pi be the unique neighbor of y3 in P . Note that i < k. If pk is of
type p1, then H23 ∪ P contains a 3PC(y3, p

′). So pk is of type p2 or p3. If N(y3) ∩ P = p1,
then Px1y ∪ P ∪ R ∪ {y3, u} induces a 4-wheel with center u. So i > 1. If pk is of type p2,
then (H, y3) is a bug and Px3y \ (R∪{y, y3}) is its center-crosspath. So pk is of type p3. But
then H23 ∪ {pi, ..., pk} contains a 3PC(y3, pk).

So N(y3) ∩ (P \ pk) = ∅. Hence N(y1) ∩ (P \ pk) 6= ∅. Since (H, y1) is not a proper
wheel, y1 has a unique neighbor, say pi, in P . Let R′ be the subpath of Px3y between y3 and
p′. If i = 1, then P ∪ R′ ∪ {y, y1, u} induces a 4-wheel with center u. So i > 1. But then
P ∪R′ ∪ {y1, u} induces a 3PC(u, pi).

Case 1.2.2: pk is of type t2, t3 or it is a pseudo-twin of x1, x2 or x3 w.r.t. Σ.
Suppose pk is of type t2 adjacent to x1 and x3. By symmetry w.l.o.g. N(y3) ∩ P 6= ∅

and N(y1) ∩ P = ∅. Let H be the hole induced by Px2y ∪ P ∪ {x3, u}. Since (H, y3) is not a
proper wheel, x3y3 is not an edge. But then H23 ∪P contains a 3PC(x3, y3). So pk is not of
type t2 adjacent to x1 and x3.

Recall that pk has no neighbor in Px2y \ x2. So by symmetry w.l.o.g. pk is adjacent to
both x1 and x2 and N(pk) ∩ (Σ \ {x1, x2}) ⊆ Px3y \ y. If N(y1) ∩ P = ∅, then H12 ∪ P ∪ u
induces a 3PC(uyy1, x1x2pk). So N(y1) ∩ (P \ pk) 6= ∅ and N(y3) ∩ (P \ pk) = ∅. Let H be
the hole induced by Px2y ∪P ∪u. Since (H, y1) is not a proper wheel y1 has unique neighbor,
say pi, in P .

Suppose pk is of type t3. If i = 1, then Px3y ∪ P ∪ {y1, u} induces a 4-wheel with center
u. So i > 1. But then (Px3y \ y) ∪ P ∪ {y1, u} induces a 3PC(pi, u). So pk is not of type t3.

Suppose pk is of type t2. If yx2 is an edge, then since there is no 4-hole y1x1 is not an
edge. But then Px3y ∪ {pi, ..., pk, y1, x2, x1} induces a 4-wheel center x2. So yx2 is not an
edge. But then H23 ∪ {pi, ..., pk, y1} induces a 3PC(y, x2).

So pk is a pseudo-twin of x3 w.r.t. Σ. Let R be the shortest path from pk to y3 in
Px3y ∪ pk. If i = 1, then P ∪ R ∪ {y1, y, u} induces a 4-wheel with center u. So i > 1. But
then P ∪R ∪ {y1, u} induces a 3PC(u, pi).

Case 1.2.3: pk is of type crosspath w.r.t. Σ.
Since pk cannot be a center-crosspath of bug Σ, pk is not adjacent to x2.
W.l.o.g. N(pk) ∩ Px3y = y3 and N(pk) ∩ (Σ \ y3) ⊆ Px1y \ y. Let p′ (resp. p′′) be the

node of N(pk) ∩ Px1y closest to y1 (resp. x1). Let R′ (resp. R′′) be the y1p
′-subpath (resp.

x1p
′′-subpath) of Px1y. If N(y3)∩ (P \pk) 6= ∅, then P ∪Px2y ∪R′′∪{u, y3} induces a proper

wheel with center y3. So N(y3)∩ (P \ pk) = ∅ and N(y1)∩ (P \ pk) 6= ∅. Let pi be the node
of N(y1)∩P with highest index. If i = 1, then P ∪{y, y1, y3, u} induces a 4-wheel with center
u. So i > 1. Let H be the hole induced by R′′ ∪ Px2y ∪ P ∪ u. If p′ = y1, then (H, y1) is a
proper wheel. So p′ 6= y1, and hence (H, y1) is a bug. But then R′ \ y1 is a center-crosspath
of (H, y1).

Case 2: pk has a neighbor in Px2y \ x2.

Case 2.1: pk is of type p w.r.t. Σ.
In this case N(pk) ∩ Σ ⊆ Px2y.
Suppose that {y1, y3} have no neighbor in P \pk. If pk is of type p1, then Σ∪P induces a
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connected diamond (Σ′, Px3y \y) (where Σ
′ is the 3PC(y1yu, ·) induced by Px1y∪Px2y∪P ). If

pk is of type p2, then H12 ∪P ∪u induces a 3PC(uyy1,∆). So pk is of type p3. Let R be the
chordless path from y to x2 in Px2y∪pk that contains pk. Then Px1y∪Px3y∪P ∪R∪u induces
a connected diamond (Σ′, Px3y \ y) (where Σ

′ is the 3PC(y1yu, pk) induced by Px1y ∪R∪P ).
So one of {y1, y3} has a neighbor in P \ pk.

Therefore k > 1. By Claim 1, we may assume w.l.o.g. N(y3) ∩ (P \ pk) 6= ∅ and
N(y1) ∩ (P \ pk) = ∅. Let R′ (resp. R′′) be the shortest path in Px2y ∪ pk between y
(resp. x2) and pk. Let H be the hole induced by R′ ∪ P ∪ u. Since (H, y3) is not a proper
wheel, y3 has a unique neighbor, say pi, in P . Note that i < k. If pk is of type p1, then
H23 ∪ {pi, ..., pk} induces a 3PC(y3, ·). If pk is of type p3, then R′ ∪ R′′ ∪ Px3y ∪ {pi, ..., pk}
induces a 3PC(y3, pk). So pk is of type p2. If i > 1, then (H, y3) is a bug and the path induced
by (Px3y \{y, y3})∪(R′′\pk) is its center-crosspath. So i = 1. But then Px1y∪P ∪R′′∪{y3, u}
induces a 4-wheel with center u.

Case 2.2: pk is of type t2, t3 or it is a pseudo-twin of x1, x2 or x3 w.r.t. Σ.
Then pk is a pseudo-twin of x2 w.r.t. Σ. Let Σ

′ = 3PC(x1pkx3, y) obtained by substituting
pk into Σ. If no node of {y1, y3} has a neighbor in P \pk, then Σ′∪P ∪u induces a connected
diamond (Σ′′, Q), where Σ′′ = 3PC(y1yu, pk) and Q = Px3y \ y. So w.l.o.g. y3 has a neighbor
in P \ pk. Let pi be the node of P with highest index adjacent to y3. Note that i < k. But
then (Σ′ \ (Px1y \ y)) ∪ {pi, ..., pk} induces a 3PC(y3, pk).

Case 2.3: pk is of type crosspath w.r.t. Σ.
Suppose N(pk) ∩ Px2y = y2. W.l.o.g. N(pk) ∩ (Σ \ y2) ⊆ Px3y \ y and, in particular,

(H23, pk) is a bug. If N(y3) ∩ (P \ pk) = ∅, then (P \ pk) ∪ u induces a center-crosspath
of (H23, pk). So N(y3) ∩ (P \ pk) 6= ∅ and consequently k > 1. Let p′ (resp. p′′) be the
neighbor of pk in Px3y closest to y3 (resp. x3). Let R be the subpath of Px3y between p′′

and x3. Let H be the hole induced by P ∪ {u, y, y2}. Since (H, y3) is not a proper wheel,
y3 has a unique neighbor in P \ pk and p′ 6= y3. Let pi be the neighbor of y3 in P . If
i = 1, then Px1y ∪ R ∪ P ∪ {y3, u} induces a 4-wheel with center u. So i > 1. But then
(Px1y \ y) ∪ P ∪R ∪ {u, y3} induces a 3PC(u, pi). So N(pk) ∩ Px2y 6= y2.

W.l.o.g. N(pk) ∩ Px3y = y3 and pk has two adjacent neighbors in Px2y. Let p
′ (resp. p′′)

be the node of N(pk) ∩ Px2y closest to y2 (resp. x2). Let R′ (resp. R′′) be the subpath of
Px2y between y (resp. x2) and p′ (resp. p′′). If k = 1, then Px1y ∪ R′′ ∪ {p1, y3, u} induces
a 4-wheel with center u. So k > 1. If no node of {y1, y3} has a neighbor in P \ pk, then
(Px1y \ y)∪P ∪R′′ ∪ {u, y3} induces a 3PC(u, pk). So by Claim 1, exactly one of y1, y3 has a
neighbor in P \ pk. Suppose y1 has a neighbor in P \ pk and let pi be the node of N(y1) ∩ P
with highest index. Then H13 ∪ {pi, ..., pk} induces a 3PC(y1, y3). So y1 does not have a
neighbor in P \ pk and hence N(y3) ∩ (P \ pk) 6= ∅. But then P ∪ R′ ∪ {u, y3} induces a
proper wheel with center y3. 2

Lemma 8.2 Let G be a 4-hole-free odd-signable graph. If G contains a bug with a type dc
node, then G has a star cutset or G contains a connected diamond.

Proof: Assume not. By Lemma 6.1 every bug (H,x) has a bridge P . Choose a bug (H,x) with
a type dc node u, and a bridge P = p1, ..., pk of (H,x) so that the length of P is minimized.
Let x1, x2, y be the neighbors of x in H such that x1x2 is an edge. Let H1 (resp. H2) be the
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sector of (H,x) with endnodes y and x1 (resp. x2). Let y1 (resp. y2) be the neighbor of y in
H1 (resp. H2). So u is adjacent to x, y and a node of {y1, y2}. W.l.o.g. p1 has a neighbor in
H1 \ {x1, y} and pk in H2 \ {x2, y}.

By Lemma 8.1 G does not contain a 3PC(∆, ·) with a type dd node, and hence P is not
a bridge of type D. Let H ′ be the hole of (H \ y) ∪ P that contains P . If P is a bridge of
type C2, C4, C5 or T, then H ′ ∪ {x, y} induces a union of a 3PC(x1x2x, y) and a type dd
node w.r.t. this 3PC, a contradiction.

Suppose that P is a bridge of type C3. W.l.o.g. p1 is adjacent to y, i.e., p1 is of type p3t
w.r.t. (H,x). Note that since {x1, x, y, p1} cannot induce a 4-hole, p1x1 is not an edge. But
then H ′ ∪ {x, y} induces a 3PC(x1x2x, p1) and y1 is of type dd w.r.t. it, a contradiction.

Suppose that P is a bridge of type C1. Let pi be the unique neighbor of y in P . Note
that 1 < i < k. Let Σ = 3PC(x1x2x, pi) induced by H ′ ∪{x, y}. W.l.o.g. u is adjacent to y2.
If u does not have a neighbor in P , then (H \ {y1, x2}) ∪ P ∪ {x, u} contains a 4-wheel with
center y. So u has a neighbor in P . By Lemma 5.1 applied to Σ and u, N(u) ∩ P = {pi},
{pi+1} or {pi−1}. Since G does not contain a 4-hole, N(u) ∩ P = {pi}. Let H ′

1 = H ′ ∩H1

and H ′
2 = H ′ ∩H2. Let H ′′ be the hole induced by H1 ∪H ′

2 ∪ {pi, ..., pk}. Then (H ′′, x) is
a bug, u is of type dc w.r.t. (H ′′, x) and P ′ = p1, ..., pi−1 is a bridge of (H ′′, x), and hence
(H ′′, x), u and P ′ contradict our choice of (H,x), u and P .

Therefore P is a bridge of type A. W.l.o.g. N(p1) ∩ H1 = y1 and pk has two adjacent
neighbors in H2 \ y. First suppose that u is adjacent to y2. If u does not have a neighbor in
P , then (H \ x2) ∪ P ∪ {u, x} contains a 4-wheel with center y. So u has a neighbor in P ,
and let pi be such a neighbor with highest index. Since {y, y1, u, p1} cannot induce a 4-hole,
i > 1. But then H ∪ {u, pi, ..., pk} induces a 3PC(∆,∆) or a 4-wheel with center y2.

So u must be adjacent to y1. If u has a neighbor in P , then (H2 \ y2) ∪ P ∪ {u, y1, x}
contains a proper wheel with center u. So u does not have a neighbor in P . But then
H2 ∪ P ∪ {x, y1} induces a 3PC(∆, y), and u is of type dd w.r.t. it, a contradiction. 2

Lemma 8.3 Let G be a 4-hole-free odd-signable graph. If G contains a 3PC(∆, ·) with a
node of type d, then either G has a star cutset or G contains a connected diamond.

Proof: Follows from Lemmas 8.1 and 8.2. 2

For a twin wheel (H,x) we use the following notation. Let x1, x2, x3 be the neighbors of
x in H such that x1x2 and x2x3 are edges. Let x′1 (resp. x′3) be the neighbor of x1 (resp. x3)
in H \ x2. A node u ∈ V (G) \ (V (H) ∪ {x}) is said to be of type d w.r.t. (H,x) if ux is an
edge and N(u) ∩H is either {x1, x

′
1} or {x3, x

′
3}.

Lemma 8.4 Let G be a 4-hole-free odd-signable graph. If G contains a twin wheel with a
type d node, then either G contains a star cutset or G contains a connected diamond.

Proof: Assume not. By Theorem 4.3, Theorem 5.3 and Lemma 8.3, G does not contain a
proper wheel, a bug with a center-crosspath, nor a 3PC(∆, ·) with a type d node. Let u be
a type d node w.r.t. a twin wheel (H,x) in G. Let x1, x2, x3 be the neighbors of x in H such
that x1x2 and x2x3 are edges. Let PH = x3, p1, ..., pk, x1 be the long sector of (H,x). Let
P = p1, ..., pk.

46



Note that since there is no 4-hole, k > 1. W.l.o.g. N(u)∩H = {x3, p1}. Since S = N [x]\x2
is not a star cutset of G separating x2 from P , there exists a direct connection Q = q1, ..., ql
from x2 to P in G \S. Let pi (resp. pi′) be the node of N(ql)∩P with lowest (resp. highest)
index. Note that x1 and x3 are the only nodes of H that may have a neighbor in Q \ ql.

Claim 1: Both u and x3 have a neighbor in Q.

Proof of Claim 1: N(u)∩Q 6= ∅, else Q∪{x, x2, x3, u, p1, ..., pi} induces a proper wheel with
center x3. Now suppose N(x3)∩Q = ∅. Let H ′ be the hole induced by Q∪{x2, x3, p1, ..., pi}.
So (H ′, u) is a bug or a twin wheel. If (H ′, u) is a bug, then x is a center-crosspath of (H ′, u).
So (H ′, u) is a twin wheel, and hence i = 1 and N(u) ∩ Q = ql. Since {u, x, x1, ql} cannot
induce a 4-hole, x1ql is not an edge. Since {u, x3, x2, ql} cannot induce a 4-hole, l > 1.
Suppose i′ = 1. If N(x1) ∩Q = ∅, then H ∪ Q induces a 3PC(x2, p1). So N(x1) ∩ Q 6= ∅.
Let qs be the node of N(x1) ∩Q with highest index. Then {x, x1, x3, p1, qs, ..., ql, u} induces
a 4-wheel with center u. So i′ > 1. But then {u, x1, x2, x3, ql, pi′ , ..., pk, x} induces a 4-wheel
with center x. So N(x3) ∩Q 6= ∅. This completes the proof of Claim 1.

Claim 2: N(x1) ∩Q = ∅.

Proof of Claim 2: Suppose x1 does have a neighbor in Q. By Claim 1, u and x3 both have
neighbors in Q. Let qs (resp. qt) be the node of Q with lowest index adjacent to x3 (resp.
u). If s ≤ t, then {x, x2, x3, u, q1, ..., qt} induces a proper wheel with center x3. So s > t. In
particular, t < l and s > 1.

If x1 has a neighbor in Q \ ql, then both x1 and u (since t < l) have a neighbor in Q \ ql
and hence (Q \ ql) ∪ P ∪ {x, u, x1} contains a 3PC(x1, u). So x1 does not have a neighbor in
Q \ ql, and hence N(x1) ∩Q = {ql}.

Let H ′ be the hole induced by Q ∪ {x1, x2}. Since H ′ ∪ x3 cannot induce a 3PC(·, ·),
(H ′, x3) is a wheel, and hence it is a twin wheel or a bug. Since s > 1, (H ′, x3) must in fact
be a bug. But then x is of type d w.r.t. bug (H ′, x3), a contradiction. This completes the
proof of Claim 2.

By Claim 1, let qs (resp. qt) be the node of Q with lowest index adjacent to x3 (resp. u).
If s = 1, then {x, x2, x3, u, q1, ..., qt} induces a proper wheel with center x3, a contradiction.
So s > 1. By Claim 2, the node set Q ∪ {x1, x2, pi′ , ..., pk} induces a hole, say H ′. Node x3
must have at least two neighbors in Q, else H ′ ∪ x3 induces a 3PC(x2, qs). So (H ′, x3) is a
wheel. By our assumption (H ′, x3) cannot be a proper wheel, and since s > 1 it cannot be a
twin wheel, hence it is a bug where x2 does not belong to the short sector of (H ′, x3). But
then node x is of type d w.r.t. (H ′, x3), a contradiction. 2

Proof of Theorem 1.5: Suppose not. By Theorems 4.3 and 5.3 and Lemmas 8.3 and 8.4
we may assume that G does not contain a proper wheel, a bug with a center-crosspath, a
3PC(∆, ·) with a node of type d, nor a twin wheel with a node of type d.

We may assume that G contains a diamond induced by, say, {u, v, a, b}, where ab /∈ E(G).
Let S = N [u] \ {a, b}. Since S cannot be a star cutset separating a from b, there is a direct
connection P = p1, ..., pk in G \ S from a to b. If v has a neighbor in P , then P ∪ {a, b, u, v}
induces a proper wheel with center v. So N(v) ∩ P = ∅. Let S′ = N [u] \ v. Since S′ cannot
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be a star cutset of G, there is direct connection Q = q1, ..., ql from v to P . Let pi (resp. pi′)
be the node of N(ql) ∩ P with lowest (resp. highest) index.

Suppose both a and b have a neighbor in Q \ ql. Let R be a shortest path between a and
b in the subgraph induced by (Q \ ql) ∪ {a, b}. Then P ∪ R ∪ {a, b, u} induces a 3PC(a, b).
So one of a, b does not have a neighbor in Q \ ql. W.l.o.g. N(b) ∩ (Q \ ql) = ∅.

Claim 1: N(b) ∩Q = ∅.

Proof of Claim 1: Suppose not. So N(b) ∩ Q = ql. Suppose l = 1. Since there is no 4-hole,
aql is not an edge. Since P ∪ {v, a, b, q1} cannot induce a proper wheel with center q1, i = i′.
If i = k, then P ∪ {a, b, u, v} induces a twin wheel with a node of type d. So i < k. But then
{p1, ..., pi, q1, a, b, u, v} induces a 4-wheel with center v. So l > 1.

Suppose N(a) ∩ Q = ∅. If i = k, then P ∪ Q ∪ {a, b, u, v} induces a bug with center b
with a node u of type dc. So i < k. But then Q ∪ {p1, ..., pi, a, b, v} induces a 3PC(v, ql). So
N(a) ∩Q 6= ∅.

Suppose a has a unique neighbor, say qj, in Q. If j = 1, then Q ∪ {a, b, u, v} induces a 4-
wheel with center v. So j > 1. But then Q∪{a, b, v} induces a 3PC(v, qj). So |N(a)∩Q| ≥ 2.
Let H be the hole induced by Q ∪ {v, b}. Since there is no proper wheel, (H, a) is either a
bug or a twin wheel. If (H, a) is a bug, then u is either its center-crosspath or a node of type
dc. So (H, a) is a twin wheel. But then u is a node of type d w.r.t. (H, a). This completes
the proof of Claim 1.

Suppose N(a) ∩Q = ∅. If i = i′, then P ∪Q ∪ {a, b, v} induces a 3PC(v, pi). So i′ > i.
If pipi′ is an edge, then P ∪Q∪{a, b, v} induces a 3PC(qlpipi′ , v) with a node of type dd. So
pipi′ is not an edge. If l = 1, then P ∪ {a, b, v, q1} induces a proper wheel with center q1. So
l > 1. But then Q ∪ {a, b, v, p1, ..., pi, p

′
i, ..., pk} induces a 3PC(v, ql). So N(a) ∩Q 6= ∅.

Let H be the hole induced by Q ∪ {b, v, pi′ , ..., pk}. Note that since a has a neighbor in
Q, it has at least two neighbors in H. Suppose |N(a) ∩H| = 2 and let v′ be the neighbor
of a in H \ v. If vv′ is an edge, then H ∪ {a, u} induces a 4-wheel with center v. So vv′ is
not an edge. But then H ∪ a induces a 3PC(v, v′). Therefore, since (H, a) cannot induce a
proper wheel, (H, a) is either a bug or a twin wheel. If (H, a) is a bug, then u is either its
center-crosspath or a node of type dc. So (H, a) is a twin wheel, and hence u is a node of
type d w.r.t. (H, a). 2

9 Conclusion

Star cutsets and 2-joins, as well as their generalizations, appear in decompositions of complex
hereditary graph classes such as balanced bipartite graphs (i.e. balanced matrices) [20, 16],
perfect graphs [11], odd-hole-free graphs [21] and even-hole-free graphs. In trying to under-
stand why this is the case, observe that in order to simplify a graph we need to break some
holes. To do that we can either use a node that has neighbors on a hole as a centre of a star
cutset (or its generalization), or when no such node exists we can hope that two edges of this
hole will extend to a 2-join (or its generalization) that breaks the hole. The star cutsets are
the key reason why none of the above mentioned decomposition theorems lead to construc-
tions for these classes (where a construction for a class of graphs C would mean showing that
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every graph in C can be built from basic graphs that can be explicitly constructed, gluing
them together by prescribed composition operations, and all graphs built this way are in
C). Such constructions are known for graph classes that, in addition to excluding different
types of 3-path-configurations, either do not have any wheels, such as triangulated graphs
or unichord-free graphs [34], or where the wheels that can occur are very limited, such as
claw-free graphs [13] and bull-free graphs [7]. None of these graph classes require star cutsets
for their decomposition, so it is easy (relatively speaking) to turn their decompositions into
compositions, and hence obtain the desired constructions.

A more important question is whether the decomposition theorems we have discussed
can be turned into algorithms or used to prove other interesting properties of the respective
graph classes. Some recent research that has turned in this direction suggests that in orther
to do that new techniques need to be invented.

As we have seen, the key idea that allows us to turn decomposition theorems that use
star cutsets (and their generalizations) into recognition algorithms is the cleaning. The next
question would be how to exploit the decomposition theorems to get algorithms for opti-
mization problems such as finding the size of a largest clique, or stable set or coloring the
graph. In Section 2 we saw that the decompositions by star cutsets and 2-joins can be
separated (which remains true when decomposing with their generalizations as well, as in
[16, 8]), i.e. even-hole-free graphs can be decomposed into basic graphs by first perform-
ing star cutset decompositions, and then the 2-join decompositions, without reintroducing
star cutsets. So it makes sense to take the bottom-up approach, and first try to develop
techniques for using 2-joins in optimization algorithms, which is what is done in [35]. In
[35] polynomial time algorithms are constructed for finding a maximum weighted stable set
of even-hole-free graphs with no star cutset (that using the decomposition result presented
here, reduces to even-hole-free graphs decomposable by 2-joins) and perfect graphs with no
balanced skew-partition, homogeneous pair and 2-join in the complement (and also the al-
gorithms for maximum weighted clique and colouring for this class). What came out of this
work is that the idea of using extreme non-crossing 2-joins is fundamental in turning 2-joins
into optimization algorithms. These ideas are then extended in [14] where an O(n6) algo-
rithm is given for maximum weighted stable set problem for perfect graphs with no balanced
skew-partitions. Since this class is self-complementary, this algorithm also solves the maxi-
mum weighted clique problem, and it follows that coloring this class can be done in O(n7)
time. All these algorithms are also robust, in the sense that they take any graph as input
and they either correctly solve the given optimization problem or they correctly identify the
input graph as not belonging to the particular class.

An extreme decomposition, w.r.t. a particular set of cutsets, is one in which one of the
blocks of decomposition does not have any of the cutsets from the set. If a graph has a 2-join
it does not necessarily imply that it will have an extreme 2-join, but in [35] it is shown that
this will hold in graphs with no star cutset. This result, and its extension to dealing with
star cutsets, was fundamental in [2] for proving the Conforti and Rao Conjecture for linear
balanced bipartite graphs. The Conforti and Rao Conjecture [22] states that every balanced
bipartite graph contains an edge that is not the unique chord of a cycle. This conjecture
was formulated in the same paper where the authors give a decomposition theorem for linear
balanced bipartite graphs that uses star cutsets and 2-joins. So the decomposition of linear
balanced bipartite graphs has been known for 20 years, and yet it was not clear how to use it
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to prove the existence of an edge that is not the unique chord of a cycle, until new techniques
for manipulating decompositions theorems were invented.
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A Decomposing connected diamonds

In this appendix we prove Theorem 1.6, by decomposing connected diamonds with 2-joins.
We first review some known facts about 2-joins and blocking sequences which will help in the
proofs.

A.1 2-joins and blocking sequences

In this section we consider an induced subgraph H of G that contains a 2-join H1|H2. We
say that a 2-join H1|H2 extends to G if there exists a 2-join of G, H ′

1|H
′
2 with H1 ⊆ H ′

1 and
H2 ⊆ H ′

2. We characterize the situation in which the 2-join of H does not extend to a 2-join
of G.

Definition A.1 A blocking sequence for a 2-join H1|H2 of an induced subgraph H of G is
a sequence of distinct nodes x1, . . . , xn in G \H with the following properties:

(1) (i) H1|H2 ∪ x1 is not a 2-join of H ∪ x1,

(ii) H1 ∪ xn|H2 is not a 2-join of H ∪ xn, and

(iii) if n > 1 then, for i = 1, . . . , n−1, H1∪xi|H2∪xi+1 is not a 2-join of H∪{xi, xi+1}.

(2) x1, . . . , xn is minimal w.r.t. property (1), in the sense that no sequence xj1 , . . . , xjk with
{xj1 , . . . , xjk} ⊂ {x1, . . . , xn}, satisfies (1).
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Blocking sequences for 2-joins were introduced in [18], where the following results are
obtained.

Let H be an induced subgraph of G with 2-join H1|H2 and special sets (A1, A2, B1, B2).
In the following results we let S = x1, . . . , xn be a blocking sequence for the 2-join H1|H2 of
an induced subgraph H of G.

Remark A.2 H1|H2 ∪ u is a 2-join of H ∪ u if and only if N(u) ∩ H1 = ∅, A1 or B1.
Similarly, H1 ∪ u|H2 is a 2-join of H ∪ u if and only if N(u) ∩H2 = ∅, A2 or B2.

Lemma A.3 If n > 1 then, for every node xj, j ∈ {1, . . . , n − 1}, N(xj) ∩ H2 = ∅, A2 or
B2, and for every node xj, j ∈ {2, . . . , n}, N(xj) ∩H1 = ∅, A1 or B1.

Lemma A.4 Assume n > 1. Nodes xi, xi+1, 1 ≤ i ≤ n − 1, are not adjacent if and only if
N(xi) ∩H2 = A2 and N(xi+1) ∩H1 = A1, or N(xi) ∩H2 = B2 and N(xi+1) ∩H1 = B1.

Theorem A.5 Let H be an induced subgraph of a graph G that contains a 2-join H1|H2.
The 2-join H1|H2 of H extends to a 2-join of G if and only if there exists no blocking sequence
for H1|H2 in G.

Lemma A.6 For 1 < i < n, H1 ∪ {x1, . . . , xi−1}|H2 ∪ {xi+1, . . . , xn} is a 2-join of H ∪ (S \
{xi}).

Lemma A.7 If xixk, n ≥ k > i + 1 ≥ 2, is an edge, then either N(xi) ∩ H2 = A2 and
N(xk) ∩H1 = A1, or N(xi) ∩H2 = B2 and N(xk) ∩H1 = B1.

Lemma A.8 If xj is the node of lowest index adjacent to a node of H2, then x1, . . . , xj is
a chordless path. Similarly, if xj is the node of highest index adjacent to a node of H1, then
xj, . . . , xn is a chordless path.

Theorem A.9 Let G be a graph and H an induced subgraph of G with a 2-join H1|H2 and
special sets (A1, A2, B1, B2). Let H ′ be an induced subgraph of G with 2-join H ′

1|H2 and
special sets (A′

1, A2, B
′
1, B2) such that A′

1 ∩ A1 6= ∅ and B′
1 ∩ B1 6= ∅. If S is a blocking

sequence for H1|H2 and H ′
1 ∩ S 6= ∅, then a proper subset of S is a blocking sequence for

H ′
1|H2.

A.2 The decomposition

Recall that a connected diamond is a pair (Σ, Q), where Σ = 3PC(x1x2x3, y) and Q =
q1, ..., qk, k ≥ 2, is a chordless path disjoint from Σ such that the only nodes of Q adjacent
to Σ are q1 and qk. Furthermore q1 is of type t2 w.r.t. Σ adjacent to, say x1 and x3 and one
of the following holds:

(i) qk is of type p2 such that N(qk) ∩ V (Σ) ⊆ V (Px2y) \ {x2} , or

(ii) qk is of type d adjacent to y, y1, y3 such that x1y and x3y are not edges.
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Figure 12: Different types of connected diamonds.

We rename some nodes and introduce some additional notation (see Figure 12). Let
a′1 = qk and let a1 be the closest neighbor of a′1 to x2 in Px2y. Let b1 = x2, b′1 = q1,
b2 = x1 and b′2 = x3. Now let A1 = {a1, a

′
1}, A2 = V (Σ) ∩ N(a′1) \ {a1}, B1 = {b1, b

′
1} and

B2 = {b2, b
′
2}. Let A = A1 ∪ A2 and B = B1 ∪ B2. When a′1 is of type d w.r.t. Σ, A2 has

cardinality 2 and let a2 = y1, a
′
2 = y3, whereas when a′1 is of type p2, A2 has cardinality 1

and we let a2 = a′2 denote its unique node. The connected diamond (Σ, Q) is denoted by
H(A1, A2, B1, B2). Let R be the subpath of Px2y between a1 and b1. Now let H1 = R ∪ Q
and H2 = H(A1, A2, B1, B2) \H1. Let Pa2b2 be the chordless path from a2 to b2 in H2 \ b

′
2,

and define Pa′
2
b′
2
similarly. When |A2| = 2, Pa2b2 and Pa′

2
b′
2
are node-disjoint paths. When

|A2| = 1, these two paths are identical between a2 = a′2 and y. In this case, we refer to the
a2y-subpath of Pa2b2 as Pa2y path, and the b2y-subpath (resp. b′2y-subpath) of Pa2b2 (resp.
Pa′

2
b′
2
) as Pb2y (resp. Pb′

2
y) path. Let Pa1b1 be the chordless path from a1 to b1 in H1 \a

′
1, and

define Pa′
1
b′
1
similarly. The two paths Pa1b1 and Pa′

1
b′
1
of H1 will be called the side-1-paths of

H and the two paths Pa2b2 and Pa′
2
b′
2
of H2 will be called the side-2-paths of H. We say that

H is short if out of all connected diamonds of G, the two side-2-paths of H have as few nodes
in common as possible, i.e. there is no connected diamond H ′ of G such that the side-2-paths
of H ′ have fewer nodes in common that the side-2-paths of H.

We denote by Σ1 the 3PC(a1a
′
1a2, b2) induced byH1∪Pa2b2 and by Σ2 the 3PC(a1a

′
1a

′
2, b

′
2)

induced by H1∪Pa′
2
b′
2
. Σ′ denotes the 3PC(b2b

′
2b

′
1, y) when |A2| = 1 and the 3PC(b2b

′
2b

′
1, a

′
1)

when |A2| = 2 induced by H \ Pa1b1 . We denote va1 (resp. vb1) the neighbor of a1 (resp. b1)
in Pa1b1 , and we define va′

1
, vb′

1
, vb2 , vb′2 similarly. If |A2| = 2, then we let va2 (resp. va′

2
) be

the neighbor of a2 (resp. a′2) in Pa2b2 (resp. Pa′
2
b′
2
). If |A2| = 1 and a2 6= y, then we let va2

be the neighbor of a2 in Pa2y. Finally, when |A2| = 1, we let yb2 , yb′2 be the neighbor of y
in Pyb2 and Pyb′

2
respectively. If |A2| = 1 and y 6= a2, we let ya2 denote the neighbor of y in
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Pya2 .
A segment of H is a path P of H whose endnodes are of degree at least 3, whose inter-

mediate nodes are all of degree 2, and P is not an edge of G[A] or G[B].

Lemma A.10 Let G be a 4-hole-free odd-signable graph that does not have a proper wheel,
a bug with a center-crosspath nor a bug with a type s2 node. Let H(A1, A2, B1, B2) be a short
connected diamond of G. A node u of G \H that has a neighbor in H is one of the following
types (see Figures 13, 14, 15, and 16).

pi, for i=1,2,3 : For some segment S of H, N(u) ∩ H ⊆ S and |N(u) ∩ H| = i.
Furthermore, if i ≥ 2, then u has two adjacent neighbors in H. Also
if i = 3, |A2| = 1 and S = Pa2y, then N(u) ∩ H induces a path of
length 2.

A1 : N(u) ∩H = A1.

A : N(u) ∩H = A.

a : |A2| = 1 and u has two neighbors in H, the node of A2 and one node
of A1.

B : N(u) ∩H = B.

B2 : N(u) ∩H = B2.

t3 : Node u has three neighbors in H: either two nodes of B2 and one of
B1; or |A2| = 2 and u is adjacent to two nodes of A1 and one node of
A2.

d : |A2| = 1 and u has three neighbors in H: if y = a2, then N(u)∩H =
{y, yb2 , yb′2}, and otherwise the neighbors of u in H are y and two
nodes from {ya2 , yb2 , yb′2}.

Ad : |A2| = 1, y = a2 and u has four neighbors in H: a1, a
′
1, a2 and either

yb2 or yb′
2
.

H1-crossing : Either N(u) ∩H = {b1, v1, v2} where v1v2 is an edge of Pa′
1
b′
1
\ b′1 or

N(u) ∩H = {b′1, v1, v2} where v1v2 is an edge of Pa1b1 \ b1.

55



H2-crossing : If |A2| = 1, then either yb2 6= b2 and N(u) ∩ H = {yb2 , v1, v2}
where v1v2 is an edge of Pb′

2
y \ y, or yb′

2
6= b′2 and N(u) ∩ H =

{yb′
2
, v1, v2} where v1v2 is an edge of Pb2y \ y. If |A2| = 2, then

N(u) ∩ H = {a2, v1, v2} where v1v2 is an edge of Pa′
2
b′
2
\ a′2, or

N(u) ∩H = {a′2, v1, v2} where v1v2 is an edge of Pa2b2 \ a2.

pseudo-twin of a
node of B1

: We define pseudo-twin of b1: N(u)∩H = B2∪{v1, v2}, where v1 and
v2 are nodes of Pa1b1 . Furthermore, if b1 /∈ {v1, v2}, then v1v2 is an
edge. Pseudo-twin of b′1 is defined symmetrically.

pseudo-twin of a
node of B2

: We define pseudo-twin of b2: N(u)∩H = B ∪ {v}, where if |A2| = 2,
then v is a node of Pa2b2 \ b2, and if |A2| = 1, then v is a node of
Pb2y \ b2 and not both yb′2 and yu are edges. Pseudo-twin of b′2 is
defined symmetrically.

pseudo-twin of a
node of A1

: We define pseudo-twin of a1: N(u) ∩H = A2 ∪ {a′1, v1, v2}, where v1
and v2 are nodes of Pa1b1 . Furthermore, if a1 /∈ {v1, v2}, then |A2| = 1
and v1v2 is an edge. Pseudo-twin of a′1 is defined symmetrically.

pseudo-twin of a
node of A2

: We define pseudo-twin of a2: If |A2| = 2, then N(u) ∩ H = A1 ∪
{v1, v2}, where v1 and v2 are nodes of Pa2b2 . Furthermore, if a2 /∈
{v1, v2}, then v1v2 is an edge. If |A2| = 1 and a2 6= y, then N(u) ∩
H = A1 ∪ {a2, va2}. If |A2| = 1 and a2 = y, then N(u) ∩ H =
A1 ∪ {a2, v1, v2} where v1 ∈ Pb2y \ y, v2 ∈ Pb′

2
y \ y, at least one of

{v1, v2} is adjacent to y, and u is adjacent to at most one of {b2, b
′
2}.

Pseudo-twin of a′2 is defined symmetrically.

pseudo-twin of y : If y = a1 or a2, then pseudo-twin of y is defined as corresponding
pseudo-twins above. So assume |A2| = 1 and a2 6= y. Then N(u) ∩
H = {y, ya2 , v1, v2} where v1 ∈ Pb2y \ y, v2 ∈ Pb′

2
y \ y, at least one of

{v1, v2} is adjacent to y, and u is adjacent to at most one of {b2, b
′
2}.

s1 : N(u) ∩H = {v1, v2} where either v1 ∈ B1 and v2 ∈ B2; or |A2| = 2,
v1 ∈ A1 and v2 ∈ A2.

s2 : |A2| = 1, y 6= a2 and N(u)∩H = {b2, b
′
2, v1, v2} where v1v2 is an edge

of Pa2y. Furthermore, if y = v1 or v2, then yb2 and yb′2 are not edges.

s3 : |A2| = 1 and either N(u) ∩H = B2 ∪ {a2, a
′
1, b1} and a2b

′
2 is not an

edge, or N(u) ∩H = B2 ∪ {a2, a1, b
′
1} and a2b2 is not an edge.
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s4 : |A2| = 1, a2b2 and a2b
′
2 are not edges, and N(u) ∩H = A ∪B2.

Proof: We first prove the following two claims.

Claim 1: If |A2| = 1, then N(u) ∩H 6= {y, yb2 , yb′2 , b1} and N(u) ∩H 6= {y, yb2 , yb′2 , b
′
1}.

Proof of Claim 1: Assume not. By symmetry, w.l.o.g. assume that N(u) ∩ H =
{y, yb2 , yb′2 , b1}. If yb2 (resp. yb′2) is an edge, then by definition of a connected diamond
yb′2 (resp. yb2) is not an edge, H \ Pa′

1
b′
1
induces a bug with center b2 (resp. b′2) and u is of

type s2 w.r.t. this bug, contradicting our assumption.
So yb2 and yb′2 are not edges, and hence yb2 6= b2 and yb′

2
6= b′2. So (H \ Pa1b1) ∪ {b1, u}

induces a connected diamond H ′(A′
1, A

′
2, B1, B2) where A′

1 = {u, y} and A′
2 = {yb2 , yb′2}.

The two side-2-paths of H ′ have fewer nodes in common than the two side-2-paths of H,
contradicting our assumption. This completes the proof of Claim 1.

Claim 2: If |N(u) ∩A| ≥ 2 and |N(u) ∩B| ≥ 2, then u is of type s3 or s4 w.r.t. H.

Proof of Claim 2: Assume that |N(u) ∩ A| ≥ 2 and |N(u) ∩ B| ≥ 2. We first show that
|A2| = 1. Assume not. First suppose that N(u) ∩ B2 = B2. Let H ′ be the hole induced by
Pa2b2∪Pa′

2
b′
2
∪a′1. Since (H

′, u) cannot be a proper wheel, |N(u)∩(A2∪a
′
1)| ≤ 1. By symmetry,

|N(u)∩ (A2 ∪a1)| ≤ 1. From these two inequalities, and the assumption that |N(u)∩A| ≥ 2,
it follows that N(u) ∩A = A1. By symmetry N(u) ∩B = B2. In particular, (H ′, u) is a bug
and hence N(u) ∩H ′ = {a′1, b2, b

′
2}. By symmetry, N(u) ∩ (Pa1b1 ∪ Pa2b2 ∪ b2) = {a1, a

′
1, b2}.

In particular, N(u) ∩ H = A1 ∪ B2. But then Σ and u contradict Lemma 5.1. Therefore,
N(u) ∩ B2 6= B2. By symmetry we may assume that |N(u) ∩ B2| ≤ 1 and |N(u) ∩ A1| ≤ 1.
Since {b2, b1, b

′
1, u} and {b′2, b1, b

′
1, u} cannot induce 4-holes, |N(u)∩B2| ≥ 1, and by symmetry

|N(u) ∩ A1| ≥ 1. Hence |N(u) ∩ B2| = 1 and |N(u) ∩ A1| = 1. W.l.o.g. N(u) ∩ B2 = b2.
By symmetry we may assume that u is adjacent to b1. Since {b′2, b1, b

′
1, u} cannot induce a

4-hole, N(u) ∩B = {b1, b2}. Suppose that u is adjacent to a1. Then it is not adjacent to a′1.
By Lemma 5.1 applied to Σ and u, N(u)∩Σ = {b1, b2, a1, a

′
2}. But then Σ2 and u contradict

Lemma 5.1. So u is not adjacent to a1, and hence it is adjacent to a′1. But then Σ′ and u
contradict Lemma 5.1. Therefore |A2| = 1.

Next we show that N(u) ∩ B2 = B2. Assume not, i.e. assume that |N(u) ∩ B2| ≤ 1.
Since {b2, b1, b

′
1, u} and {b′2, b1, b

′
1, u} cannot induce 4-holes, |N(u) ∩ B2| ≥ 1, and hence

|N(u) ∩ B2| = 1. W.l.o.g. N(u) ∩ B2 = b2. By symmetry we may assume w.l.o.g. that u is
adjacent to b1. Since {b

′
2, b1, b

′
1, u} cannot induce a 4-hole, it follows that N(u)∩B = {b1, b2}.

Since |N(u) ∩ A| ≥ 2 and |A2| = 1, u is adjacent to a1 or a2. But then Σ and u contradict
Lemma 5.1 (note that by our assumption G does not contain a bug with a center-crosspath,
and so u cannot be of type s1 w.r.t. Σ). Therefore, N(u) ∩B2 = B2.

Suppose that N(u)∩A1 = A1. Since Pa1b1 ∪Pa′
1
b′
1
∪{b2, u} cannot induce a proper wheel,

N(u) ∩ (Pa1b1 ∪ Pa′
1
b′
1
) = A1. By Lemma 5.1 applied to Σ and u, N(u) ∩ Σ = {b2, b

′
2, a1, a2}.

Therefore N(u) ∩H = B2 ∪ A. If a2b2 is an edge, then Σ is a bug and u is of type s2 w.r.t.
Σ, a contradiction. So a2b2 is not an edge, and by symmetry neither is a2b

′
2, and therefore u

is of type s4 w.r.t. H.
Now we may assume that N(u) ∩ A1 6= A1, and so w.l.o.g. N(u) ∩ A = {a1, a2}. By
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Lemma 5.1 applied to Σ and u, N(u)∩Σ = {b2, b
′
2, a1, a2}. By Lemma 5.1 applied to Σ′ and

u, N(u) ∩ Σ′ = {b2, b
′
2, b

′
1, a2}. Hence N(u) ∩H = B2 ∪ {b′1, a1, a2}. If a2b2 is an edge, then

Σ is a bug and u is of type s2 w.r.t. Σ, a contradiction. So a2b2 is not an edge and hence u
is of type s3 w.r.t. H. This completes the proof of Claim 2.

By Claim 2 we may assume that either |N(u) ∩ A| ≤ 1 or |N(u) ∩ B| ≤ 1. We may
assume that |N(u) ∩H| ≥ 2, since otherwise u is of type p1 w.r.t. H. Suppose that u is not
strongly adjacent to Σ nor Σ′. Then u has exactly one neighbor in Pa1b1 and one in Pa′

1
b′
1
.

By Lemma 5.1 applied to Σ1 and u, N(u)∩Σ1 = A1, and hence u is of type A1 w.r.t. H. By
symmetry between Σ and Σ′ we may now assume that u is strongly adjacent to Σ. Since G
does not contain a bug with center-crosspath, u cannot be of type s1 w.r.t. Σ (nor any other
3PC(∆, ·)). So by Lemma 5.1 it suffices to consider the following cases.

Case 1: u is of type t3 w.r.t. Σ.
By Lemma 5.1 applied to Σ1, N(u) ∩H = {b1, b2, b

′
2} or B and hence u is of type t3 or

B w.r.t. H.

Case 2: u is of type t2 w.r.t. Σ.
Suppose N(u) ∩ Σ = {b1, b2} or {b1, b

′
2}, w.l.o.g. say N(u) ∩ Σ = {b1, b2}. Since there is

no 4-hole, ub′1 is not an edge. Then by Lemma 5.1 applied to Σ1 and u, N(u) ∩ Pa′
1
b′
1
= ∅

and hence u is of type s1 w.r.t. H. Suppose now that N(u) ∩ Σ = {b2, b
′
2}. By Lemma 5.1

applied to Σ′, u is of type B2, t3 or a pseudo-twin of b′1 w.r.t. H.

Case 3: u is a pseudo-twin of a node of {b1, b2, b
′
2} w.r.t. Σ.

If |N(u) ∩ {b1, b2, b
′
2}| = 2, then let v1 and v2 be the two adjacent neighbors of u in

Σ\{b1, b2, b
′
2}. Otherwise let v1 = v2 be the neighbor of u in Σ\{b1, b2, b

′
2}. Since |N(u)∩B| ≥

2, by our assumption |N(u) ∩A| ≤ 1.
First suppose that v1, v2 are contained in the b1y-path of Σ. Then N(u) ∩ B2 = B2.

If |A2| = 2, then by Lemma 5.1 applied to Σ1 and u, N(u) ∩ Pa′
1
b′
1
= ∅ and hence u is a

pseudo-twin of b1 w.r.t. H. So we may assume that |A2| = 1. Since |N(u) ∩A| ≤ 1, v1 and
v2 are contained in either Pa1b1 or in Pa2y. If {v1, v2} ⊆ Pa1b1 , then by Lemma 5.1 applied
to Σ1 and u, N(u) ∩ Pa′

1
b′
1
= ∅ and hence u is a pseudo-twin of b1 w.r.t. H. So assume that

{v1, v2} ⊆ Pa2y. Suppose that v1v2 is an edge, i.e. |N(u) ∩ {b1, b2, b
′
2}| = 2. By Lemma 5.1

applied to Σ1 and u, N(u) ∩ Pa′
1
b′
1
= ∅. If y /∈ {v1, v2}, then u is of type s2 w.r.t. H. So

assume w.l.o.g. that y = v2. W.l.o.g. yb2 is not an edge, and suppose that yb′2 is an edge.
Let H ′ be the hole induced by Pa1b1 ∪Pa2b2 . Then (H ′, b′2) is a bug and u is of type s2 w.r.t.
(H ′, b′2). So neither yb2 nor yb′2 is an edge, and hence u is of type s2 w.r.t. H. We may now
assume that v1 = v2, i.e. |N(u) ∩ {b1, b2, b

′
2}| = 3. Then ub1 is an edge. Note that by our

assumption, u cannot be adjacent to both a′1 and a2, and hence by Lemma 5.1 applied to
Σ′ and u, N(u) ∩ Pa′

1
b′
1
= b′1. If v1 6= y, then H1 ∪ Pa2b

′
2
∪ u induces a connected diamond

H ′(A1, A2, B1, B
′
2) where B

′
2 = {b′2, u}, whose side-2-paths have fewer nodes in common than

the side-2-paths of H (note that the common nodes of side-2-paths of H are the nodes of
Pa2y, and the common nodes of side-2-paths of H ′ are the nodes of the a2v1-subpath of Pa2y),
a contradiction. Hence v1 = y. W.l.o.g. yb′2 is not an edge, and hence u is a pseudo-twin of
b2 w.r.t. H.

We may now assume that v1, v2 are contained in the b2y-path of Σ or the b′2y-path of Σ.
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By symmetry we may assume w.l.o.g. that v1, v2 are contained in the b2y-path of Σ. Then
u is adjacent to b1 and b′2. First suppose that |A2| = 1. If |N(u) ∩ {b1, b2, b

′
2}| = 2, then by

Lemma 5.1 applied to Σ1 and u, N(u)∩Pa′
1
b′
1
= ∅, and hence (Pa2b2 \vb2)∪Pa′

1
b′
1
∪{b1, b

′
2, u}

contains a 4-wheel with center b′2. So |N(u) ∩ {b1, b2, b
′
2}| = 3, i.e. v1 = v2 and ub2 is an

edge. Note that by the argument in the previous paragraph we may assume that v1 6= y. By
Lemma 5.1 applied to Σ′ and u, N(u) ∩ Pa′

1
b′
1
= b′1, and hence u is a pseudo-twin of b2 w.r.t.

H.
We may now assume that |A2| = 2. Since |N(u) ∩ A| ≤ 1, {v1, v2} ⊆ Pa2b2 . If |N(u) ∩

{b1, b2, b
′
2}| = 2, then by Lemma 5.1 applied to Σ1 and u, N(u) ∩ Pa′

1
b′
1
= ∅, and hence

(Pa2b2 \vb2)∪Pa′
1
b′
1
∪{b1, b

′
2, u} contains a 4-wheel with center b′2. So |N(u)∩{b1, b2, b

′
2}| = 3,

i.e. v1 = v2 and ub2 is an edge. Since v1 ∈ Pa2b2 , by Lemma 5.1 applied to Σ′ and u,
N(u) ∩ Pa′

1
b′
1
= b′1, and hence u is a pseudo-twin of b2 w.r.t. H.

Case 4: u is a pseudo-twin of y w.r.t. Σ.
First suppose that all nodes of N(u) ∩ (Σ \ y) are adjacent to y. If |A2| = 2, then by

Lemma 5.1 applied to Σ1, N(u)∩Pa′
1
b′
1
= a′1 and hence u is a pseudo-twin of a1 w.r.t. H. So

assume that |A2| = 1. W.l.o.g. yb2 is not an edge. If a2 = y, then by Lemma 5.1 applied to
Σ1, N(u) ∩ Pa′

1
b′
1
= a′1, and hence u is a pseudo-twin of a2 w.r.t. H. So we may assume that

a2 6= y. By Lemma 5.1 applied to Σ1, N(u) ∩ Pa′
1
b′
1
= ∅, and hence u is a pseudo-twin of y

w.r.t. H.
Now assume that some node of N(u)∩(Σ\y) is not adjacent to y, and let v be such a node.

Suppose |A2| = 2. If v is a node of Pa2b2 , then by Lemma 5.1 applied to Σ2, N(u)∩Pa′
1
b′
1
= a′1.

But then Lemma 5.1 applied to Σ1 and u is contradicted. So, by symmetry, we may assume
that v is a node of Pa1b1 . Then by Lemma 5.1 applied to Σ1, N(u) ∩ Pa′

1
b′
1
= a′1 and hence u

is a pseudo-twin of a1 w.r.t. H.
Now assume |A2| = 1. If v is a node of Pa1b1 , then by Lemma 5.1 applied to Σ1, v = b1 and

N(u)∩Pa′
1
b′
1
= ∅, contradicting Claim 1. So we may assume w.l.o.g. that v is a node of Pa2b2 .

Suppose y = a2. Then u is adjacent to a1. By Lemma 5.1 applied to Σ′, N(u) ∩ Pa′
1
b′
1
= a′1.

Since |N(u) ∩ A| ≥ 2, by our assumption |N(u) ∩ B| ≤ 1, and so u cannot be adjacent to
both b2 and b′2. Hence u is a pseudo-twin of a2 w.r.t. H. So assume that y 6= a2. By Lemma
5.1 applied to Σ1, N(u)∩Pa′

1
b′
1
= ∅. Suppose that u is adjacent to both b2 and b′2. Then yb′2

is an edge and N(u)∩H = {b2, b
′
2, y, ya2} (since by definition of connected diamond it is not

possible that both yb2 and yb′2 are edges). But then Σ is a bug, and u is of type s2 w.r.t. it,
a contradiction. So u cannot be adjacent to both b2 and b′2, and hence u is a pseudo-twin of
y w.r.t. H.

Case 5: u is of type d w.r.t. Σ.
Suppose |A2| = 2. If N(u) ∩ Σ = {a1, a2, va1}, then by Lemma 5.1 applied to Σ1 and

u, ua′1 is an edge. But then, since ua′2 is not an edge, Lemma 5.1 applied to Σ2 and u
is contradicted. So N(u) ∩ Σ 6= {a1, a2, va1}. By symmetry N(u) ∩ Σ 6= {a1, a

′
2, va1}. So

N(u)∩Σ = {a1, a2, a
′
2}. Then ua′1 is an edge, else {u, a2, a

′
2, a

′
1} induces a 4-hole. By Lemma

5.1 applied to Σ2, u has at most two neighbors in Pa′
1
b′
1
. So u is of type A w.r.t. H or it is a

pseudo-twin of a′1 w.r.t. H.
Assume now that |A2| = 1. Suppose u is adjacent to both yb2 and yb′

2
. So the neighbors

of u in Σ are y, yb2 , yb′2 . By Lemma 5.1 applied to Σ2, the only node of Pa′
1
b′
1
that may be
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adjacent to u is b′1. Then by Claim 1, ub′1 is not an edge and hence u is of type d w.r.t. H.
So we may assume that u is not adjacent to one node of {yb2 , yb′2}. Suppose that y = a2.
Suppose u is adjacent to a1, y, yb2 . By Lemma 5.1 applied to Σ1, ua

′
1 is an edge and no other

node of Pa′
1
b′
1
is adjacent to u, and hence u is of type Ad w.r.t. H. Similarly, if u is adjacent

to a1, y, yb′
2
, then by Lemma 5.1 applied to Σ2, u must be of type Ad w.r.t. H. Assume now

that y 6= a2. If u is adjacent to y, ya2 , yb2 (resp. y, ya2 , yb′2), then by Lemma 5.1 applied to
Σ1 (resp. Σ2), u is of type d w.r.t H.

Case 6: u is of type p3t w.r.t. Σ.
Suppose that N(u) ∩ Σ is contained in Pb1a1 or |A2| = 2 and it is contained in Pa2b2 or

Pa′
2
b′
2
, or |A2| = 1 and it is contained in Pa2y or Pb2y or Pb′

2
y. Then by Lemma 5.1 applied

to Σ1 or Σ2, N(u) ∩ Pa′
1
b′
1
= ∅, and hence u is of type p3 w.r.t. H. So we may assume

w.l.o.g. that u is adjacent to both a1 and a2. Then by Lemma 5.1 applied to Σ1 or Σ2,
N(u) ∩ Pa′

1
b′
1
= a′1, and hence u is a pseudo-twin of a1 or a2 w.r.t. H.

Case 7: u is of type p3b w.r.t. Σ.
LetN(u)∩Σ = {v, v1, v2} such that v1v2 is an edge. Suppose that |A2| = 2. If v1v2 = a1a2,

then by Lemma 5.1 applied to Σ1, N(u)∩Pa′
1
b′
1
= a′1, and hence u is a pseudo-twin of a2 w.r.t.

H. Similarly, if v1v2 = a1a
′
2, then u is a pseudo-twin of a′2 w.r.t. H. If {v, v1, v2} ⊆ Pa1b1 or

Pa2b2 or Pa′
2
b′
2
, then by Lemma 5.1 applied to Σ1 or Σ2 (depending on which path of Σ the

neighbors of u are contained in), N(u) ∩ Pa′
1
b′
1
= ∅ and hence u is of type p3 w.r.t. H. So

we may assume w.l.o.g. that v = a1 and v1v2 is an edge of Pa2b2 \ a2. By Lemma 5.1 applied
to Σ1, N(u) ∩ Pa′

1
b′
1
= a′1, and hence u is a pseudo-twin of a2 w.r.t. H.

Suppose now that |A2| = 1. If v1v2 = a1a2, then by Lemma 5.1 applied to Σ1, N(u) ∩
Pa′

1
b′
1
= a′1. Suppose that v is contained in Pa2y. Note that va2 /∈ E(G). Then (H \ a2)∪{u}

contains a connected diamond H ′(A1, A
′
2, B1, B2) where A′

2 = {u}. Since va2 is not an edge,
the two side-2-paths of H ′ have fewer nodes in common than the two side-2-paths of H,
contradicting our assumption. So v must be contained in Pa1b1 , and hence u is a pseudo-twin
of a1 w.r.t. H.

So we may assume that v1v2 6= a1a2. Suppose v is a node of Pa1b1 . If v1v2 is an edge of
Pa1b1 , then by Lemma 5.1 applied to Σ1, N(u) ∩ Pa′

1
b′
1
= ∅ and hence u is of type p3 w.r.t.

H. Assume now that v1v2 is an edge of Pa2y. By Lemma 5.1 applied to Σ1, v = b1 and
N(u) ∩ Pa′

1
b′
1
= ∅. Say v2 is the neighbor of u in Pa2y closer to y. Then (H \ Pa1b1)∪ {b1, u}

induces a connected diamond H ′(A′
1, A

′
2, B1, B2) where A

′
1 = {v1, u} and A′

2 = {v2}. The two
side-2-paths of H ′ have fewer nodes in common than the two side-2-paths of H, contradicting
our assumption.

We may now assume that v is not in Pa1b1 . Suppose that v1v2 is in Pa1b1 . So v ∈ Pa2y. By
Lemma 5.1 applied to Σ1, v = y, yb2 ∈ E(G) and N(u) ∩ Pa′

1
b′
1
= ∅. Since yb2 ∈ E(G), by

definition of connected diamonds yb′2 cannot be an edge. Then Pa1b1 ∪ Pa′
1
b′
1
∪ Pa2y ∪ {u, b′2}

induces a 3PC(a1a
′
1a2, uv1v2) or a 4-wheel with center a1. So v1v2 is not an edge of Pa1b1 ,

and hence {v, v1, v2} ⊆ P for some P ∈ {Pa2y, Pyb2 , Pyb′
2
}. Then by Lemma 5.1 applied to

Σ1 or Σ2, N(u) ∩ H = {v, v1, v2}. If P = Pa2y, then H ∪ u contains a connected diamond
H ′(A1, A2, B1, B2) that contains u and whose side-2-paths have fewer nodes in common than
the side-2-paths of H, a contradiction. So P ∈ {Pyb2 , Pyb′

2
}, and hence u is of type p3 w.r.t.

H.
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Case 8: u is of type p2 w.r.t. Σ.
Let v1v2 be the edge of N(u) ∩ Σ. Suppose |A2| = 2. If v1v2 is an edge of Pa1b1 , then by

Lemma 5.1 applied to Σ1, u is of type p2 or an H1-crossing w.r.t. H. Suppose v1v2 is an
edge of Pa2b2 or Pa′

2
b′
2
, w.l.o.g. say v1v2 is an edge of Pa2b2 . Then by Lemma 5.1 applied to

Σ1 and u, b′1 is the only node of Pa′
1
b′
1
that may be adjacent to u. If ub′1 is not an edge, then u

is of type p2 w.r.t. H. So assume ub′1 is an edge. If ub2 is an edge, then u is of type s1 w.r.t.
Σ′, contradicting our assumption. So ub2 is not an edge. Hence H2 ∪ {u, b′1, a1} induces a
3PC(b2b

′
2b

′
1, v1v2u). We may now assume w.l.o.g. that N(u) ∩ Σ = {a1, a2}. If u does not

have a neighbor in Pb′
1
a′
1
, then u is of type s1 w.r.t. H. So assume u does have a neighbor

in Pb′
1
a′
1
. By Lemma 5.1 applied to u and Σ2, and since u cannot be of type s1 w.r.t. Σ2,

N(u) ∩ Pa′
1
b′
1
= a′1, and hence u is of type t3 w.r.t. H.

Now assume that |A2| = 1. If v1v2 is an edge of Pa1b1 , then by Lemma 5.1 applied to Σ1,
u is of type p2 or an H1-crossing w.r.t. H. Suppose v1v2 is an edge of Pyb2 or Pyb′

2
, w.l.o.g.

say v1v2 is an edge of Pyb2 . Then by Lemma 5.1 applied to Σ′ and since u cannot be of type
s1 w.r.t. Σ′, either N(u) ∩ Pb′

1
a′
1
= ∅, or y = a2 and N(u) ∩ Pb′

1
a′
1
= a′1. In the first case u is

of type p2 w.r.t. H, and in the second case, by Lemma 5.1 applied to Σ1 and u, node u is
of type s1 w.r.t. Σ1, contradicting our assumption. Now assume that y 6= a2 and v1v2 is an
edge of Pa2y. By Lemma 5.1 applied to Σ1 and u (and since N(u) ∩ Σ = {v1, v2}), the only
node of H \ {v1, v2} that may be adjacent to u is b′1. If u is not adjacent to b′1, then u is of
type p2 w.r.t. H. Suppose that u is adjacent to b′1. W.l.o.g. v2 is closer than v1 to y on Pa2y.
So (H \ Pa′

1
b′
1
) ∪ {b′1, u} induces a connected diamond H ′(A′

1, A
′
2, B1, B2) where A′

1 = {v1, u}
and A′

2 = {v2}. The two side-2-paths of H ′ have fewer nodes in common than the two side-
2-paths of H, contradicting our assumption. Finally suppose that N(u) ∩ Σ = {a1, a2}. By
Lemma 5.1 applied to Σ1, u is of type a, A or a pseudo-twin of a′1 w.r.t. H.

Case 9: u is of type crosspath w.r.t. Σ.
Let N(u) ∩ Σ = {v, v1, v2} such that v1v2 is an edge. First suppose that |A2| = 2. Note

that v ∈ {a2, a
′
2, va1}. Suppose that v = va1 . Then by Lemma 5.1 applied to Σ1 (in the case

where v1v2 is an edge of Pa2b2) or Σ2 (in the case where v1v2 is an edge of Pa′
2
b′
2
), a1b1 is an

edge. But then u is the center-crosspath of bug Σ. So v = a2 or a′2, w.l.o.g. say v = a2.
Suppose v1v2 is an edge of Pa1b1 . Then by Lemma 5.1 applied to Σ1 and u, either a2b2 is an
edge and N(u) ∩ Pa′

1
b′
1
= ∅, or N(u) ∩ Pa′

1
b′
1
= a′1. In the first case u is a center-crosspath of

bug Σ1, a contradiction. So N(u) ∩ Pa′
1
b′
1
= a′1, and hence Σ2 and u contradict Lemma 5.1.

So v1v2 is an edge of Pa′
2
b′
2
. Then by Lemma 5.1 applied to Σ′, u is an H2-crossing w.r.t. H.

Now assume that |A2| = 1. Suppose that v /∈ {yb2 , yb′2}. So w.l.o.g v1v2 is an edge of Pyb2 .
If y = a2, then v = a1 and by Lemma 5.1 applied to Σ1, u is a pseudo-twin of a2 w.r.t. Σ1,
i.e. N(u) ∩ Pa′

1
b′
1
= a′1. Let v1 be the neighbor of u in Pa2b2 that is closer to b2, and let P be

the b2v1-subpath of Pa2b2 . Then P ∪ Pa1b1 ∪ Pa′
1
b′
1
∪ Pa2b

′
2
∪ u induces a connected diamond

H ′(A1, A
′
2, B1, B2), where A

′
2 = {a2, u}. The side-2-paths of H

′ have fewer nodes in common
than the side-2-paths of H, contradicting our choice of H. So y 6= a2. Then v = ya2 and by
Lemma 5.1 applied to Σ1, N(u)∩H = {v, v1, v2}. But then (H \yb2)∪u contains a connected
diamond whose two side-2-paths have fewer nodes in common than the side-2-paths of H,
contradicting our assumption.

So w.l.o.g v = yb2 . Since there is no bug with a center-crosspath, yb2 is not an edge.
Suppose that v1v2 = a1a2. Then by Lemma 5.1 applied to Σ1, N(u) ∩ Pa′

1
b′
1
= a′1, and hence
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N(u)∩H = {a1, a
′
1, a2, yb2}. Note that ya2 is not an edge, else {y, a2, u, yb2} induces a 4-hole.

So (H \ Pa2y) ∪ {y, u} induces a connected diamond H ′(A1, A
′
2, B1, B2) where A′

2 = {u}.
Since ya2 is not an edge, the two side-2-paths of H ′ have fewer nodes in common that the
two side-2-paths of H, contradicting our assumption. So v1v2 6= a1a2.

Suppose that v1v2 is an edge of Pa1b1 . Then, by Lemma 5.1 applied to Σ1, N(u)∩Pa′
1
b′
1
= ∅

and v is adjacent to b2. So yb2b2 is an edge. Node y is not adjacent to b′2, otherwise
{y, yb2 , b2, b

′
2} induces a 4-hole. But then Pa1b1 ∪ Pa′

1
b′
1
∪ (Pa2b2 \ b2) ∪ {u, b′2} induces a

3PC(a1a
′
1a2, uv1v2) or a 4-wheel with center a1. So v1v2 is not an edge of Pa1b1 . Then by

Lemma 5.1 applied to Σ′, N(u) ∩H = {v, v1, v2}. Note that since neither {u, yb2 , y, v1} nor
{u, yb2 , y, v2} can induce a 4-hole, neither v1y nor v2y is an edge. If v1v2 is an edge of Pb′

2
y,

then u is an H2-crossing w.r.t. H. So assume that v1v2 is an edge of Pa2y. Let v1 be the
neighbor of u in Pa2y that is closer to a2, and let P be the a2v1-subpath of Pa2y. Then
P ∪ Pa1b1 ∪ Pb2y ∪ Pb′

2
y ∪ Pa′

1
b′
1
∪ u induces a connected diamond H ′(A1, A2, B1, B2). Since

v2y is not an edge, the two side-2-paths of H ′ have fewer nodes in common than the two
side-2-paths of H, contradicting our assumption. 2

The following three remarks follow from Lemma A.10.

Remark A.11 Let H(A1, A2, B1, B2) be a short connected diamond of G, and let u ∈ G\H.
If |N(u) ∩A| ≥ 2 and |N(u) ∩B| ≥ 2, then u is of type s3 or s4 w.r.t. H.

Remark A.12 Let H(A1, A2, B1, B2) be a short connected diamond of G. Let v ∈ A∪B∪{y}
and let u be a pseudo-twin of v w.r.t. H. Then (H \ {v}) ∪ {u} contains a short connected
diamond H ′ that contains ((A ∪ B ∪ {y}) \ {v}) ∪ {u}. We say that H ′ is obtained by
substituting u into H.

Remark A.13 Let H(A1, A2, B1, B2) be a short connected diamond of G. If u is of type p3
w.r.t. H, then H ∪ u contains a short connected diamond H ′(A1, A2, B1, B2) that contains
u. We say that H ′ is obtained by substituting u into H.

We first prove a useful lemma about paths that connect H1 to H2, and then show that if
there is a node of type s1, s2, s3 or s4 w.r.t. H, then there is a star cutset.

Lemma A.14 Let G be a 4-hole-free odd-signable graph that does not have a star cutset.
Let H(A1, A2, B1, B2) be a short connected diamond of G. Let P = p1, ..., pk, k > 1, be a
chordless path in G \ H such that ∅ 6= N(p1) ∩ H ⊆ H1, ∅ 6= N(pk) ∩ H ⊆ H2, and no
intermediate node of P has a neighbor in H. Then P is one of the following types (see Figure
17):

(i) N(p1) ∩H = b1 or b′1, and pk is of type B2 w.r.t. H.

(ii) p1 is of type p2 w.r.t. H with neighbors in Pa1b1 or Pa′
1
b′
1
, and pk is of type B2 w.r.t.

H.

(iii) p1 is of type A1 and pk is of type p2 w.r.t. H and the following holds. If |A1| = 1, then
a2 6= y and N(pk) ⊆ Pa2y. If |A2| = 2, then N(pk) ⊆ Pa2b2 or Pa′

2
b′
2
.

(iv) p1 is of type A1 and N(pk) ∩H = a2 or a′2.
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Figure 13: Nodes adjacent to a connected diamond.
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pseudo-twin of y when y /∈ {a1, a2}
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Figure 14: Pseudo-twins of a node of A ∪ {y}.
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Figure 15: Pseudo-twins of a node of B.
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Figure 16: Nodes adjacent to a connected diamond that lead to star cutsets.

(v) p1 is of type A1 and pk is of type d w.r.t. H such that N(pk) ∩H = {y, yb2 , yb′2}.

Proof: Assume G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4, 5.5 and 5.6,
G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(∆, ·) with a hat, a
bug with an ear nor a 3PC(∆, ·) with a type s2 node.

By definition of P and Lemma A.10, the following hold.

(1) p1 is of type p1, p2, p3, A1, or H1-crossing w.r.t. H.

(2) pk is of type p1, p2, p3, d, B2, s2 or H2-crossing w.r.t. H, or y /∈ {a1, a2} and pk is a
pseudo-twin of y w.r.t. H.

By (1) we consider the following cases.

Case 1: p1 is of type p1 w.r.t. H.
W.l.o.g. p1 is adjacent to a node v of Pa1b1 . Let R1 (resp. R2) be the subpath of Pa1b1

with one endnode a1 (resp. b1) and the other v.
Suppose that pk is of type p1 w.r.t. H. W.l.o.g. pk is adjacent to a node of Pa2b2 . Then

either P is a hat of Σ1 (in the case where both p1a1 and pka2 are edges), or P is a hat of Σ
(in the case where both p1b1 and pkb2 are edges), or P ∪ Pa1b1 ∪ Pa2b2 induces a 3PC(·, ·).

Suppose that pk is of type p3 w.r.t. H, and let H ′(A1, A2, B1, B2) be the short connected
diamond obtained by substituting pk into H. If k = 2, then H ′ and p1 contradict Lemma
A.10. So k > 2, and hence pk−1 is of type p1 w.r.t. H ′ and a contradiction is obtained in the
same way as in the previous paragraph.

Suppose that pk is of type p2 w.r.t. H. W.l.o.g. N(pk) ∩H ⊆ Pa2b2 . Let H
′ be the hole

induced by Pa2b2 ∪ Pa1b1 . Then P and Pa′
1
b′
1
are crossing appendices of H ′, and hence by
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Lemma 3.2, v = b1. If |A2| = 2, then H2 ∪ P ∪ a′1 induces a 3PC(∆,∆) or a 4-wheel with
center b2. So |A2| = 1. If N(pk) ∩H ⊆ Pb2y, then Pb2y ∪ Pb′

2
y ∪ P induces a 3PC(∆,∆) or

a 4-wheel with center b2. So N(pk) ∩H ⊆ Pa2y. But then (H \ (Pa1b1 \ b1)) ∪ P induces a
connected diamond whose side-2-paths have fewer nodes in common than the side-2-paths of
H, a contradiction.

Suppose that pk is of type d w.r.t. H. So |A2| = 1. Suppose N(pk) ∩H = {y, yb2 , yb′2}.
Let H ′ be the hole induced by Pa1b1 ∪ Pa2b2 . Then P and Pa′

1
b′
1
are crossing appendices of

H ′, and hence by Lemma 3.2, v = b1. Suppose one of {yb2, yb
′
2} is an edge, w.l.o.g. say

yb2 ∈ E(G). Then P ∪ Pa2b2 ∪ Pa′
1
b′
1
∪ {b1, b

′
2} induces a proper wheel with center b2. So

both yb2 and yb′2 are not edges. But then P ∪H2 ∪ Pa′
1
b′
1
∪ b1 induces a connected diamond

H ′(A′
1, A

′
2, B1, B2), where A′

1 = {pk, y}, and A′
2 = {yb2 , yb′2}, and the two side-2-paths of H ′

have fewer nodes in common than the two side-2-paths of H, contradicting our assumption.
So w.l.o.g. N(pk) ∩H = {y, ya2 , yb2}. But then P ∪ Pa1b1 ∪ (Pa2b2 \ y) induces a 3PC(pk, v).

Suppose that pk is of type s2 w.r.t. H or y /∈ {a1, a2} and pk is pseudo-twin of y w.r.t.
H. Then pk has two nonadjacent neighbors in Pa2b2 . But then Pa1b1 ∪ Pa2b2 ∪ P contains a
3PC(pk, v).

Suppose that pk is an H2-crossing w.r.t. H. First assume that |A2| = 2. W.l.o.g. pk is
adjacent to a2. Let v′ be the neighbor of pk in Pa′

2
b′
2
that is closer to a′2, and let R be the

v′a′2-subpath of Pa′
2
b′
2
. Then R ∪ P ∪ R1 ∪ a2 induces a 3PC(pk, a1). So |A2| = 1. Let H ′

be the hole induced by Pyb2 ∪ Pyb′
2
. If either v 6= a1 or y 6= a2, then (H ′, pk) is a bug and

R2 ∪ (P \ pk) induces its center-crosspath or an ear, contradiction our assumption. So v = a1
and y = a2. W.l.o.g. pkyb2 is an edge, and hence Pyb2 ∪ Pa1b1 ∪ P induces a 3PC(v, yb2).

So pk must be of type B2 w.r.t. H. If v 6= b1, then Σ, pk and p1, ..., pk−1 contradict
Lemma 7.2. So v = b1, and hence (i) holds.

Case 2: p1 is an H1-crossing w.r.t. H.
W.l.o.g. p1 is adjacent to b′1. Let R be the shortest subpath of Pa1b1 with one endnode

b1 and the other adjacent to p1. If pk is adjacent to b2, then P ∪ R ∪ {b2, b
′
1} induces a

3PC(p1, b2). If pk is adjacent to b′2, then P ∪R ∪ {b′2, b
′
1} induces a 3PC(p1, b

′
2). So neither

pkb2 nor pkb
′
2 is an edge, and hence pk has a neighbor in H2 \{b2, b

′
2}. By Lemma 7.1 applied

to Σ′, p1 and P \ p1, |A2| = 1 and the following holds. Node pk is either of type p2 w.r.t.
H with neighbors contained in Pa2y or of type d adjacent to {y, yb2 , yb′2}. But then in both
cases Pa1b1 ∪ Pa2b2 ∪ P induces a 3PC(∆,∆).

Case 3: p1 is of type A1 w.r.t. H.
Note that if |A2| = 2, then pk cannot be adjacent to both a2 and a′2 (else {pk, a2, a

′
2, a

′
1}

induces a 4-hole). Supose (iv) does not hold. Then pk has a neighbor in H2 \ {a2, a
′
2}. By

symmetry, w.l.o.g. N(pk)∩ (Pa2b2 \ a2) 6= ∅. By Lemma 7.2 applied to Σ1, p1 and P \ p1, pk
is of type p2 w.r.t. Σ1 with neighbors in Pa2b2 . So by (2), pk is of type p2 or d w.r.t. H or
|A2| = 1 and pk is an H2-crossing w.r.t. H. If pk is an H2-crossing w.r.t. H, then Σ2, p1 and
P \ p1 contradict Lemma 7.2. Suppose that pk is of type d w.r.t. H. By Lemma 7.2 applied
to Σ2, p1 and P \ p1, pk is of type p2 w.r.t. Σ2. Hence N(pk) ∩H = {y, yb2 , yb′2} and so (v)
holds. Finally suppose that pk is of type p2 w.r.t. H. If |A2| = 2, then (iii) holds. So assume
that |A2| = 1. Suppose that y = a2. If pk is not adjacent to y, then (H \ yb2) ∪ P contains a
connected diamond H ′(A1, A

′
2, B1, B2), where A

′
2 = {a2, p1}, and the side-2-paths of H ′ have
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fewer nodes is common than the side-2-paths of H, contradicting our assumption. So pk is
adjacent to y and hence Pa1b1 ∪ Pa2b2 ∪ P induces a bug with center a2, and Pa2b

′
2
\ a2 is its

center-crosspath. So y 6= a2. Suppose that N(pk) ∩ H ⊆ Pb2y. If pk is adjacent to y, then
Σ2 and P contradict Lemma 7.2. So pk is not adjacent to y. Then (H \ yb2) ∪ P contains
a connected diamond H ′(A1, A

′
2, B1, B2), where A′

2 = {a2, p1}, and the side-2-paths of H ′

have fewer nodes in common than the side-2-paths of H, contradicting our assumption. So
N(pk) ∩H ⊆ Pa2y and hence (iii) holds.

Case 4: p1 is of type p2 w.r.t. H.
W.l.o.g. N(p1) ∩H ⊆ Pa1b1 .
Suppose that pk is of type p1, p2 or p3 w.r.t. H. Then w.l.o.g. N(pk) ∩ H ⊆ Pa2b2 .

Let H ′ be the hole induced by Pa1b1 ∪ Pa2b2 . Note that Pa′
1
b′
1
is an appendix of H ′ with

node-attachment b2 and edge-attachment a1a2. By Lemma 3.1 applied to H ′, Pa′
1
b′
1
and P ,

one of the following must hold: pk is adjacent to b2 or N(pk)∩H = a2 or N(pk)∩H = vb2 . If
N(pk)∩H = a2, then Σ1, pk and P \pk contradict Lemma 7.1. Suppose that N(pk)∩H = vb2 .
Let R be a shortest subpath of Pa1b1 whose one endnode is b1 and the other is a neighbor of
p1 in Pa1b1 . If |A2| = 2, or |A2| = 1 and yb′2 is not an edge, then Pa2b2 ∪ Pa′

1
b′
1
∪ P ∪ R ∪ b′2

induces a 4-wheel with center b2. So |A2| = 1 and yb′2 is an edge. Then yb2 is not an edge,
i.e. vb2 6= y, and since {b2, b

′
2, y, vb2} cannot induce a 4-hole, vb2y is not an edge. But then

Pa2b2 ∪ (Pa1b1 \ b1)∪P ∪ b′2 contains a 3PC(vb2 , y). Therefore pk must be adjacent to b2. If pk
is of type p1 w.r.t. H, then Σ, pk and P \ pk contradict Lemma 7.1. If pk is of type p2 w.r.t.
H, then H ′ ∪ P induces a 3PC(∆,∆). So pk is of type p3 w.r.t. H. Let H ′(A1, A2, B1, B2)
be the short connected diamond obtained by substituing pk into H. By Lemma A.10 applied
to H ′ and p1, k > 2. But now P \ pk is a path such that pk is of type p2 w.r.t. H ′, pk−1 is
of type p1 w.r.t. H ′, and we have already shown that this cannot happen. So pk cannot be
of type p1, p2 nor p3 w.r.t. H.

Suppose that pk is of type d w.r.t. H. W.l.o.g. pk is adjacent to yb′
2
, and hence P ∪

Pa1b1 ∪ Pa2b2 induces a 3PC(∆,∆). So pk cannot be of type d w.r.t. H.
Suppose that y /∈ {a1, a2} and pk is a pseudo-twin of y w.r.t. H. Then w.l.o.g. pk is not

adjacent to b2. Let H
′ be the hole contained in Pa1b1 ∪ (Pa2b2 \ y) ∪ pk. Then H ′, Pa′

1
b′
1
and

P \ pk contradict Lemma 3.2. So pk cannot be a pseudo-twin of y w.r.t. H.
If pk is of type s2 w.r.t. H, then (H ′, pk) is a bug, where H ′ is the hole induced by

Pa1b1 ∪ Pa2b2 , and P \ pk is its center-crosspath, a contradiction. So pk cannot be of type s2
w.r.t. H.

Suppose that pk is an H2-crossing w.r.t. H. If |A2| = 2, then w.l.o.g. pk is adjacent to a2,
and hence Σ1, pk and P \ pk contradict Lemma 7.1. So |A2| = 1. Let H ′ be the hole induced
by Pyb2 ∪ Pyb′

2
. Then (H ′, pk) is a bug, and the path from pk−1 to b1 in the graph induced

by (P \ pk) ∪ (Pa1b1 \ a1) is its center-crosspath or ear, a contradiction. So pk cannot be an
H2-crossing w.r.t. H. Therefore by (2), pk is of type B2 w.r.t. H, and hence (ii) holds.

Case 5: p1 is of type p3 w.r.t. H .
Let H ′(A1, A2, B1, B2) be the short connected diamond obtained by substituting p1 into

H. If k > 2, then p2 is of type p1 w.r.t. H ′ and it is not adjacent to b1 nor b′1, and we obtain
a contradiction as in Case 1. So k = 2. But then by (2), p2 and H ′ contradict Lemma A.10.
2
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Figure 17: Paths from Lemma A.14.

Lemma A.15 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(A1, A2, B1, B2) be a short connected diamond of G. Then no node of G \H is of type s1
w.r.t. H.

Proof: Assume G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4, 5.5 and 5.6
G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(∆, ·) with a hat, a
bug with an ear, nor a 3PC(∆, ·) with a type s2 node.

Assume that the lemma does not hold. By symmetry we may assume that there is a node
u that is of type s1 w.r.t. H, adjacent to b′2. Then the second neighbor of u in H is either
b1 or b′1. Let S = N [b2] \ vb2 . Since S is not a star cutset, there exists a direct connection
P = p1, ..., pk in G \S from u to H \S. We may assume w.l.o.g. that H, u and P are chosen
so that |P | is minimized. Note that pk has a neighbor in H \S and the only nodes of H that
may have a neighbor in P \ pk are b1, b

′
2 and b′1.

So if a node of P \ pk has a neighbor in H, then it is either not strongly adjacent to H or
by Lemma A.10 it is of type s1 w.r.t. H adjacent to b′2. In fact, by the choice of H, u and
P , no node of P \ pk can be of type s1 w.r.t. H. So nodes of P \ pk are not strongly adjacent
to H.

We may assume w.l.o.g. that N(u) ∩H = {b′2, b
′
1}.

Claim 1: pk is of type p1, p2, A1, A, a, s1 (with neighbors in A), t3 (with neighbors in A),
d, Ad, H1-crossing or H2-crossing w.r.t. H.

Proof of Claim 1: Since pk has a neighbor in H \ S, it cannot be of type s1 w.r.t. H with
neighbors in B. Since pk is not adjacent to b2, node pk cannot be of type B, B2, t3 (with
neighbors in B), s2, s3 nor s4 w.r.t. H, nor a pseudo-twin of a node of B w.r.t. H.

Suppose that pk is of type p3 w.r.t. H, and let H ′ be the short connected diamond
obtained by substituting pk into H. By Lemma A.10 applied to H ′ and u, k > 1, and hence
H ′, u and P \ pk contradict our choice of H, u and P . So pk is not of type p3 w.r.t. H.

Suppose that pk is a pseudo-twin of a node of A ∪ y w.r.t. H, and let H ′ be the short
connected diamond obtained by substituting pk into H. By Lemma A.10 applied to H ′ and
u, k > 1, and hence H ′, u and P \ pk contradict our choice of H, u and P . So pk is not
a pseudo-twin of a node of A ∪ y w.r.t. H. Now by Lemma A.10, the proof of Claim 1 is
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complete.

We now consider the following two cases.

Case 1: A node of P \ pk has a neighbor in H.
Recall that for i < k, N(pi) ∩H ⊆ {b1, b

′
1, b

′
2} and |N(pi) ∩H| ≤ 1. Let pi (resp. pj) be

a node of P \ pk with lowest (resp. highest) index that has a neighbor in H. Node pi is not
adjacent to b1, since otherwise u, p1, ..., pi is a hat of Σ. So pi is adjacent to b′1 or b′2. If there
are two distinct nodes of {b1, b

′
2, b

′
1} that have a neighbor in P \ pk, then a subpath of P \ pk

is a hat of Σ or Σ′. So either b′1 or b′2 is the only node of H that has a neighbor in P \ pk.

Case 1.1: b′1 is the only node of H that has a neighbor in P \ pk.
By definition of S and Lemma A.14 applied to H and pj, ..., pk, node pk must have a

neighbor in H1. In particular, pk cannot be of type d nor an H2-crossing w.r.t. H.
Suppose that pk is an H1-crossing w.r.t. H. If pk is adjacent to b′1 then (Pa1b1 \ a1) ∪

P ∪ {u, b′1, b
′
2} contains a proper wheel with center b′1. So pk is adjacent to b1. But then

(Pa′
1
b′
1
\ a′1) ∪ {b′2, b1, pj , ..., pk} contains a 3PC(b′1, pk). So pk is not an H1-crossing w.r.t. H.

If pk is of type A or A1 w.r.t. H, then Σ, u and P contradict Lemma 7.1.
If pk is of type a w.r.t. H, then by Lemma 7.1 applied to Σ, u and P , N(pk)∩H = {a′1, a2},

y = a2 and yb′2 is an edge. But then Σ1, pk and pj, ..., pk−1 contradict Lemma 7.2.
If pk is of type s1 w.r.t. H, then Σ, b′1 and pj, ..., pk contradict Lemma 7.2.
Suppose that pk is of type t3 w.r.t. H. If N(pk) ∩ H = {a1, a

′
1, a

′
2} then Σ′, pj and

pj+1, ..., pk contradict Lemma 7.1. So N(pk) ∩ H = {a1, a
′
1, a2}, and hence Σ, u and P

contradict Lemma 7.1. Therefore pk is not of type t3 w.r.t. H.
If pk is of type Ad w.r.t. H, then Σ′, pj and pj+1, ..., pk contradict Lemma 7.1.
So by Claim 1, pk is of type p1 or p2 w.r.t. H, and since pk must have a neighbor in

H1, N(pk) ∩ H ⊆ H1. If N(pk) ∩ H ⊆ Pa1b1 , then Σ, u and P contradict Lemma 7.1. So
N(pk)∩H ⊆ Pa′

1
b′
1
. If |A2| = 2, then Pa2b2 ∪Pa′

1
b′
1
∪P ∪ {u, b′2} contains a proper wheel with

center b′1. So |A2| = 1. Let R be the chordless path from p1 to a′1 in P ∪ (Pa′
1
b′
1
\ b′1). Then

Σ, u and R contradict Lemma 7.1.

Case 1.2: b′2 is the only node of H that has a neighbor in P \ pk.
By Lemma A.14 applied to H and pj, ..., pk, node pk must have a neighbor in H2. In

particular, pk is not an H1-crossing w.r.t. H.
If pk is of type t3, A1, A, s1 (adjacent to a1) or a (adjacent to a1) w.r.t. H, then

Pa1b1 ∪P ∪ {u, b2, b
′
1, b

′
2} induces a proper wheel with center b′2. If pk is adjacent to a′1 and it

is of type a or s1 w.r.t. H, then Pa1b1 ∪Pa′
1
b′
1
∪ {b′2, pj , ..., pk} induces a 3PC(b′2, a

′
1). So pk is

not of type t3, A1, A, s1 nor a w.r.t. H.
Suppose that pk is of type Ad w.r.t. H. If pk is adjacent to yb′

2
and yb′

2
6= b′2, then Σ, pj and

pj+1, ..., pk contradict Lemma 7.1. If pk is adjacent to yb′
2
and yb′

2
= b′2, then Pa′

1
b′
1
∪P ∪{b′2, u}

induces a proper wheel with center b′2. So pk is adjacent to yb2 . Note that by definition of
S, pk is not adjacent to b2. But then Pa1b1 ∪ P ∪ {u, b2, b

′
1, b

′
2} contains a proper wheel with

center b′2. So pk is not of type Ad w.r.t. H.
If pk is of type d w.r.t. H, then by Lemma 7.1 applied to Σ, pj and pj+1, ..., pk, either

N(pk) ∩H = {y, ya2 , yb2} or pk is adjacent to b′2. In the first case P ∪ (Pb2y \ y) ∪ {u, b′1, b
′
2}

induces a proper wheel with center b′2. So pk is adjacent to b′2, and hence P ∪Pb2y∪{u, b′1, b2}
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induces a proper wheel with center b′2. Similarly, if pk is an H2-crossing w.r.t. H, then either
P ∪ (Pb2y \y)∪{u, b′1, b

′
2} (if |A2| = 1) or P ∪Pa2b2 ∪{u, b′1, b

′
2} (if |A2| = 2) contains a proper

wheel with center b′2.
So by Claim 1, pk is of type p1 or p2 w.r.t. H, and since pk must have a neighbor in H2,

N(pk) ∩H ⊆ H2.
By Lemma 7.1 applied to Σ, pj and pj+1, ..., pk, if |A2| = 2, then N(pk) ∩H ⊆ Pa′

2
b′
2
, and

if |A2| = 1, then N(pk)∩H ⊆ Pb′
2
y. If |A2| = 2, then Pa1b1 ∪Pa′

2
b′
2
∪P ∪ {b′1, b2, u} contains a

proper wheel with center b′2, and if |A2| = 1, then Pb2y ∪Pb′
2
y ∪P ∪ {u, b′1} contains a proper

wheel with center b′2.

Case 2: No node of P \ pk has a neighbor in H.
Suppose pk is an H1-crossing w.r.t. H. If pk is adjacent to b1, then P is hat of Σ. So pk

is adjacent to b′1. But then Σ, u and P contradict Lemma 7.1. So pk is not an H1-crossing
w.r.t. H.

If pk is of type A1, t3, A, or Ad w.r.t. H, then Pa1b1 ∪P ∪ {u, b2, b
′
1, b

′
2} induces a proper

wheel with center b′2 (recall that by definition of S, pk is not adjacent to b2).
If pk is of type a w.r.t. H, then Σ′, u and P contradict Lemma 7.2. So pk is not of type

a w.r.t. H.
Suppose that pk is of type s1 w.r.t H. If pk is adjacent to a1, then Pa1b1∪P ∪{u, b2, b

′
1, b

′
2}

induces a 4-wheel with center b′2. So pk is adjacent to a′1. By Lemma 7.1 applied to Σ, u and
P , N(pk) ∩H = {a′1, a

′
2}. But then Σ′, u and P contradict Lemma 7.2. So pk is not of type

s1 w.r.t. H.
Suppose that pk is of type d w.r.t. H. By Lemma 7.2 applied to Σ′, u and P , N(pk)∩H =

{y, ya2 , yb′2} and yb′
2
6= b′2. But then Σ, u and P contradict Lemma 7.1. So pk is not of type

d w.r.t. H.
If pk is an H2-crossing w.r.t. H, then Σ′, u and P contradict Lemma 7.2.
So by Claim 1, pk is of type p1 or p2 w.r.t. H. If N(pk) ∩H ⊆ Pa1b1 , then Σ, u and P

contradict Lemma 7.1. If N(pk)∩H ⊆ Pa′
1
b′
1
, then Σ, u and R contradict Lemma 7.1, where R

is the chordless path from p1 to a′1 in P ∪(Pa′
1
b′
1
\b′1). So N(pk)∩H ⊆ H2. If |A2| = 2, then by

Lemma 7.1 applied to Σ, u and P , N(pk)∩H ⊆ Pa′
2
b′
2
, and hence Pa1b1 ∪Pa′

2
b′
2
∪P ∪{u, b2, b

′
1}

contains a proper wheel with center b′2. So |A2| = 1. By Lemma 7.1 applied to Σ, u and P ,
N(pk) ∩H ⊆ Pb′

2
y. But then Σ′, u and P contradict Lemma 7.2. 2

Lemma A.16 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(A1, A2, B1, B2) be a short connected diamond of G. Then no node of G \H is of type s2
w.r.t. H.

Proof: Assume that G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4, 5.5 and
5.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(∆, ·) with a
hat, a bug with an ear nor a 3PC(∆, ·) with a type s2 node.

Assume that G has a node u of type s2 w.r.t. H. Let v1 and v2 be the neighbors of u
in Pa2y, so that v1 is closer to a2 on Pa2y. Let Pv2y (resp. Pa2v1) be the v2y-subpath (resp.
a2v1-subpath) of Pa2y. We choose H and such a node u so that the length of Pv2y is shortest
possible. Note that since u is of type s2 w.r.t. H, |A2| = 1 and if y = v2, then yb2 and yb′2
are not edges.
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Let S = N [u] \ v1, and let P = p1, ..., pk be a direct connection from H1 ∪ Pa2v1 to H2 \
(Pa2v1∪{v2, b2, b

′
2}) in G\S. So p1 has a neighbor in H1∪Pa2v1 , pk in H2\(Pa2v1∪{v2, b2, b

′
2}),

and the only nodes of H that may have a neighbor in P \ {p1, pk} are v2, b2 and b′2. Subject
to the previous choice of H and u, we choose H, u and P so that |P | is minimized.

Claim 1: Node p1 is of type p1, p2, B, A, a, t3 (with neighbors in B), s2 (with neighbors
contained in B2 ∪ (Pa2v1 \ v1)), s3 or s4 w.r.t. H. Node pk is of type p1, p2, d or an H2-
crossing w.r.t. H. Furthermore if pk is of type d w.r.t. H, then pk is not adjacent to v1. In
particular, N(p1) ∩H = {v1, v2} or N(p1) ∩H ⊆ H1 ∪ Pa2v1 ∪ B2, N(pk) ∩H ⊆ H2 \ Pa2v1

and k > 1.

Proof of Claim 1: Since |A2| = 1, no node of G is of type t3 (with neighbors in A) w.r.t. H.
Since y 6= a2, no node is of type Ad w.r.t. H. By Lemma A.15 no node is of type s1 w.r.t.
H.

Suppose that p1 is a pseudo-twin of a node of B1, and let H ′ be the short connected
diamond obtained by substituting p1 into H. Then H ′, u and P \ p1 contradict our choice of
H, u and P . So no node of P is a pseudo-twin of a node of B1 w.r.t. H. By an analogous
argument no node of P is a pseudo-twin of a node of A1 w.r.t. H.

Suppose that p1 is a pseudo-twin of a node of B2 w.r.t. H, and let H ′ be the short
connected diamond obtained by substituting p1 into H. Recall that if v2 = y, then yb2 and
yb′2 are not edges, and hence u cannot be of type d w.r.t. H ′. So H ′ and u contradict Lemma
A.10. So no node of P is a pseudo-twin of a node of B2 w.r.t. H.

Suppose that pi, i ∈ {1, k}, is of type p3 w.r.t. H, and let H ′ be the short connected
diamond obtained by substituting pi into H. If N(pi) ∩ H ⊆ H1 ∪ Pa2v1 , then i = 1 and
hence H ′, u and P \ p1 contradict our choice of H, u and P . A contradiction is obtained by
analogous argument if N(pi) ∩ H ⊆ Pb2y ∪ Pb′

2
y ∪ Pv2y. So N(pi) ∩ H ⊆ Pa2y and pi has a

neighbor in both Pa2v1 and Pv2y. Hence N(pi)∩H induces a path of length 2, i.e. pi is a twin
w.r.t. H of a node v ∈ Pa2y. Since pi has a neighbor in both Pa2v1 and Pv2y, v ∈ {v1, v2},
and hence H ′ and u contradict Lemma A.10 (recall that by definition of S, pi is not adjacent
to u). Therefore no node of P is of type p3 w.r.t. H.

Suppose that p1 is a pseudo-twin of a2 w.r.t. H, and let H ′ be the short connected
diamond obtained by substituting p1 into H. Note that since a2 6= y, N(p1) ∩H = A ∪ va2 .
If v1 6= a2, then H ′, u and P \ p1 contradict our choice of H, u and P . So v1 = a2, and hence
H ′ and u contradict Lemma A.10. So no node of P is a pseudo-twin of a2 w.r.t. H.

Suppose that pk is a pseudo-twin of y w.r.t. H. Note that pk is adjacent to ya2 . Let H ′

be the short connected diamond obtained by substituting pk into H. If v1 6= ya2 , then k > 1
and hence H ′, u and P \ pk contradict our choice of H, u and P . So v1 = ya2 , and hence H ′

and u contradict Lemma A.10. So no node of P is a pseudo-twin of y w.r.t. H.
Suppose that p1 is of type A1 or H1-crossing w.r.t. H. Let pi be the node of P \ p1 with

lowest index adjacent to a node of H2. Note that N(p1) ∩H ⊆ H1 and N(pi) ∩H ⊆ H2. By
Lemma A.14 applied to H and p1, ..., pi, node p1 is of type A1 w.r.t. H and pi is either of type
p2 w.r.t. H and N(pi)∩H ⊆ Pa2y, or of type d w.r.t. H such that N(pi)∩H = {y, yb2 , yb′2}.
In fact, since i 6= 1, i = k and hence N(pk) ∩H ⊆ Pv2y ∪ {yb2 , yb′2}. In particular, no node of
H has a neighbor in P \ {p1, pk}. Let H ′ be the hole induced by Pa1b1 ∪ Pa2b2 . Note that u
and P are appendices of H ′ that contradict Lemma 3.1. So no node of P is of type A1 nor
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H1-crossing w.r.t. H.
So by Lemma A.10, nodes of P are of type p1, p2, A, B, B2, a, d, t3 (with neighbors

in B), s2, s3, s4 or H2-crossing w.r.t. H. By definition of P , p1 and pk are not of type
B2 w.r.t. H. Suppose that a node pi of P is of type s2 w.r.t. H. Then by the choice of
u, N(pi) ∩ Pa2y ⊆ Pa2v1 ∪ v2. Since {u, pi, b2, v1} and {u, pi, b2, v2} cannot induce 4-holes,
N(pi) ∩ Pa2y ⊆ Pa2v1 \ v1. In particular, i = 1 and k > 1. Suppose that pi is of type d w.r.t.
H. Then i = k. If pk is adjacent to v1, then v2 = y and w.l.o.g. N(pk) ∩H = {y, ya2 , yb2},
and hence Pb2y ∪ {u, ya2 , pk} induces a 4-wheel with center y. So pk is not adjacent to v1,
and hence k > 1. This completes the proof of Claim 1.

Claim 2: Node v2 does not have a neighbor in P \ {p1, pk}. In particular, for i = 2, .., k − 1,
N(pi) ∩H ⊆ B2.

Proof of Claim 2: Suppose that v2 has neighbor in P \ {p1, pk}. We first show that no node
of B2 has a neighbor in P \ {p1, pk}. Assume it does. Then there is a minimal subpath P ′

of P \ {p1, pk} such that one endnode of P ′ is adjacent to v2 and the other to a node of B2.
W.l.o.g. b2 is adjacent to an endnode of P ′. By minimality of P ′, b2, P

′, v2 is a chordless
path, and hence Pb2y ∪ Pv2y ∪ P ′ ∪ u induces a 3PC(b2, v2) (recall that if y = v2, then yb2 is
not an edge). So no node of B2 has a neighbor in P \ {p1, pk}.

Let pi be the node of P \ {p1, pk} with lowest index adjacent to v2. If N(p1) ∩H ⊆ H1,
then H and p1, ..., pi contradict Lemma A.14. So p1 has a neighbor in Pa2v1 . Let H ′ be the
hole induced by Pa2b2 ∪ Pa1b1 . Then (H ′, u) is a bug. If N(p1) ∩H = v1, then p1, ..., pi is a
hat of (H ′, u). So N(p1) ∩H 6= v1.

Suppose that N(p1) ∩ H = {v1, v2}. By Claim 1 and definition of P , w.l.o.g. pk has a
neighbor in (Pv2y ∪ Pb2y) \ v2. Let P

′ be the chordless path from pk to b2 in ((Pv2y ∪ Pb2y) \
v2)∪pk. Note that by Claim 1, pk is not adjacent to v1, and hence P ′∪P ∪{u, v1, v2} induces
a proper wheel with center v2. So N(p1) ∩H 6= {v1, v2}.

Therefore p1 has a neighbor in H1 ∪ (Pa2v1 \ v1). W.l.o.g. p1 has a neighbor in
Pa1b1 ∪ (Pa2v1 \ v1) and if p1 is of type t3 w.r.t. H, then it is adjacent to b1. Let H ′ be
the hole induced by Pa1b1 ∪ Pa2b2 . Then (H ′, u) is a bug, and by Claim 1, (H ′, u), pi and
p1, ..., pi−1 contradict Lemma 7.1. This completes the proof of Claim 2.

We now consider the following cases.

Case 1: A node of H has a neighbor in P \ {p1, pk}.
Let pi be such a neighbor with highest index. By Claim 2, N(pi) ∩H ⊆ B2. W.l.o.g. it

suffices to consider the following two cases.

Case 1.1: pi is of type B2 w.r.t. H.
Note that by definition of P , pk has a neighbor in Σ\{b2, b

′
2, b1}. By Claim 1 and Lemma

7.2 applied to Σ, pi and pi+1, ..., pk one of the following holds:

(a) pk is of type d w.r.t. H , N(pk) ∩H = {y, yb2 , yb′2}, yb2 6= b2 and yb′
2
6= b′2,

(b) w.l.o.g. yb2 is an edge and N(pk) ∩H = vb′
2
, or
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(c) pk is of type p2 w.r.t. H and N(pk) ∩H ⊆ Pv2y.

If (a) or (c) holds, then (H \Pa1b1)∪{pi, ..., pk} induces a connected diamond whose side-
2-paths have fewer nodes in common than the side-2-paths of H, contradicting our choice of
H. So (b) must hold, and hence yb′2 and yu are not edges. Let P ′ be a chordless path from
p1 to y in H1∪Pa2y ∪ p1, and let H ′ be the hole induced by P ′∪P ∪ (Pb′

2
y \ b

′
2). Since H

′∪ b′2
cannot induce a 3PC(pi, vb′

2
), (H ′, b′2) is a wheel. Since vb′

2
pi is not an edge, (H ′, b′2) cannot

be a twin wheel, and hence it is a bug. If H ′ contains both v1 and v2, then u is a center-
crosspath of (H ′, b′2). So H ′ does not contain both v1 and v2. By Claim 1 and definition of P
it follows that N(p1)∩H = {v1, v2}. But then Pa′

1
b′
1
∪Pa2v1 is a center-crosspath of (H ′, b′2).

Case 1.2: N(pi) ∩H = b′2.
As before, pk has a neighbor in Σ \ {b2, b

′
2, b1}. By Claim 1 and Lemma 7.1 applied to Σ,

pi and pi+1, ..., pk one of the following holds:

(a) N(pk) ∩H = vb′
2
,

(b) pk is of type p2 w.r.t. H and N(pk) ∩H ⊆ Pb′
2
y,

(c) pk is of type d w.r.t. H and either N(pk) ∩H = {y, yb2 , ya2} or pk is adjacent to b′2, or

(d) pk is an H2-crossing w.r.t. H and N(pk) ∩H = {b′2, vb′2 , yb2}.

Let P ′ be a chordless path from p1 to y in H1∪Pa2y ∪ p1. Suppose that (a) holds. Let H
′

be the hole induced by P ′∪P ∪(Pb′
2
y \b

′
2). Since H

′∪b′2 cannot induce a 3PC(vb′
2
, pi), (H

′, b′2)
is a wheel, and hence it must be a bug. If H ′ contains both v1 and v2, then u is a center-
crosspath of (H ′, b′2). So H ′ does not contain both v1 and v2. By Claim 1 and definition of P
it follows that N(p1)∩H = {v1, v2}. But then Pa′

1
b′
1
∪Pa2v1 is a center-crosspath of (H ′, b′2).

Suppose that (b) holds. If pk is not adjacent to b′2, then (H \ vb′
2
)∪ {pi, ..., pk} contains a

short connected diamond H ′(A1, A2, B1, B2) and H ′, u and p1, ..., pi−1 contradict our choice
of H ′, u and P . So pk is adjacent to b′2. Let H ′ be the hole induced by P ′ ∪ P ∪ (Pb′

2
y \ b

′
2).

Since (H ′, b′2) cannot be a proper wheel, N(b′2) ∩H ′ = {pi, pk, vb′
2
}. In particular, b′2 is not

adjacent to p1, and hence by Claim 1, b2 is not adjacent to p1. Also H ′ does not contain b1
nor b′1. If b2 has a neighbor in P \ {p1, pk}, then a subpath of P \ {p1, pk} is a hat of Σ. So b2
has no neighbor in P . Since b2 and b′2 are not adjacent to p1, by Claim 1, p1 is of type p1, p2,
A or a w.r.t. H. Since H ′ does not contain b1 nor b′1, N(p1)∩H 6= b1 nor b′1. In particular p1
has a neighbor in w.l.o.g. Σ \ {b2, b

′
2, b1}. But then Σ, pi and p1, ..., pi−1 contradict Lemma

7.1.
Suppose that (c) holds. First assume that N(pk) ∩H = {y, yb2 , ya2}. Then (H \ (Pb′

2
y \

b′2)) ∪ {pi, ..., pk} induces a short connected diamond H ′(A1, A2, B1, B2). By Claim 1, u is of
type s2 w.r.t. H ′, and hence H ′, u and p1, ..., pi−1 contradict our choice of H, u and P . So pk
must be adjacent to b′2, so yb′2 is an edge. Suppose that N(pk) ∩H = {y, b′2, yb2}. Let H

′ be
the hole induced by P ′ ∪P . Since {y, pk, pi} ⊆ N(b′2)∩H ′, (H ′, b′2) is a twin wheel or a bug,
i.e. N(b′2)∩H ′ = {y, pk, pi}. In particular, b′2 is not adjacent to p1, and hence by Claim 1, b2
is not adjacent to p1. Also H ′ does not contain b1 nor b′1. If b2 has a neighbor in P \{p1, pk},
then a subpath of P \ {p1, pk} is a hat of Σ. So b2 has no neighbor in P . Since b2 and b′2 are
not adjacent to p1, by Claim 1, p1 is of type p1, p2, A or a w.r.t. H. SinceH ′ does not contain
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b1 nor b′1, N(p1) ∩H 6= b1 nor b′1. In particular, p1 has a neighbor in w.l.o.g. Σ \ {b2, b
′
2, b1}.

But then Σ, pi and p1, ..., pi−1 contradicts Lemma 7.1. Therefore N(pk) ∩ H = {y, b′2, ya2}.
Since yb′2 is an edge, yb2 is not. Suppose that N(p1) ∩H is not contained in {v1, v2}. Then
by Claim 1, p1 is not adjacent to v2 and p1 has a neighbor in H1 ∪ (Pa2v1 \ v1). Let P ′′ be
a chordless path from pi to b2 in H1 ∪ (Pa2v1 \ v1) ∪ {p1, ..., pi, b2}, and let H ′′ be the hole
induced by P ′′∪ (Pv2y \ y)∪{u, pi+1, . . . , pk}. Note that b

′
2 is adjacent to b2, u, pi and pk, and

hence (H ′′, b′2) is a proper wheel, a contradiction. Therefore N(p1)∩H ⊆ {v1, v2}, and hence
p1 is adjacent to v1. But then Pa′

1
b′
1
∪ Pa2v1 ∪ {u, p1, . . . , pi, b

′
2} contains a 3PC(b′2, v1).

So (d) must hold. Then yb2 6= b2 and vb′
2
6= y, and hence P ′ ∪P ∪ (Pb′

2
y \ b

′
2)∪ yb2 induces

a 3PC(pk, y).

Case 2: No node of H has a neighbor in P \ {p1, pk}.
By Claim 1 it suffices to consider the following cases.

Case 2.1: p1 is of type p1 or p2 w.r.t. H.
By Claim 1, N(pk) ∩ H ⊆ H2. If N(p1) ∩ H ⊆ H1, then H and P contradict Lemma

A.14. So N(p1) ∩H ⊆ Pa2v1 ∪ v2.
First suppose that p1 is not strongly adjacent to H, and let v be its neighbor in H. By

definition of P , v ∈ Pa2v1 . Note that by Claim 1, pk is not adjacent to v1. W.l.o.g. pk has a
neighbor in Pb2y∪(Pv2y\v2). Let P

′ be the chordless path from pk to b2 in Pb2y∪(Pv2y\v2)∪pk.
Then P ′ ∪ P ∪ Pa1b1 ∪ Pa2v1 ∪ u induces a 3PC(b2, v). Therefore p1 is of type p2 w.r.t. H.

Let H ′ (resp. H ′′) be the hole induced by Pa2b2 ∪ Pa1b1 (resp. Pa2b
′
2
∪ Pa′

1
b′
1
). If pk is

of type p2, d or H2-crossing w.r.t. H, then either H ′ ∪ P or H ′′ ∪ P induces a 3PC(∆,∆)
or a 4-wheel with center v2. So by Claim 1, pk is not strongly adjacent to H. Let v be the
neighbor of pk in H. W.l.o.g. v ∈ (Pb2y ∪ Pv2y) \ {b2, v2}. Recall that if y = v2 then yb2
and yb′2 are not edges, and hence (H ′, u) is a bug. If N(p1)∩H = {v1, v2}, then bug (H ′, u),
p1 and P \ p1 contradict Lemma 7.2. So N(p1) ∩ H ⊆ Pa2v1 . By Lemma 3.1 applied to
H ′, u and P , v = vb2 . By Lemma 3.1 applied to H ′′, u and P ∪ (Pb2y \ b2), yb

′
2 is an edge.

Hence vb2 6= y and since {b2, b
′
2, y, vb′2} cannot induce a 4-hole, vb2y is not an edge. But then

(Pa2b2 ∪ Pa2b
′
2
∪ P ) \ a2 contains a 3PC(vb2 , y).

Case 2.2: p1 is of type B or t3 w.r.t. H.
W.l.o.g. p1 is adjacent to b1. By definition of P , pk has a neighbor in Σ \ {b2, b

′
2, b1}, and

by Claim 1, pk is of type p1, p2, d or crosspath (in the case where pk is an H2-crossing w.r.t.
H) w.r.t. Σ. By Lemma 7.3 applied to Σ, p1 and P \ p1, it follows that pk is not strongly
adjacent to Σ, and hence it is not strongly adjacent to H. Let v be the neighbor of pk in H.

Suppose that v ∈ Pb′
2
y \ b

′
2. If b2y is not an edge, then Pb2y ∪ Pv2y ∪ (Pb′

2
y \ b

′
2) ∪ P ∪ u

contains a 3PC(b2, y). So b2y is an edge and hence v2 6= y. Let H ′ be the hole contained
in Pa1b1 ∪ (Pa2b

′
2
\ b′2) ∪ P that contains Pa1b1 ∪ P . Then (H ′, b2) is a bug and u is its

center-crosspath. So v /∈ Pb′
2
y \ b

′
2.

Suppose that v ∈ Pb2y\{b2, y}. LetH
′ be the hole induced by Pa1b1∪Pa2y∪P together with

the vy-subpath of Pb2y. If b2v is not an edge, then H ′ ∪Pa′
1
b′
1
induces a 3PC(b2b1p1, a

′
1a1a2).

So b2v is an edge, and hence (H ′, b2) is a bug and Pa′
1
b′
1
its center-crosspath, a contradiction.

Therefore v ∈ Pv2y \{v2, y}. But then Pa1b1 ∪P ∪u together with the a2v-subpath of Pa2y

induces a 3PC(b1b2p1, v1uv2).
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Case 2.3: p1 is of type A or a w.r.t. H.
W.l.o.g. p1 is adjacent to a′1. If p1 is not adjacent to a1, then by Claim 1, either Σ1, p1

and P \ p1 or Σ2, p1 and P \ p1 contradict Lemma 7.2. So p1 is adjacent to a1. W.l.o.g.
pk has a neighbor in (Pv2y ∪ Pb′

2
y) \ {b

′
2, v2}. By Claim 1 and Lemma 7.3 applied to Σ2, p1

and P \ p1, node pk is not strongly adjacent to Σ2. Let v be the unique neighbor of pk in
Σ2. By our assumption v ∈ (Pv2y ∪ Pb′

2
y) \ {b′2, v2}. If vb′2 is not an edge, then the hole

induced by Pa′
1
b′
1
∪ Pa2b

′
2
and paths u and P contradict Lemma 3.1. So vb′2 is an edge. Since

{b2, b
′
2, pk, v} cannot induce a 4-hole, pk is not adjacent to b2. If yb2 is not an edge, then

(Pa2b
′
2
\ b′2) ∪ Pa1b1 ∪ P ∪ {u, b2} induces a 3PC(uv1v2, a1a2p1) or a 4-wheel with center a2.

So yb2 is an edge, and hence yb′2 is not. Since {b2, b
′
2, v, y} cannot induce a 4-hole, vy is not

an edge. If follows by Claim 1 that N(pk) ∩H = v, and hence H2 ∪ P induces a 3PC(v, y).

Case 2.4: p1 is of type s2, s3 or s4 w.r.t. H.
If p1 is of type s3 we may assume w.l.o.g. that p1 is adjacent to a′1. Let H ′ be the hole

induced by Pa′
1
b′
1
∪Pa2b

′
2
. Then (H ′, p1) is a bug such that b′2 is the node-attachment of p1 to

H ′.
Suppose that pk is not strongly adjacent to H, and let v be its neighbor in H. Then

v ∈ (Pb2y ∪ Pb′
2
y ∪ Pv2y) \ {b2, b

′
2, v2}. If v ∈ (Pb′

2
y ∪ Pv2y) \ {b′2, v2}, then Pb′

2
y ∪ Pa2y ∪ P

contains a 3PC(p1, v). So v ∈ Pb2y \ {b2, y}, and hence the vy-subpath of Pb2y together with
Pa2y ∪ Pb′

2
y ∪ P contains a 3PC(p1, y). Therefore, pk must be strongly adjacent to H.

Suppose that pk is of type p2 w.r.t. H. If N(pk)∩H ⊆ Pv2y ∪ (Pb′
2
y \ b

′
2), then p2, ..., pk is

a center-crosspath of (H ′, p1). If pk is adjacent to b′2, then Pb2y ∪ Pb′
2
y ∪ P induces a 4-wheel

with center b′2. So pk is not adjacent to b′2, and hence N(pk)∩H ⊆ Pb2y. Note that p1 is not
adjacent to y, and hence (H \ (H1 ∪ b2)) ∪ P contains a 3PC(p1, y). So pk is not of type p2
w.r.t. H.

Suppose that pk is of type d w.r.t. H. First suppose that pk is not adjacent to b′2. Then
N(pk) ∩ H = {y, ya2 , yb′2}, else p2, ..., pk is a center-crosspath of (H ′, p1). If k > 2, then
P ∪ (H \ (H1 ∪ Pb2y)) contains a 3PC(p1, pk). So k = 2, and hence (H ′ \ y) ∪ P induces
a a 4-wheel with center p1. Therefore pk is adjacent to b′2. If pk is not adjacent yb2 , then
Pb2y ∪ Pb′

2
y ∪ P induces a 4-wheel with center b′2. So pk is adjacent to yb2 . Since yb′2 is an

edge, yb2 is not an edge, i.e. yb2 6= b2. So Pa1b1 ∪Pa2b2 ∪ p1 induces a bug with center p1 and
P \ p1 is its center-crosspath. Therefore, pk is not of type d w.r.t. H.

So by Claim 1, pk is an H2-crossing w.r.t. H. First suppose that |N(pk) ∩ Pb′
2
y| = 2.

Then pkyb2 is an edge and yb2 6= b2. If either k > 2 or pkb
′
2 is not an edge, then P \p1 is either

a center-crosspath or an ear of (H ′, p1). So k = 2 and pkb
′
2 is an edge. But then Pa2b2 ∪ P

contains a 3PC(p1, yb2). Therefore |N(pk) ∩ Pb′
2
y| = 1, and hence pkyb′

2
is an edge, yb′

2
6= b′2

and |N(pk) ∩ Pb2y| = 2. But then Pa2b
′
2
∪ P contains a 3PC(p1, yb′

2
). 2

Lemma A.17 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(A1, A2, B1, B2) be a short connected diamond of G. Then no node of G \H is of type s3
or s4 w.r.t. H.

Proof: Assume that G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4, 5.5 and
5.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(∆, ·) with a
hat, a bug with an ear nor a 3PC(∆, ·) with a type s2 node.
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Assume that G has a node u of type s3 or s4 w.r.t. H. Then |A2| = 1, and if u is of type
s4, then a2b2 and a2b

′
2 are not edges. Let S = N [u] \ (A1 ∪B1). Since S is not a star cutset,

there exists a direct connection P = p1, ..., pk from H1 to H2 \ {a2, b2, b
′
2} in G \S. So p1 has

a neighbor in H1, pk in H2 \ {a2, b2, b
′
2}, and the only nodes of H that may have a neighbor

in P \ {p1, pk} are a2, b2 and b′2. We choose H, u and P so that |P | is minimized.

Claim 1: No node of P is of type Ad w.r.t. H, nor a pseudo-twin w.r.t. H of a node of
B2 ∪ a2. In particular, k > 1.

Proof of Claim 1: By Lemma A.10, k = 1 if and only if p1 is of type Ad w.r.t. H, or it is a
pseudo-twin w.r.t. H of a node of B2 ∪ a2. We now show that none of these types of nodes
can occur.

Suppose that p1 is of type Ad w.r.t. H. Then a2 = y and w.l.o.g. p1yb′
2
is an edge. If u is

adjacent to a1, then Pa2b
′
2
∪{u, a1, p1} induces a 4-wheel with center a2. So u is not adjacent

to a1, and hence N(u)∩H = {b1, b2, b
′
2, a

′
1, a2}. But then Pa2b

′
2
∪{u, a′1, p1} induces a 4-wheel

with center a2.
Suppose that p1 is a pseudo-twin of a node of B2 w.r.t. H. W.l.o.g. p1 is a pseudo-twin

of b2. Let H ′ be the short connected diamond obtained by substituting p1 into H. Since u
is not adjacent to p1, u cannot be of type s3 or s4 w.r.t. H ′, so by Remark A.11 (applied to
H ′ and u), |N(u) ∩ {b1, b

′
1, b

′
2, p1}| ≤ 1. So u is of type s4 w.r.t. H, and hence a2b2 and a2b

′
2

are not edges. But then H ′ and u contradict Lemma A.10.
Finally suppose that p1 is a pseudo-twin of a2 w.r.t. H, and let H ′ be the short connected

diamond obtained by substituting p1 into H. Since u is not adjacent to p1, it follows that
H ′ and u contradict Lemma A.10. This completes the proof of Claim 1.

Claim 2: Node p1 is of type p1, p2, B, A1, A, a, t3 (with neighbors in B) or H1-crossing
w.r.t. H, and pk is of type p1, p2, d or H2-crossing w.r.t. H.

Proof of Claim 2: By Lemmas A.15 and A.16 no node is of type s1 nor s2 w.r.t. H. Since
{a2, b2, u, pi} cannot induce a 4-hole, no node of P is of type s3 nor s4 w.r.t. H. Since
|A2| = 1, no node is of type t3 (with neighbors in A) w.r.t. H.

Suppose that pk is a pseudo-twin of y w.r.t. H in the case a2 6= y, and let H ′ be the
short connected diamond obtained by substituting pk into H. Note that u is of the same
type w.r.t. H ′ as it is w.r.t. H, and hence H ′, u and P \ pk contradict our choice of H,u and
P . So no node of P is a pseudo-twin of y w.r.t. H in the case a2 6= y.

By an analogous argument, no node of P is of type p3 w.r.t. H.
Suppose that p1 is a pseudo-twin w.r.t. H of a node of A1 ∪ B1 and let H ′ be the short

connected diamond obtained by substituting p1 into H. By Lemma A.10 u is of the same
type w.r.t. H ′ as it is w.r.t. H, and hence H ′, u and P \ p1 contradict our choice of H,u and
P . So no node of P is a pseudo-twin w.r.t. H of a node of A1 ∪B1.

By Claim 1, no node of P is a pseudo-twin w.r.t. H of a node of B2 ∪ a2, nor of type Ad
w.r.t. H. By definition of P , p1 and pk cannot be of type B2 w.r.t. H. By Lemma A.10, the
proof of Claim 2 is complete.

Claim 3: At most one of the node sets B2 or {a2} may have a neighbor in P \ {p1, pk}. So,
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if a node pi ∈ P \ {p1, pk} has a neighbor in H, then either pi is of type B2 w.r.t. H or it is
not strongly adjacent to H with a neighbor in {b2, b

′
2, a2}.

Proof of Claim 3: Since b2, b
′
2 and a2 are the only nodes of H that may have a neighbor in

P \ {p1, pk}, by Lemma A.10 if pi ∈ P \ {p1, pk} has a neighbor in H, then pi is either of
type B2 w.r.t. H or it is not strongly adjacent to H with a neighbor in {b2, b

′
2, a2}. Suppose

that both a2 and a node of B2 have a neighbor in P \ {p1, pk}. Then there is a subpath P ′

of P \ {p1, pk} of length at least 1, whose one endnode is adjacent to a2, the other to a node
of B2, w.l.o.g. say to b2, and no intermediate node of P ′ has a neighbor in H. If a2b2 is not
an edge, then Pa1b1 ∪ P ′ ∪ Pa2b2 induces a 3PC(a2, b2). So a2b2 is an edge, and hence by
definition of type s3 and s4 nodes w.r.t. H, N(u) ∩H = B2 ∪ {a2, a

′
1, b1}. Then a2b

′
2 is not

an edge.
Suppose that b′2 has a neighbor in P \ {p1, pk}. Then there exists a minimal subpath

P ′′ of P \ {p1, pk} such that one endnode of P ′′ is adjacent to a2, the other to b′2 and no
intermediate node of P ′′ has a neighbor in H \ b2. But then Pa1b1 ∪ Pa2b

′
2
∪ P ′′ induces a

3PC(a2, b
′
2). So b′2 has no neighbor in P \ {p1, pk}.

Since a2b2 is an edge, pk cannot be an H2-crossing w.r.t. H. So by Claim 2, pk is of type
p1, p2 or d w.r.t. H. Note that since a2 = y if pk is of type d w.r.t. H, N(pk)∩H = {b2, y, yb′

2
}.

By definition of P , if pk is of type p1 or p2 w.r.t. H, then N(pk) ∩H ⊆ Pa2b
′
2
and pk has a

neighbor in the interior of Pa2b
′
2
.

Let pi (resp. pj) be the node of P \ {p1, pk} with highest (resp. lowest) index adjacent
to a node of H. Suppose that pk is of type d w.r.t. H, i.e. N(pk) ∩H = {b2, y, yb′

2
}. If p1

is of type B or t3 w.r.t. H, then (Pa2b
′
2
\ a2) ∪ P ∪ b2 induces a proper wheel with center b2.

If p1 is of type A1, A or a w.r.t. H, then either Pa′
1
b′
1
∪ Pa2b

′
2
∪ P (if p1 is adjacent to a′1)

or Pa1b1 ∪ Pa2b
′
2
∪ P (if p1 is not adjacent to a′1) induces a proper wheel with center a2. So

by Claim 1, p1 must be of type p1, p2 or H1-crossing w.r.t. H. Then p1, ..., pj contradicts
Lemma A.14. Therefore pk cannot be of type d w.r.t. H.

So by Claim 2, pk is of type p1 or p2 w.r.t. H, and hence by definition of P , N(pk)∩H ⊆
Pa2b

′
2
and pk has a neighbor in Pa2b

′
2
\ {a2, b

′
2}. Let v1 (resp. v2) be the neighbor of pk

in Pa2b
′
2
that is closer to b′2 (resp. a2). Let Pb′

2
v1 (resp. Pv2a2) be the b′2v1-subpath (resp.

v2a2-subpath) of Pa2b
′
2
. If pi is adjacent to b2, then Σ, pi and pi+1, ..., pk contradict Lemma

7.1. So pi is adjacent to a2.
Suppose that N(p1)∩H ⊆ H1. Then by Lemma A.14 applied to H and p1, ..., pj , node p1

is of type A1 w.r.t. H and pj is adjacent to a2. In particular, a2 has at least two neighbors
in P \ {p1, pk}. Note that since b2 has a neighbor in P \ {p1, pk}, j 6= i and j 6= i + 1. But
then Pa′

1
b′
1
∪ Pb′

2
v1 ∪ P ∪ a2 induces a proper wheel with center a2. Therefore N(p1) ∩H is

not contained in H1.
Suppose that p1 is of type A or a w.r.t. H. If p1 is not adjacent to a′1, then Pa′

1
b′
1
∪

Pb′
2
v1 ∪ P ∪ {a1, a2} induces a proper wheel with center a2. So p1 is adjacent to a′1, and

Pa′
1
b′
1
∪Pb′

2
v1 ∪ P ∪ a2 induces a wheel with center a2, and hence a2 has exactly one neighbor

in P \ {p1, pk} and a2 does not have a neighbor in Pb′
2
v1 . Let pl be the neighbor of b2

in P \ {p1, pk} with highest index. Then Pb′
2
v1 ∪ {pl, ..., pk, a2, b2} induces a 3PC(b2, pi).

Therefore, p1 is not of type A nor a w.r.t. H.
So by Claim 2, p1 is of type B or t3 w.r.t. H. P ∪ Pb′

2
v1 ∪ b2 induces a wheel with center

b2, and hence (since this wheel cannot be proper) N(b2) ∩ P = {p1, pl}. Let pi′ be the
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neighbor of a2 in {pl+1, . . . , pi} with lowest index. If a2 has no neighbor in {p2, . . . , pl−1},
then Pa2b

′
2
∪ {b2, p1, . . . , pi′} induces a proper wheel with center b2. So a2 has a neighbor in

{p2, . . . , pl−1}, and let pj′ be such a neighbor with highest index. Then {pj′ , . . . , pi′ , a2, b2}
induces a 3PC(pl, a2). This completes the proof of Claim 3.

By Claim 2, it suffices to consider the following cases.

Case 1: p1 is of type p1, p2, A1 or H1-crossing w.r.t. H.
Then N(p1) ∩H ⊆ H1. Let pi be the node of P with lowest index that has a neighbor

in H2. By Claim 2 N(pi) ∩H ⊆ H2 and no node of {p2, ..., pi−1} has a neighbor in H. By
Lemma A.14 applied to H and p1, ..., pi, and by symmetry w.l.o.g. one of the following holds:

(a) N(p1)∩H = A1 and pi is either of type p2 w.r.t. H with neighbors in Pa2y orN(pi)∩H =
{y, yb2 , yb′2},

(b) N(p1) ∩H = A1 and N(pi) ∩H = a2,

(c) N(pi) ∩H = B2 and p1 is of type p2 w.r.t. H with neighbors in Pa1b1 , or

(d) N(pi) ∩H = B2 and N(p1) ∩H = b′1.

Suppose that (a) holds. W.l.o.g. u is adjacent to a′1. Then Pa′
1
b′
1
∪ (Pa2b

′
2
\ a2) ∪ P ∪ u

contains a 3PC(b′2, a
′
1).

Suppose that (c) holds. Then (H \ b1) ∪ {p1, ..., pi} contains a short connected diamond
H ′(A1, A2, B

′
1, B2) where B

′
1 = {b′1, pi}. By Lemma A.10, u is of type s3 or s4 w.r.t. H ′, and

hence H ′, u and pi+1, ..., pk contradict our choice of H, u and P .
Suppose that (d) holds. By Claim 3, a2 does not have a neighbor in P \ pk. Let P

′ be a
chordless path from pk to a2 in (H2\B2)∪pk, and let H ′ be the hole induced by P ′∪Pa′

1
b′
1
∪P .

Since H ′ ∪ b′2 cannot induce a 3PC(b′1, pi), (H
′, b′2) is a bug. If u is adjacent to a′1, then u is

a center-crosspath of (H ′, b′2). So u is not adjacent to a′1, and hence it is adjacent to b′1. But
then H ′ ∪ u induces a 3PC(a2, b

′
1).

So (b) must hold. By Claim 3, b2 and b′2 do not have neighbors in P \ pk. W.l.o.g. u is
adjacent to a1. If pk and b2 are connected in G[(H2 \{a2, b

′
2})∪pk], then let P ′ be a chordless

path from pk to b2 in G[(H2 \ {a2, b
′
2}) ∪ pk]. Then Pa1b1 ∪ P ∪ P ′ ∪ u induces a 3PC(a1, b2).

So pk and b2 are not connected in G[(H2 \ {a2, b
′
2})∪ pk], i.e. a2 = y and N(pk)∩H ⊆ Pa2b

′
2
.

Let P ′ be a chordless path from pk to b′2 in G[(Pa2b
′
2
\ a2) ∪ pk]. Then Pa1b1 ∪ P ∪ P ′ ∪ u

induces a 3PC(a1, b
′
2).

Case 2: p1 is of type A or a w.r.t. H.
W.l.o.g. we may assume that p1 is adjacent to a1 and a2. First we show that b2 and b′2

cannot have a neighbor in P \ pk. Assume otherwise, and let pi be the node of P with lowest
index adjacent to a node of B2. By Claim 3, a2 does not have a neighbor in P \{p1, pk}. If pi
is not of type B2, then Σ and p1, ..., pi contradict Lemma 7.1. So N(pi)∩H = B2, and hence
by Lemma 7.2 applied to Σ′ and p1, ..., pi, N(p1)∩H = A. Let H ′(A′

1, A2, B
′
1, B2) where A

′
1 =

{p1, a
′
1} andB′

1 = {b′1, pi}, be the short connected diamond induced by (H\Pa1b1)∪{p1, ..., pi}.
Then H ′ and u contradict Lemma A.10. Therefore, no node of B2 has a neighbor in P \ pk.
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First suppose that either a2 6= y, or a2 = y and pk has a neighbor in Pa2b2\a2. Let P
′ be the

chordless path from pk to b2 in (H2\{b
′
2, a2})∪pk. If u is adjacent to a1, then Pa1b1∪P

′∪P ∪u
induces a 3PC(b2, a1). So u is not adjacent to a1, and hence N(u) ∩H = {b1, b2, b

′
2, a

′
1, a2}.

If p1 is not adjacent to a′1, then P ′ ∪P ∪A∪u induces a proper wheel whith center a2. So p1
is adjacent to a′1. But then Pa1b1 ∪P ∪P ′ ∪ {a′1, u} induces a 3PC(ub1b2, a

′
1a1p1). Therefore

a2 = y and pk does not have a neighbor in Pa2b2 \ a2. So by Claim 2, pk is of type p1 or p2
w.r.t. H and N(pk)∩H ⊆ Pa2b

′
2
. In particular, a2b

′
2 is not an edge. If p1 is not adjacent to a′1

then Σ2, p1 and P \p1 contradict Lemma 7.2. So p1 is adjacent to a′1, and hence (H \a2)∪P
contains a short connected diamond H ′(A1, A

′
2, B1, B2) where A′

2 = {p1}. But then H ′ and
u contradict Lemma A.10.

Case 3: p1 is of type B or t3 (with neighbors in B) w.r.t. H.
W.l.o.g. we may assume that p1 is adjacent to b1. Suppose that a2 has a neighbor in

P \ pk, and let pi be such a neighbor with lowest index. By Claim 3, b2 and b′2 do not
have neighbors in P \ {p1, pk}. If a2b2 is not an edge, then Pa2b2 ∪ {u, p1, ..., pi} induces a
3PC(a2, b2). So a2b2 is an edge, and hence a2b

′
2 is not. But then Pa2b

′
2
∪{u, p1, ..., pi} induces

a 3PC(a2, b
′
2). Therefore, a2 does not have a neighbor in P \ pk.

Suppose that a node of B2 has a neighbor in P \ {p1, pk}, and let pi be such a neighbor
with highest index. W.l.o.g. pi is adjacent to b2. Let P

′ be the chordless path from pk to a2
in (H2 \ B2) ∪ pk and let H ′ be the hole induced by P ′ ∪ P ∪ Pa1b1 . Then (H ′, b2) is a twin
wheel or a bug. In particular, pk is not adjacent to b2, a2b2 is not an edge and H ′ does not
contain vb2 , i.e. pk has a neighbor in H2 \ (B2 ∪ vb2).

Suppose that pi is of type B2 w.r.t. H. Then by symmetry, a2b
′
2 is not an edge, H ′

does not contain vb′
2
, i.e. pk has a neighbor in H2 \ (B2 ∪ {vb2 , vb′2}). So by Claim 3 and

Lemma 7.2 applied to Σ, pi and pi+1, ..., pk, node pk is either of type p2 w.r.t. H with
neihgbors contained in Pa2y, or pk is of type d w.r.t. H adjacent to y, yb2 , yb′2 . In both cases
(H \ Pa1b1) ∪ {pi, ..., pk} induces a connected diamond whose side-2-paths have fewer nodes
in common than the side-2-paths of H.

Therefore N(pi) ∩ H = b2. Since pk is not adjacent to b2, and it has a neighbor in
H2 \ (B2 ∪ vb2), by Claim 2 and by Lemma 7.1 applied to Σ, pi and pi+1, ..., pk, it follows that
either pk is of type p2 w.r.t. H and N(pk) ∩H ⊆ Pb2y \ b2, or pk is of type d w.r.t. H and
N(pk)∩H = {y, ya2 , yb′

2
} (in particular a2 6= y). In both cases (H \vb2)∪{pi, ..., pk} contains

a short connected diamond H ′(A1, A2, B1, B2) that contains pi, ..., pk. But then H ′, u and
p1, ..., pi−1 contradict our choice of H,u and P .

Therefore no node of H has a neighbor in P \ {p1, pk}. Note that by definition of P , pk
has a neighbor in Σ \ {b2, b

′
2, b1}. By Lemma 7.3 applied to Σ, p1 and P \ p1, node pk cannot

be of type p2, d nor H2-crossing w.r.t. H. Hence by Claim 2, pk is not strongly adjacent to
H. Let v be the neighbor of pk in H.

Suppose that p1b
′
1 is not an edge. Then by Lemma 7.2 applied to Σ′, p1 and P \ p1,

either a2b2 is an edge and v = vb′
2
, or a2b

′
2 is an edge and v = vb2 . In the first case

Pa1b1 ∪Pa2b
′
2
∪P induces a bug with center b′2 and Pa′

1
b′
1
is its center-crosspath. In the second

case Pa1b1∪Pa2b2∪P induces a bug with center b2 and Pa′
1
b′
1
is its center-crosspath. Therefore

p1b
′
1 is an edge.
W.l.o.g. u is adjacent to a1, and hence by definition of type s3 and s4 nodes w.r.t. H it

is not adjacent to b1 and a2b2 is not an edge. Let P ′ be the chordless path from pk to a2 in
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(H2 \ B2) ∪ pk. If v 6= vb2 , then P ′ ∪ P ∪ Pa1b1 ∪ {u, b2} induces a 3PC(b1b2p1, a1ua2). So
v = vb2 . Let H

′ be the hole induced by (Pa2b2 \ b2)∪ Pa1b1 ∪P . Then (H ′, b2) is a bug and u
its center-crosspath. 2

Lemma A.18 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(A1, A2, B1, B2) be a short connected diamond of G. If a node u is of type a, t3, p3 w.r.t.
H or it is a pseudo-twin of a node of B ∪A1 w.r.t. H, or a pseudo-twin of y w.r.t. H when
y /∈ {a1, a2}, or it is a pseudo-twin of a node of A2 w.r.t. H when |A2| = 2, then there exists
a short connected diamond H ′ such that one of the following holds:

(i) H2 ⊆ H ′, u ∈ H ′
1 = H ′ \H2, H

′
1|H2 is a 2-join of H ′ with special sets A′

1, A2, B
′
1, B2

such that A′
1 ∩A1 6= ∅ and B′

1 ∩B1 6= ∅.

(ii) H1 ⊆ H ′ and u ∈ H ′
2 = H ′ \H1, H1|H

′
2 is a 2-join of H ′ with special sets A1, A

′
2, B1,

B′
2 such that A′

2 ∩A2 6= ∅ and B′
2 ∩B2 6= ∅.

Proof: Assume that G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4, 5.5 and
5.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(∆, ·) with a
hat, a bug with an ear nor a 3PC(∆, ·) with a type s2 node. We consider the following cases.

Case 1: u is of type p3 w.r.t. H or it is a pseudo-twin w.r.t. H as in the statement of the
lemma.

Let H ′ be the short connected diamond obtained by substituting u into H. Then clearly
H ′ satisfies (i) or (ii).

Case 2: Node u is of type a w.r.t. H.
Then |A2| = 1 and w.l.o.g. N(u) ∩H = {a1, a2}. Let S = (N [a2] \ (H ∪ u)) ∪ A. Since

S cannot be a star cutset, there exists a direct connection P = p1, ..., pk from u to H \ S in
G \ S. So p1 is adjacent to u, pk to a node of H \ S, and a1 and a′1 are the only nodes of H
that may have a neighbor in P \ pk.

(1) pk is of type p1, p2, p3, d, B, B2, t3 (with neighbors in B), H1-crossing or H2-crossing
w.r.t. H, or it is a pseudo-twin w.r.t. H of a node of B, or y when y 6= a2. In particular,
pk is adjacent to at most one node of A.

Proof of (1): By Lemmas A.15, A.16 and A.17, no node is of type s1, s2, s3 nor s4 w.r.t. H.
Since |A2| = 1, pk is not adjacent to a2 and it has a neighbor in H \ S, pk cannot be of type
A1, A, a, t3 (with neighbors in A), Ad nor a pseudo-twin of a node of A w.r.t. H. So the
result follows by Lemma A.10. This proves (1).

(2) a1 cannot have a neighbor in P \ pk.

Proof of (2): Suppose it does. Let R be a chordless path from pk to a2 in (H \A1)∪ pk, and
let H ′ be the hole induced by R ∪ P ∪ u. Since (H ′, a1) cannot be a proper wheel, a1 has
exactly one neighbor pj in P and j < k.

Suppose that a′1 does not have a neighbor in P \ pk. By Lemma A.14 applied to H and
pj, ..., pk, node pk must have a neighbor in H1. So by (1), pk has a neighbor in H1\A1. Recall
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that by definition of a connected diamond at least one of a2b2, a2b
′
2 is not an edge. W.l.o.g.

assume that a2b
′
2 is not an edge. Let T be a chordless path from pk to a′1 in (H1\a1)∪{pk, b

′
2}.

Recall that no node of P is adjacent to a2 and hence T ∪ P ∪ {a1, a2, u} induces a proper
wheel with center a1. So a′1 has a neighbor in P \ pk.

If a′1 is not adjacent to pj, then a subpath of P \ pk is a hat of Σ1, a contradiction. So a′1
is adjacent to pj . If a′1 does not have a neighbor in p1, ..., pj−1, then {p1, ..., pj , u, a1, a2, a

′
1}

induces a proper wheel with center a1. So a′1 has a neighbor in p1, ..., pj−1. So (H ′, a1) and
(H ′, a′1) are both bugs. In particular, N(a1) ∩ P = pj and N(a′1) ∩ P = {pj , pj−1}.

Suppose that N(pk) ∩H ⊆ H2. Then by Lemma A.14 applied to H and pj , ..., pk, node
pk is either of type p2 w.r.t. H with neighbors in Pa2y or of type d w.r.t. H such that
N(pk) ∩H = {y, yb2 , yb′2}. In both cases Pa1b1 ∪ Pa2b2 ∪ P ∪ u induces a bug (H ′, a1) with a
center-crosspath, a contradiction.

So pk has a neighbor in H1, and hence by (1), it has a neighbor in H1 \ A1. By (1) pk
has at most one neighbor in A and hence by Lemma 7.2 applied to Σ1, pj and pj+1, ..., pk,
N(pk) ∩Σ1 = {b2, b1, b

′
1}. But then Pa1b1 ∪ Pa2b2 ∪ P ∪ u induces a bug (H ′, a1) with center-

crosspath Pa1b1 \ a1, a contradiction. This proves (2).
We now consider the following two cases.

Case 2.1: a′1 has a neighbor in P \ pk.
Let pj be such a neighbor with highest index. If pk is of type d, B2, B, H2-crossing, a

pseudo-twin of y when y 6= a2, or a pseudo-twin of a node of B2 ∪ b1 w.r.t. H, then Σ1, pj
and pj+1, ..., pk contradict Lemma 7.1.

Suppose that pk is a pseudo-twin of b′1 w.r.t. H. Then by (2), H2 ∪Pa1b1 ∪P ∪ u induces
a short connected diamond H ′(A′

1, A2, B
′
1, B2) where A

′
1 = {a1, u} and B′

1 = {b1, pk} and H ′

satisfies (i). So we may assume that pk is not a pseudo-twin of b′1 w.r.t. H.
If pk is an H1-crossing w.r.t. H, then by Lemma 7.1 applied to Σ1, pj and pj+1, ..., pk,

node pk is adjacent to b1 and a′1, and hence Pa′
1
b′
1
∪Pa2b

′
2
∪P ∪u induces a proper wheel with

center a′1.
So by (1), pk is of type p1, p2, p3 or t3 (with neighbors in B) w.r.t. H. If N(pk) ∩H ⊆

Pa′
1
b′
1
, then by (2), (H \a′1)∪ (P ∪u) contains a short connected diamond H ′(A′

1, A2, B1, B2),
where A′

1 = {a1, u}, that satisfies (i). So we may assume that pk has a neighbor in H \Pa′
1
b′
1
.

But then by Lemma 7.1 applied to pj , path pj+1, ..., pk and either Σ1 or Σ2, node pk must be
of type t3 w.r.t. H such that N(pk) ∩H = {b′1, b2, b

′
2}. But then by (2), H2 ∪ Pa1b1 ∪ P ∪ u

induces a short connected diamondH ′(A′
1, A2, B

′
1, B2), where A

′
1 = {a1, u} and B′

1 = {b1, pk},
and hence (i) holds.

Case 2.2: a′1 does not have a neighbor in P \ pk.
So by (2), no node of H has a neighbor in P \ pk. If pk does not have a neighbor in

Σ1 \ {a1, a
′
1, a2}, then it has a neighbor in Σ2 \ {a1, a

′
1, a2} and hence (since pk is adjacent

to at most one node of {a1, a
′
1, a2} by (1)) Σ2, u and P contradict Lemma 7.2. So pk has a

neighbor in Σ1 \ {a1, a
′
1, a2}. By Lemma 7.2 applied to Σ1, u and P , and since by (1) pk is

adjacent to at most one node of {a1, a
′
1, a2}, one of the following holds:

(a) N(pk) ∩Σ1 = {b2, b
′
1}.

(b) N(pk) ∩Σ1 = {v1, v2} where v1v2 is an edge of Pa′
1
b′
1
.

82



(c) N(pk) ∩Σ1 = {b1, b2, vb2}.

(d) a2b2 is an edge and N(pk) ∩ Σ1 = {va1}.

(e) a2b2 is an edge, pk is of type p3 w.r.t. Σ1 and pk is adjacent to a1.

By (1) in fact (c) cannot happen. Suppose that (b) holds. Then by (1), pk is of type p2
w.r.t. H, and hence (H \a′1)∪P ∪u contains a short connected diamond H ′(A′

1, A2, B1, B2),
where A′

1 = {u, a1}, that satisfies (i).
Suppose that (a) holds. By Lemma 7.2 applied to Σ2, u and P , and since by (1) pk is

adjacent to at most one of {a1, a
′
1, a2}, N(pk)∩Σ2 = {b′2, b

′
1}. So N(pk)∩H = {b′1, b2, b

′
2} and

hence H2∪Pa1b1∪P ∪u induces a connected diamond H ′(A′
1, A2, B

′
1, B2), where A

′
1 = {u, a1}

and B′
1 = {b1, pk}, that satisfies (i).

Suppose that (d) holds. Then by (1), N(pk) ∩H = {va1}. Since a2b2 is an edge, a2b
′
2 is

not an edge, and hence H1 ∪ P ∪ {a2, b
′
2, u} induces a 4-wheel with center a1.

Suppose that (e) holds. Then by (1), pk is of type p3 w.r.t. H. Since a2b2 is an edge,
a2b

′
2 is not an edge, and hence (H1 \ va1) ∪ P ∪ {a2, b

′
2, u} induces a 4-wheel with center a1.

Case 3: Node u is of type t3 w.r.t H.
W.l.o.g. we may assume that N(u) ∩H = {b1, b2, b

′
2}. Assume that the result does not

hold.

(1) Let S1 = (N [b2] \ (H ∪ u)) ∪B, and let P = p1, ..., pk be a direct connection from u to
H \ S1 in G \ S1. Then k = 1 and p1 is an H1-crossing w.r.t. H adjacent to b1. In
particular, there exists a node that is an H1-crossing w.r.t. H adjacent to b1 and u.

Proof of (1): Since G does not have a star cutset, there exists a direct connection P as in
statement of (1), so we just need to show that k = 1 and p1 is an H1-crossing w.r.t. H
adjacent to b1. By definition of P , node p1 is adjacent to u, pk to a node of H \ S1, and the
only nodes of H that may have a neighbor in P \ pk are b1, b

′
2 and b′1.

(1.1) pk is of type p1, p2, p3, A1, A, a, d, Ad, t3 (with neighbors in A), H1-crossing, H2-
crossing w.r.t. H or a pseudo-twin of a node of A ∪ y w.r.t. H. In particular, pk is
adjacent to at most one node of B.

Proof of (1.1): By Lemmas A.15, A.16 and A.17, pk cannot be of type s1, s2, s3 nor s4 w.r.t.
H. Since pk is not adjacent to b2, it cannot be of type B, B2, t3 (with neighbors in B) nor a
pseudo-twin of a node of B w.r.t. H. By Lemma A.10, the proof of (1.1) is complete.

(1.2) No node of H \ {b1, b
′
1, b

′
2} has a neighbor in P \ pk and at most one node of {b1, b

′
1, b

′
2}

has a neighbor in P \ pk.

Proof of (1.2): We have already established that no node of H \ {b1, b
′
1, b

′
2} has a neighbor

in P \ pk. By Lemma A.10 and Lemma A.15, no node of P \ pk is adjacent to more than
one node of {b1, b

′
1, b

′
2}. If at least two nodes of {b1, b

′
1, b

′
2} have a neighbor in P \ pk, then a

subpath of P \ pk is a hat of Σ or Σ′, a contradiction. This proves (1.2).

If a node of {b1, b
′
1, b

′
2} has a neighbor in P \ pk, then let pj (resp. pi) be such a neighbor

with highest (resp. lowest) index.
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(1.3) b′1 does not have a neighbor in P \ pk.

Proof of (1.3): Assume it does. Then by (1.2) H1∪{u, p1, ..., pi, b2} induces a bug with center
b2, and Pa2b2 \ b2 is its center-crosspath, a contradiction. This proves (1.3).

(1.4) b1 does not have a neighbor in P \ pk.

Proof of (1.4): Assume it does. By (1.2) no node of H \ b1 has a neighbor in P \ pk. By
(1.1) pk is adjacent to at most one node of B, and hence if N(pk) ∩ H ⊆ H2, then H and
pj, ..., pk contradict Lemma A.14. So pk has a neighbor in H1. In particular, pk is not of type
d, H2-crossing nor a pseudo-twin of y when y /∈ {a1, a2} w.r.t H.

Suppose that pk is of type A1 w.r.t. H. By Lemma 7.1 applied to Σ, pj and pj+1, ..., pk,
a1b1 is an edge. But then Pa1b1 ∪ Pa2b2 ∪ P ∪ u induces a proper wheel with center b1. So pk
is not of type A1 w.r.t. H.

Suppose pk is of type a w.r.t. H. So |A2| = 1 and N(pk) ∩H = {a2, a
′
1} or {a2, a1}. In

the first case Σ, pj and pj+1, ..., pk contradict Lemma 7.1, and in the second case Σ′, u and P
contradict Lemma 7.2. So pk is not of type a w.r.t. H.

Suppose that pk is of type A or it is a pseudo-twin of a node of A1 w.r.t. H. If pk has a
neighbor in Pa′

1
b′
1
\ a′1, then Σ′, u and P contradict Lemma 7.2. So N(pk) ∩H ⊆ A ∪ Pa1b1 .

But then (H \ Pa1b1) ∪ P ∪ u induces a short connected diamond H ′(A′
1, A2, B

′
1, B2) where

A′
1 = {a′1, pk} and B′

1 = {b′1, u}, and H ′ satisfies (i), contradicting our assumption. So pk is
not of type A nor a pseudo-twin of a node of A1 w.r.t. H.

Suppose that pk is of type t3 w.r.t. H. Then by (1.1) |A2| = 2 andN(pk)∩H = {a1, a
′
1, a

′
2}

or {a1, a
′
1, a2}. In the first case Σ, pj and pj+1, ..., pk contradict Lemma 7.1, and in the second

case Σ′, u and P contradict Lemma 7.2. So pk is not of type t3 w.r.t. H.
Node pk is not of type Ad nor a pseudo-twin of a node of A2 w.r.t. H, since otherwise

Σ, pj and pj+1, ..., pk contradict Lemma 7.1.
Suppose that pk is an H1-crossing w.r.t. H. If pk is adjacent to b′1, then (Pa1b1 \ a1) ∪

{b′1, b
′
2, pj, ..., pk} contains a 3PC(b1, pk). So pk is adjacent to b1. But then (Pa′

1
b′
1
\ a′1)∪P ∪

{b′2, b1, u} contains a proper wheel with center b1. So pk is not an H1-crossing w.r.t H.
By (1.1) pk is of type p1, p2 or p3 w.r.t. H. Since pk has a neighbor in H1, it follows

that N(pk) ∩H ⊆ Pa1b1 or Pa′
1
b′
1
. By definition of P , pk has a neighbor in H1 \ {b1, b

′
1}. If

N(pk)∩H ⊆ Pa′
1
b′
1
, then Σ, pj and pj+1, ..., pk contradict Lemma 7.1. So N(pk)∩H ⊆ Pa1b1 .

But then (H \ b1) ∪ P ∪ u contains a short connected diamond H ′(A1, A2, B
′
1, B2) where

B′
1 = {u, b′1}, and H ′ satisfies (i), contradicting our assumption. This proves (1.4).

(1.5) b′2 does not have a neighbor in P \ pk.

Proof of (1.5): Assume it does. By (1.2) no node of H \ b′2 has a neighbor in P \ pk. If
N(pk)∩H ⊆ H1, then H and pj , ..., pk contradict Lemma A.14. So pk has a neighbor in H2.
In particular, pk is not of type A1 nor H1-crossing w.r.t. H.

Node pk is not of type A nor a pseudo-twin of a node of A1 w.r.t. H, since otherwise
Σ′, pj and pj+1, ..., pk contradict Lemma 7.1.

Suppose that pk is of type a w.r.t. H. Then by Lemma 7.1 applied to Σ′, pj and pj+1, ..., pk,
y = a2 and yb′2 is an edge. But then Pa2b2 ∪ P ∪ {u, b′2} induces a proper wheel with center
b′2. So pk is not of type a w.r.t. H.
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Suppose that pk is of type t3 (with neighbors in A), Ad or a pseudo-twin of a node of A2

w.r.t. H. So N(pk) ∩H1 = {a1, a
′
1}. By definition of P , pk is not adjacent to b2, and hence

H1 ∪ P ∪ {u, b2} induces a 3PC(b1b2u, a1a
′
1pk). So pk is not of type type t3 (with neighbors

in A), Ad nor a pseudo-twin of a node of A2 w.r.t. H.
Suppose that pk is of type d or a pseudo-twin of y when y /∈ {a1, a2} w.r.t. H. Let H ′ be

the hole contained in Pa1b1 ∪Pa2y∪P ∪u that contains Pa1b1 ∪P ∪u. Note that if H ′ contains
y, then pk has a neighbor in Pb2y \ y. Since by definition of P , b2 is not adjacent to any node
of P , it follows that N(b2)∩H ′ = {u, b1}. But then H ′∪Pa′

1
b′
1
induces a 3PC(b1b2u, a1a

′
1a2).

So pk is not of type d nor a pseudo-twin of y when y /∈ {a1, a2} w.r.t. H.
Suppose that pk is an H2-crossing w.r.t. H. By Lemma 7.1 applied to Σ′, pj and

pj+1, ..., pk, node pk is adjacent to b′2. Let H ′ be the hole contained in Pa2b2 ∪ P ∪ u that
contains P ∪ {u, b2}. Then (H ′, b′2) is a proper wheel. So pk is not an H2-crossing w.r.t. H.

So by (1.1) and since pk has a neighbor in H2, N(pk) ∩ H ⊆ H2 and pk is of type p1,
p2 or p3 w.r.t. H. By definition of P , pk has a neighbor in H2 \ {b2, b

′
2}. By Lemma

7.1 applied to Σ′, pj and pj+1, ..., pk, either |A2| = 2 and N(pk) ∩ H ⊆ Pa′
2
b′
2
, or |A2| = 1

and N(pk) ∩ H ⊆ Pb′
2
y. If |A2| = 2, then H1 ∪ (Pa′

2
b′
2
\ b′2) ∪ P ∪ {u, b2} contains a

3PC(b1b2u, a1a
′
1a

′
2). So |A2| = 1. Let H ′ be the hole contained in Pa1b1 ∪ (Pa2b

′
2
\ b′2)∪P ∪ u

that contains Pa1b1 ∪ P ∪ u. If yb2 is not an edge, then H ′ ∪ Pa′
1
b′
1
∪ b2 induces a

3PC(b1b2u, a1a
′
1a2). So yb2 is an edge, and hence (H ′, b2) is a bug. But then Pa′

1
b′
1
is either

a center-crosspath or an ear of (H ′, b2). This proves (1.5).

By (1.2), (1.3), (1.4) and (1.5), no node of H has a neighbor in P \ pk.
Node pk cannot be of type A1, A, t3 (with neighbors in A), Ad nor a pseudo-twin of a

node of A2 w.r.t. H, since otherwise N(pk) ∩ H1 = A1 and since pk is not adjacent to b2,
H1 ∪ P ∪ {u, b2} induces a 3PC(b1b2u, a1a

′
1pk).

Suppose that pk is of type a or a pseudo-twin of a node of A1 w.r.t. H. If pk is adjacent
to a1 and a2, and it does not have a neighbor in Pa1b1 \ a1, then Pa2b2 ∪Pa1b1 ∪P ∪u induces
a 3PC(b1b2u, a1a2pk). Otherwise (H \ Pa1b1) ∪ P ∪ u induces a short connected diamond
H ′(A′

1, A2, B
′
1, B2) where A′

1 = {a′1, pk} and B′
1 = {u, b′1}, and satisfies (i), contradicting our

assumption. So pk is not of type a nor a pseudo-twin of a node of A1 w.r.t. H.
Suppose that pk is of type d w.r.t. H. By Lemma 7.2 applied to Σ′, u and P , N(pk)∩H =

{y, yb2 , yb′2}, yb2 6= b2 and yb′
2
6= b′2. But then (H \Pa1b1)∪P ∪u induces a connected diamond

whose side-2-paths have fewer nodes in common than the side-2-paths of H, a contradiction.
So pk is not of type d w.r.t. H.

Node pk cannot be an H2-crossing nor a pseudo-twin of y when y /∈ {a1, a2} w.r.t. H,
since otherwise Σ′, u and P contradict Lemma 7.2.

Suppose that pk is of type p1, p2 or p3 w.r.t. H. Note that by definition of P , pk has a
neighbor in H \ B. If N(pk) ∩H ⊆ Pa1b1 then (H \ b1) ∪ P ∪ u contains a short connected
diamond H ′(A1, A2, B

′
1, B2) where B′

1 = {u, b′1}, that contains H2 ∪ Pa′
1
b′
1
, and H ′ satisfies

(i), contradicting our assumption. So pk has a neighbor in Σ′ \ B. By Lemma 7.2 applied
to Σ′, u and P w.l.o.g. one of the following holds: (a) |A2| = 1, b2y is an edge, and either
N(pk) ∩ H = {vb′

2
} or pk is of type p3 w.r.t. H adjacent to b′2, (b) pk is of type p2 w.r.t.

H and its neighbors are contained in Pa′
1
b′
1
, or (c) |A2| = 1, pk is of type p2 w.r.t. H, and

N(pk) ∩ H ⊆ Pa2y. If (a) holds, then Pa1b1 ∪ Pa2b
′
2
∪ P ∪ u contains a bug with center b′2,

and Pa′
1
b′
1
is its center-crosspath or an ear. If (b) holds, then H1 ∪ P ∪ {u, b2} induces a
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3PC(b1b2u,∆). So (c) holds. But then Σ, u and P contradict Lemma 7.3. So pk is not of
type p1, p2 or p3 w.r.t. H.

Therefore, by (1.1) pk is an H1-crossing w.r.t. H. By Lemma 7.3 applied to Σ, u and P ,
node pk must be adjacent to b1. If k > 1, then H1 ∪P ∪ {u, b2} induces a bug with center pk
with an ear. So k = 1. This proves (1).

Let S2 = (N [b1] \ (H ∪ u)) ∪ {b1, b2, b
′
2}. Since S2 cannot be a star cutset, there exists a

direct connection P = p1, ..., pk from u to H \ S2 in G \ S2. So p1 is adjacent to u, pk to a
node of H \ S2, and the only nodes of H that may have a neighbor in P \ pk are b2 and b′2.
By (1) there exists a node v adjacent to u that is an H1-crossing w.r.t. H adjacent to b1.

(2) pk has a neighbor in H \B.

Proof of (2): Suppose that N(pk) ∩H ⊆ B. By definition of P , pk must be adjacent to b′1.
By Lemma A.15, pk cannot be of type s1 w.r.t. H. N(pk) ∩H 6= {b′1} nor {b′1, b2, b

′
2}, since

otherwise H1 ∪ P ∪ {u, v} induces a proper wheel with center v. Since pk is not adjacent to
b1 and it is adjacent to b′1, it follows that pk cannot be of type B2 nor B w.r.t. H, and if it
is of type t3 w.r.t. H then its neighbors in H are contained in A. Hence, pk has a neighbor
in H \B. This proves (2).

(3) pk is either not strongly adjacent to H or it is of type p1, p2, p3, A1, A, a, d, Ad, t3
(with neighbors in A), H1-crossing (adjacent to b′1), H2-crossing or a pseudo-twin of a
node of A ∪B1 ∪ y w.r.t. H.

Proof of (3): By Lemmas A.15, A.16 and A.17, pk cannot be of type s1, s2, s3 nor s4 w.r.t
H. By (2) pk cannot be of type B2 nor B w.r.t H, and if it is of type t3 w.r.t. H, then its
neighbors in H are contained in A. Since pk is not adjacent to b1, it cannot be a pseudo-twin
of a node of B2 w.r.t. H, and if it is an H1-crossing w.r.t. H, then it is adjacent to b′1. The
result follows from Lemma A.10. This proves (3).

(4) If b2 does not have a neighbor in P \ pk, then pk is adjacent to b2 and it is of type p2,
p3, d, Ad, H2-crossing, a pseudo-twin of a node of B1 ∪A2 or a pseudo-twin of y when
y /∈ {a1, a2} w.r.t. H.

Proof of (4): Assume that b2 does not have a neighbor in P \ pk. By (2) pk has a neighbor in
H \B. If pk is not adjacent to b2, then P is a direct connection from u to H \ S1 in G \ S1,
and hence by (1) pk is adjacent to b1, a contradiction. So pk is adjacent to b2. In particular,
pk cannot be of type A1, A, a, t3 (with neighbors in A), H1-crossing nor a pseudo-twin of a
node of A1 w.r.t. H. Also since pk is adjacent to b2 and it has a neighbor in H \S2, pk must
be strongly adjacent to H. The result now follows from (3). This proves (4).

(5) b2 does not have a neighbor in P \ pk.

Proof of (5): Assume it does. Let pj be the node of P \ pk with highest index adjacent
to a node of H. By (2), pk has a neighbor in H \ B and hence in the graph induced by
(H \B) ∪ {b1, pk} there is a chordless path from b1 to pk, and this path together with P ∪ u

86



induces a hole H ′. Since b2 has at least three neighbors in H ′, (H ′, b2) must be a twin wheel
or a bug, i.e. b2 has a unique neighbor in P and this neighbor is contained in P \ pk. Since
(H ′, b′2) cannot be a proper wheel, b′2 has at most one neighbor in P . If pj is not adjacent to
b2, then a subpath of P \ pk is a hat of Σ. So pj is adjacent to b2. Also N(b′2)∩P ⊆ {pj , pk},
else a subpath of P \ pk is a hat of Σ.

Next we show that v does not have a neighbor in P . Assume it does. Then (H ′, v)
is a wheel, and hence it must be a twin wheel or a bug. In particular, v has exactly one
neighbor pi in P . Let H ′′ be the hole induced by the pipj-subpath of P together with b1, b2
and v. If i = 1 or j = 1 then (H ′′, u) is a proper wheel. So i 6= 1 and j 6= 1. But then
(H ′′ \ b1)∪{u, p1, ..., pi} induces a 3PC(u, pi) if i < j and a 3PC(u, pj) otherwise. Therefore,
v does not have a neighbor in P .

Next we show that pk does not have a neighbor in H1. Assume it does. Suppose that
N(pk)∩H1 = vb1 . Then by (3), N(pk)∩(H1∪b2) = vb1 , and hence H1∪{b2, pj, ..., pk} induces
a 3PC(b2, vb1). So pk has a neighbor in H1 \ vb1 , and hence by (2) and (3) and since pk is
not adjacent to b1, pk has a neighbor in H1 \ {vb1 , b1, b

′
1}. Let P

′ be a chordless path from pk
to v in (H1 \ {b1, b

′
1, vb1}) ∪ {v, pk}. If j 6= 1, then P ∪ P ′ ∪ {u, b2} induces a 3PC(u, pj). So

j = 1. But then P ∪P ′ ∪ {u, b1, b2} induces a proper wheel with center u. Therefore pk does
not have a neighbor in H1.

If N(pk) ∩ H = vb2 , then Pa1b1 ∪ Pa2b2 ∪ P ∪ u induces a proper wheel with center b2.
So pk has a neighbor in H \ vb2 . It follows, by (2) and since pk does not have a neighbor in
H1∪b2, that pk has a neighbor in H2 \{vb2 , b2, b

′
2}. Let P

′ be a chordless path from pk to v in
(H2 \{vb2 , b2, b

′
2})∪ (Pa′

1
b′
1
\ b′1)∪{v, pk}. If j 6= 1, then P ′∪P ∪{u, b2} induces a 3PC(u, pj).

So j = 1. But then P ′ ∪ P ∪ {b1, b2} induces a 4-wheel with center u. This proves (5).

(6) b′2 does not have a neighbor in P \ pk.

Proof of (6): Assume it does. Let pj be the node of P \ pk with highest index adjacent to
b′2. By (5) no node of H \ b′2 has a neighbor in P \ pk. By (4) pk is adjacent to b2. Since
P ∪ {u, b2, b

′
2} cannot induce a proper wheel with center b′2, N(b′2) ∩ P = pj.

Next we show that v does not have a neighbor in P . Assume it does. By (2) pk has a
neighbor in H \ B and hence in (H \ B) ∪ {b1, pk} there is a chordless path from b1 to pk,
and this path together with P ∪u induces a hole H ′. Since (H ′, v) cannot be a proper wheel,
N(v) ∩ P = pi for some i ∈ {1, . . . , k}. Let H ′′ be the hole induced by the pipj-subpath of
P together with b1, b

′
2 and v. Since (H ′′, u) cannot be a 4-wheel, i 6= 1 and j 6= 1. But then

(H ′′ \ b1) ∪ {u, p1, ..., pi} induces a 3PC(u, pi) if i < j or 3PC(u, pj) otherwise. Therefore v
does not have a neighbor in P .

Suppose that pk has a neighbor in H \ (B ∪ vb2). Let P ′ be a chordless path from pk
to v in (H \ (B ∪ vb2)) ∪ {pk, v}. Then P ′ ∪ P ∪ {u, b2} induces a 3PC(pk, u). Therefore
N(pk) ∩H ⊆ B ∪ vb2 , and hence by (2) pk is adjacent to vb2 . But then Pa1b1 ∪ Pa2b2 ∪ P ∪ u
induces a 4-wheel with center b2. This proves (6).

By (5) and (6) no node of H has a neighbor in P \ pk. By (4) pk is adjacent to b2.
Suppose pk is of type p2, d, Ad, H2-crossing or a pseudo-twin of a node of A2 or y when

y /∈ {a1, a2} w.r.t. H. Since pk is adjacent to b2, it follows that Σ
′, u and P contradict Lemma

7.2. Therefore pk cannot be any of these types, and hence by (4) pk is either of type p3 w.r.t.
H or it is a pseudo-twin of a node of B1 w.r.t. H.
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Suppose that pk is of type p3 w.r.t. H. Since pk is adjacent to b2, by Lemma 7.2 applied
to Σ′, u and P , it follows that |A2| = 1 and b′2y is an edge. Let w be the neighbor of pk in
Pb2y that is closest to y. Let P ′ be the wy-subpath of Pb2y, and let H ′ be the hole induced
by P ∪ P ′ ∪ Pa2y ∪ Pa1b1 ∪ u. Then (H ′, b′2) is a bug and Pa′

1
b′
1
its center-crosspath or ear, a

contradiction.
So pk is a pseudo-twin of a node of B2 w.r.t. H. Suppose that pk is not adjacent to a

node of B1. If k 6= 1, then H1 ∪ P ∪ {u, b′2} induces a bug with center pk with an ear (where
the ear is the path induced by (P \ pk) ∪ u). So k = 1. Since {p1, v, b1, b2} cannot induce a
4-hole, p1v is not an edge. Note that both p1 and v have a neighbor in H1 \ {b1, b

′
1, vb1}. Let

P ′ be a chordless path from p1 to v in (H1 \ {b1, b
′
1, vb1}) ∪ {p1, v}. Then P ′ ∪ {u, v, b1, b2}

induces a 4-wheel with center u. So pk must be adjacent to a node of B1.
By definition of P , pk is not adjacent to b1, and hence it is adjacent to b′1. Therefore,

pk is a pseudo-twin of b′1 w.r.t. H. Suppose that v does not have a neighbor in P . Let P ′

be the path from pk to v in (Pa′
1
b′
1
\ b′1) ∪ {pk, v}. If k > 1, then P ′ ∪ P ∪ {u, b′2} induces

a 3PC(pk, u). So k = 1, and hence P ′ ∪ P ∪ {u, b1, b
′
2} induces a 4-wheel with center u.

Therefore v has a neighbor in P . Let P ′ be the chordless path from pk to b1 in (H1 \ b
′
1)∪ pk.

Since P ′ ∪ P ∪ {b1, u, v} cannot induce a proper wheel with center v, N(v) ∩ (P ′ ∪ P ) = pi
for some i ∈ {1, ..., k}. But then P ′ ∪ {pi, ..., pk, b2, v} induces 3PC(b1, pk). 2

Proof of Theorem 1.6: Assume G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4,
5.5 and 5.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(∆, ·)
with a hat, a bug with an ear nor a 3PC(∆, ·) with a type s2 node. We prove that for some
connected diamond H of G, the 2-join H1|H2 of H extends to a 2-join of G. Assume not.
Then by Theorem A.5 every connected diamond H of G has a blocking sequence for H1|H2.
Consider all short connected diamonds H, and amongst them choose an H with a shortest
blocking sequence S = x1, ..., xn for H1|H2.

By Lemmas A.10, A.15, A.16 and A.17 the following holds:

(1) If a node of G\H has a neighbor in H, then it is of type p1, p2, p3, A1, A, B, B2, a, t3,
d, Ad, H1-crossing, H2-crossing w.r.t. H or it is a pseudo-twin of a node of A ∪B ∪ y
w.r.t. H.

By (1), Lemma A.18, Theorem A.9 and our choice of H and S, the following holds:

(2) If a node of S has a neighbor in H, then it is of type p1, p2, A1, A, B, B2, d, Ad,
H1-crossing or H2-crossing w.r.t. H, or |A2| = 1 and it is a pseudo-twin of a2 w.r.t. H.

So by Remark A.2 and since neither H1|H2∪x1 nor H1∪xn|H2 is a 2-join, N(x1)∩H1 6=
∅, A1, B1 and N(xn) ∩H2 6= ∅, A2, B2 and hence by (2) the following hold:

(3) n > 1.

(4) x1 has a neighbor in H1, and it is of type p1, p2 or H1-crossing w.r.t. H.

(5) xn has a neighbor in H2, and it is of type p1, p2, d, Ad, H2-crossing w.r.t. H, or it is
a pseudo-twin of a2 w.r.t. H when |A2| = 1.
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Let xl be the node of S with lowest index adjacent to a node ofH2. By (4), N(x1)∩H ⊆ H1

and hence l > 1. By Lemma A.8, x1, ..., xl is a chordless path. Let xj be the node of S \ x1
with lowest index that has a neighbor in H. Clearly j ≤ l and hence x1, ..., xj is a chordless
path. Note that nodes x2, ..., xj−1 have no neighbors in H. Furthermore by (2), (5) and
Lemma A.3, the following holds:

(6) Either j = n and xj is one of the types in (5), or j < n and xj is of type A1, A, B or
B2 w.r.t. H.

Let C (resp. C ′) be the hole induced by Pa1b1 ∪ Pa′
1
b′
1
∪ b2 (resp. Pa1b1 ∪ Pa′

1
b′
1
∪ b′2).

Claim 1: x1 is not an H1-crossing w.r.t. H.

Proof of Claim 1: Assume it is. W.l.o.g. x1 is adjacent to b1. Then (C, x1) and (C ′, x1) are
both bugs. If xj is of type A1, A, Ad or a pseudo-twin of a2 when |A2| = 1 w.r.t. H, then xj
is not adjacent to at least one of b2, b

′
2 and hence x2, ..., xj is a center-crosspath of (C, x1) or

(C ′, x1), a contradiction. If xj is of type B2 w.r.t. H, then (C \ A1) ∪ {x1, ..., xj} contains a
3PC(b2, x1).

Suppose that xj is of type B w.r.t. H. If j = 2, then bug (C, x1) and x2 contradict
Lemma 5.1. So j > 2 and hence (C \ A1) ∪ {x1, ..., xj} contains a 3PC(x1, xj). So by (6),
xj has a neighbor in H2 and it is of type p1, p2, d or H2-crossing w.r.t. H. In particular,
N(x1) ∩H ⊆ H1 and N(xj) ∩H ⊆ H2, and hence H and x1, ..., xj contradict Lemma A.14.
This completes the proof of Claim 1.

Claim 2: x1 is not of type p2 w.r.t. H.

Proof of Claim 2: Assume it is. W.l.o.g. the neighbors of x1 in H are contained in Pa1b1 .
If xj is of type A1, A, Ad or a pseudo-twin of a2 when |A2| = 1 w.r.t. H, then xj is not
adjacent to at least one of b2, b

′
2, and hence either C ∪ {x1, ..., xj} or C ′ ∪ {x1, ..., xj} induces

a 3PC(∆,∆) or a 4-wheel with center a1.
Node xj cannot be of type B, p2, d nor H2-crossing w.r.t. H, since otherwise either

Pa1b1 ∪ Pa′
2
b′
2
or Pa1b1 ∪ Pa2b2 induces a 3PC(∆,∆) or a 4-wheel with center b1.

Suppose that xj is of type B2 w.r.t. H. Let P be the chordless path from xj to a1 in
G[Pa1b1 ∪ {x1, ..., xj}]. Let H ′ be the short connected diamond induced by P ∪ Pa′

1
b′
1
∪H2.

Then by Theorem A.9 applied to H ′ and S, our choice of H is contradicted.
So by (6), N(xj)∩H = r and r ∈ H2. But then H and x1, ..., xj contradict Lemma A.14.

This completes the proof of Claim 2.

Claim 3: If N(x1) ∩H = b1, then there exists a chordless path P = p1, ..., pk in G \H such
that p1 is adjacent to x1, no node of P \p1 is adjacent to x1, no node of P \pk has a neighbor
in H and one of the following holds:

(i) N(pk) ∩H = vb1 , or

(ii) pk is of type p2 w.r.t. H and its neighbors in H are contained in Pa′
1
b′
1
.

Proof of Claim 3: Let S = N [b1] \ {x1, vb1}. Since S cannot be a star cutset, there exists a
direct connection P = p1, ..., pk from x1 to H in G \ S. So p1 is adjacent to x1, no node of
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P \ p1 is adjacent to x1, pk has a neighbor in H \ {b1, b2, b
′
2} and it is not adjacent to b1, and

the only nodes of H that may have a neighbor in P \ pk are b2 and b′2.

Case 1: b2 and b′2 do not have neighbors in P \ pk.

Case 1.1: pk has a neighbor in Σ \ {b2, b
′
2}.

By Lemma 7.1 applied to Σ, x1 and P , and since no node of P is adjacent to b1, one of
the following holds: (a) N(pk)∩Σ = vb1 ; (b) pk is of type p2 w.r.t. Σ with neighbors in Pb1y

path of Σ; or (c) pk is of type d w.r.t. Σ and it has no neighbor in Pb1y \ y.
Suppose that (a) holds. By (1) either N(pk) ∩H = vb1 and hence (i) holds, or a1b1 is an

edge and N(pk)∩H = {a1, a
′
1}. The second case cannot hold, since then Pa1b1 ∪ Pa2b2 ∪ P ∪

{x1, a
′
1} induces a 4-wheel with center a1.

Suppose that (b) holds. First suppose that N(pk)∩Σ ⊆ Pa1b1 . Then by (1), pk is of type
p2 or H1-crossing w.r.t. H. If pk is an H1-crossing w.r.t. H, then (Pa1b1 \a1)∪P ∪{x1, b2, b

′
1}

contains a 3PC(b1, pk). So pk is of type p2 w.r.t. H. Note that pk is not adjacent to b1, and
hence (H \vb1)∪P ∪x1 contains a short connected diamond H ′(A1, A2, B1, B2) that contains
x1, and hence by Theorem A.9 our choice of H and S is contradicted. Therefore N(pk) ∩ Σ
is not contained in Pa1b1 , and hence |A2| = 1. Suppose that N(pk)∩Σ ⊆ Pa2y. So by (1), pk
is of type p2 w.r.t. H. But then (H \ (Pa1b1 \ b1)) ∪ P ∪ x1 contains a connected diamond
whose side-2-paths have fewer nodes in common than the side-2-paths of H, contradicting our
choice of H. Therefore N(pk)∩Σ = {a1, a2}. By (1) pk is of type a, A or it is a pseudo-twin
of a′1 w.r.t. H. By Lemma 7.2 applied to Σ′, b1 and path x1, P , node pk must in fact be of
type A w.r.t. H. But then (H \ (Pa1b1 \ b1)) ∪ P ∪ x1 induces a short connected diamond
H ′(A′

1, A2, B1, B2) where A′
1 = {a′1, pk} that contains x1. But then by Theorem A.9 our

choice of H and S is contradicted.
So we may now assume that (c) holds. Suppose that |A2| = 2. Then N(pk) ∩ Σ =

{a1, a2, a
′
2} and so by (1) pk is of type A or it is a pseudo-twin of a′1 w.r.t. H. If pk is a

pseudo-twin of a′1 w.r.t. H, then Pa1b1 ∪ (Pa′
1
b′
1
\a′1)∪P ∪{x1, b

′
2} contains a 3PC(b1, pk). So

N(pk)∩H = A. Let H ′ be the short connected diamond induced by Pa′
1
b′
1
∪P ∪H2∪{x1, b1}.

Then by Theorem A.9 applied to H ′ and S, our choice of H is contradicted. So |A2| = 1, and
hence N(pk) ∩ Σ = {y, yb2 , yb′2}. By (1), N(pk) ∩H = {y, yb2 , yb′2}. Suppose that pk is not
adjacent to a node of B2. LetH

′ be the connected diamond induced by (H\(Pa1b1\b1))∪P∪x1.
Then the two side-2-paths of H ′ have fewer nodes in common than the two side-2-paths of H,
contradicting our choice of H. So pk is adjacent to a node of B2, w.l.o.g. say it is adjacent to
b2. Then b2y is an edge, and hence b′2y is not an edge. But then P ∪Pa′

1
b′
1
∪Pa2y ∪{x1, b2, b

′
2}

induces a proper wheel with center b2.

Case 1.2: pk has no neighbor in Σ \ {b2, b
′
2}.

Then N(pk)∩H ⊆ Pa′
1
b′
1
∪B2. So by (1) either N(pk)∩H ⊆ Pa′

1
b′
1
or pk is of type t3 w.r.t.

H (adjacent to b′1) or pk is a pseudo-twin of b′1 w.r.t. H. If pk is a pseudo-twin of b′1 w.r.t.
H, then Pa1b1 ∪ (Pa′

1
b′
1
\ b′1)∪P ∪{x1, b2} contains a 3PC(b1, pk). If pk is of type t3 w.r.t. H,

then H1 ∪P ∪ {x1, b2} induces a bug with center b2, and Pa2b2 \ b2 is its center-crosspath. So
N(pk) ∩H ⊆ Pa′

1
b′
1
. If N(pk) ∩H = b′1, then C ∪ P ∪ x1, induces a 3PC(b1, b

′
1). So pk has a

neighbor in Σ′ \ {b2, b
′
2, b

′
1}. Note that b1 is of type t2 w.r.t. Σ′. By Lemma 7.2 applied to

Σ′, b1 and P , (ii) holds.
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Case 2: b2 or b′2 has a neighbor in P \ pk.
Let pi be the node of P \ pk with highest index that has a neighbor in {b2, b

′
2}. W.l.o.g.

we may assume that pi is adjacent to b2.
Suppose that pk does not have a neighbor in Σ\{b2, b

′
2}. Then pk has a neighbor in Pa′

1
b′
1
.

Let C be the hole contained in H1 ∪P ∪x1 that contains Pa1b1 ∪P ∪x1. Since C ∪ b2 cannot
induce a 3PC(b1, pi), (C, b2) is a wheel and hence it must be a bug. But then Pa2b2 \ b2 is its
center-crosspath. Therefore pk has a neighbor in Σ \ {b2, b

′
2}. We now consider the following

cases.

Case 2.1: N(pi) ∩H = b2.
Since pk is not adjacent to b1 and it has a neighbor in Σ \ {b2, b

′
2}, it cannot be of type

B, B2 nor a pseudo-twin of a node of B2 ∪ b′1 w.r.t. H. If pk is of type A1, A, a, H1-crossing,
a pseudo-twin of a node of A1 w.r.t. H or a pseudo-twin of a′2 when |A2| = 2 w.r.t. H, then
Σ, pi and pi+1, ..., pk contradict Lemma 7.1.

Suppose that pk is of type d or it is a pseudo-twin of y when y /∈ {a1, a2} w.r.t. H. Note
that |A2| = 1. By Lemma 7.1 applied to Σ, pi and pi+1, ..., pk, node pk is either adjacent to b2
or N(pk) ∩H = {y, yb′

2
, ya2}. Let P

′ be the chordless path from pk to a2 in G[Pa2y ∪ pk] and
let C be the hole induced by P ′ ∪ P ∪ Pa1b1 ∪ x1. Since C ∪ b2 cannot induce a 3PC(b1, pi),
(C, b2) is a wheel, and hence it is a bug. But then Pa′

1
b′
1
is a center-crosspath of bug (C, b2).

Suppose that pk is of type t3, Ad or it is a pseudo-twin of a2 w.r.t. H. Note that if pk is
of type t3 w.r.t. H, then since pk has a neighbor in Σ \ {b2, b

′
2}, N(pk) ∩H ⊆ A. So in all

three cases, N(pk) ∩ H1 = A1. Let C be the hole induced by Pa1b1 ∪ P ∪ x1. Since C ∪ b2
cannot induce a 3PC(b1, pi), (C, b2) is a wheel, and hence it is a bug. But then Pa′

1
b′
1
is a

center-crosspath of bug (C, b2).
Suppose that pk is an H2-crossing w.r.t. H. First suppose that |A2| = 2. If pk is

adjacent to a2 (resp. a′2), then let C be the hole induced by Pa1b1 ∪ P ∪ {a2, x1} (resp.
Pa1b1 ∪ P ∪ {a′2, x1}). Since C ∪ b2 cannot induce a 3PC(pi, b1), (C, b2) is a wheel and hence
it must be a bug. But then Pa′

1
b′
1
is its center-crosspath. So |A2| = 1. Let P ′ be the chordless

path from pk to a2 in G[(Pa2b2 \ b2)∪ pk], and let C be the hole induced by P ′ ∪P ∪x1. Then
again (C, b2) is a bug and Pa′

1
b′
1
is its center-crosspath.

Suppose that pk is a pseudo-twin of b1 w.r.t. H. Since pk is not adjacent to b1, N(pk)∩H =
{b2, b

′
2, v1, v2} where v1v2 is an edge of Pa1b1 \ b1. Let P

′ be the chordless path from pk to b1
in G[Pa1b1 ∪ pk], and let C be the hole induced by P ′ ∪ P ∪ x1. Then (C, b2) must be a bug,
and hence H1 ∪ P ∪ {b2, x1} induces a bug (C, b2) and its center-crosspath.

Therefore by (1), pk is of type p1, p2 or p3 w.r.t. H. By Lemma 7.1 applied to Σ, pi and
pi+1, ..., pk, N(pk)∩H ⊆ Pa2b2 . Let P

′ be the chordless path from pk to a2 in G[(Pa2b2\b2)∪pk],
and let C be the hole induced by P ′ ∪ P ∪ x1. Since C ∪ b2 cannot be a 3PC(b1, pi), (C, b2)
must be a bug, and hence Pa′

1
b′
1
is its center-crosspath.

Case 2.2: N(pi) ∩H = {b2, b
′
2}.

Since pk is not adjacent to b1 and it has a neighbor in Σ \ {b2, b
′
2}, it cannot be of type

B, B2 nor a pseudo-twin of a node of B2 ∪ b′1. If pk is of type A1, Ad, H2-crossing or a
pseudo-twin of a node of A2 ∪ {a1, y} w.r.t. H, then Σ, pi and pi+1, ..., pk contradict Lemma
7.2.
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Suppose that pk is of type A w.r.t. H. Let C be the hole induced by Pa1b1 ∪P ∪x1. Since
C ∪ b2 cannot induce a 3PC(b1, pi), (C, b2) is a wheel, and hence it is a bug. But then Pa′

1
b′
1

is its center-crosspath.
If pk is of type a w.r.t. H, then by Lemma 7.2 applied to Σ, pi and pi+1, ..., pk, N(pk)∩H =

{a1, a2}. But then H1 ∪ {pi, ..., pk, b2} induces a 3PC(a1, b2).
Suppose that pk is of type t3 w.r.t. H. Since pk is not adjacent to b1 and it has a neighbor

in Σ \ {b2, b
′
2}, N(pk) ∩H ⊆ A. But then Σ, pi and pi+1, ..., pk contradict Lemma 7.2.

Suppose that pk if of type d w.r.t. H. By Lemma 7.2 applied to Σ, pi and pi+1, ..., pk,
N(pk)∩H = {y, yb2 , yb′2} and pk is not adjacent to b2 and b′2. But then (H \Pa1b1)∪{pi, ..., pk}
induces a connected diamond whose side-2-paths have fewer nodes in common than the side-
2-paths of H, contradicting our choice of H.

If pk is an H1-crossing w.r.t. H, then it must be adjacent to b′1, and hence (Pa1b1 \ a1) ∪
{pi, ...pk, b

′
1, b2} contains a 3PC(b2, pk).

If pk is a pseudo-twin of a′1 w.r.t. H, then (H1\a
′
1)∪{pi, ..., pk, b2} contains a 3PC(b2, pk).

Suppose that pk is of type p1 w.r.t. H. By Lemma 7.2 applied to Σ, pi and pi+1, ..., pk,
|A2| = 1 and either yb2 is an edge and pk is adjacent to vb′

2
, or yb′2 is an edge and pk is

adjacent to vb2 . In the first case (H \ (Pa′
1
b′
1
∪ b′2))∪P ∪x1 induces a proper wheel with center

b2. In the second case, Pa1b1 ∪ Pa2b2 ∪ P ∪ x1 induces a proper wheel with center b2.
Suppose that pk is a pseudo-twin of b1 w.r.t. H. Since pk is not adjacent to b1, N(pk)∩H =

{b2, b
′
2, v1, v2} where v1v2 is an edge of Pa1b1 \ b1. Let P

′ be the chordless path from pk to b1
in G[Pa1b1 ∪ pk], and let C be the hole induced by P ′ ∪ P ∪ x1. Then (C, b2) must be a bug,
and hence H1 ∪ P ∪ {b2, x1} induces a bug (C, b2) and its center-crosspath.

Suppose that pk is of type p3 w.r.t. H. By Lemma 7.2 applied to Σ, pi and pi+1, . . . , pk,
|A2| = 1 and pk is adjacent to b2 or b′2, w.l.o.g. say to b2. Let P

′ be the chordless path from
pk to y in G[(Pb2y \ b2) ∪ pk], and let C be the hole induced by P ′ ∪ P ∪ Pa2y ∪ Pa1b1 ∪ x1.
Then (C, b2) must be a bug and Pa′

1
b′
1
is its center-crosspath.

Therefore by (1), pk is of type p2 w.r.t. H. By Lemma 7.2 applied to Σ, pi and pi+1, ..., pk,
eitherN(pk)∩H ⊆ Pa1b1 , or |A2| = 1 andN(pk)∩H ⊆ Pa2y. Let P

′ be the chordless path from
pk to b1 in G[Pa1b1∪(Pa2b2 \b2)∪pk], and let C be the hole induced by P ′∪P ∪x1. Since C∪b2
cannot induce a 3PC(b1, pi), (C, b2) is a wheel, and hence it is a bug. If N(pk) ∩H ⊆ Pa2y,
then Pa′

1
b′
1
is a center-crosspath of (C, b2). So N(pk)∩H ⊆ Pa1b1 . But then H1 ∪P ∪{b2, x1}

induces a bug (C, b2) and its center-crosspath. This completes the proof of Claim 3.

Claim 4: If N(x1) ∩H = a1, then there exists a chordless path P = p1, ..., pk in G \H such
that p1 is adjacent to x1, no node of P \p1 is adjacent to x1, no node of P \pk has a neighbor
in H and N(pk) ∩H = va1 .

Proof of Claim 4: Let S = N [a1] \ {x1, va1}. Since S cannot be a star cutset, there exists a
direct connection P = p1, ..., pk from x1 to H in G \ S. So p1 is adjacent to x1, no node of
P \ p1 is adjacent to x1, pk has a neighbor in H \A and it is not adjacent to a1, and the only
nodes of H that may have a neighbor in P \ pk are a2, a

′
2 and a′1.

Since pk is not adjacent to a1 and it has a neighbor in H \ A, pk cannot be of type A1,
A, a, Ad, t3 (with neighbors in A), nor a pseudo-twin of a node of A2 ∪ a′1 w.r.t. H. So by
(1) the following holds.

(4.1) pk is not adjacent to a1, and it is of type p1, p2, p3, B, B2, t3 (with neighbors in B),
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d, H1-crossing, H2-crossing or a pseudo-twin of B∪ a1 or y when y /∈ {a1, a2} w.r.t. H.

Case 1: a2 and a′1 do not have a neighbor in P \ pk.
Then a′2 is the only node of H that may have a neighbor in P \ pk. If a

′
2 has a neighbor

in P \ pk, then (P \ pk) ∪ x1 contains a hat of Σ2, a contradiction. So no node of H has a
neighbor in P \ pk.

If pk is of type B2, B, d, H1-crossing, H2-crossing or it is a pseudo-twin of a node of B∪a1
or y when y /∈ {a1, a2} w.r.t. H, then since pk is not adjacent to a1, Lemma 7.1 applied to
Σ1, x1 and P is contradicted.

Suppose that pk is an H2-crossing w.r.t. H. If |A2| = 1 or pk is adjacent to a′2, then Σ, x1
and P contradict Lemma 7.1. So |A2| = 2 and pk is adjacent to a2. But then x1, P is a hat
of Σ1.

Suppose that pk is of type t3 (with neighbors in B) w.r.t. H. By Lemma 7.1 applied
to Σ1, x1 and P , N(pk) ∩ H = {b2, b

′
2, b1}. But then H \ (Pa1b1 \ a1) ∪ P ∪ x1 induces a

short connected diamond H ′(A1, A2, B
′
1, B2) where B′

1 = {pk, b
′
1}, which by Theorem A.9

contradicts our choice of H.
So by (4.1), pk is of type p1, p2 or p3 w.r.t. H. W.l.o.g. N(pk) ∩ H ⊆ Σ1. By

Lemma 7.1 applied to Σ1, x1 and P , N(pk) ∩ H = va1 , or pk is of type p2 w.r.t. H and
N(pk)∩H ⊆ Pa1b1 . Suppose that pk is of type p2 w.r.t. H. Then, since pk is not adjacent to
a1, (H \ va1) ∪ P ∪ x1 contains a short connected diamond H ′(A1, A2, B1, B2) that contains
x1, and hence by Theorem A.9 our choice of H is contradicted. So N(pk)∩H = va1 and the
result holds.

Case 2: a2 or a′1 has a neighbor in P \ pk.
Let pi (resp. pl) be the node of P \ pk with lowest (resp. highest) index adjacent to a

node of {a2, a
′
1}. Since x1, p1, ..., pi cannot be a hat of Σ1, pi is adjacent to both a2 and a′1.

Then by (1), pi is of type a w.r.t. H. In particular, |A2| = 1. W.l.o.g. pk has a neighbor in
Σ1 \ A.

First suppose that pl is adjacent to a2 but not a′1. Then l > i. By Lemma 7.1 applied
to Σ1, pl and pl+1, ..., pk, node pk has a neighbor in (Pa1b2 ∪ Pa2b2) \ {a1, a2}. Let P ′ be a
chordless path from pk to a1 in G[Pa1b1 ∪ (Pa2b2 \ a2)∪ pk], and let C be the hole induced by
P ′ ∪ P ∪ x1. Then (C, a2) is a wheel, and hence it must be a bug, i.e. l = i+ 1. So pk is not
adjacent to a2. If pk is adjacent to a′1, then by (4.1), pk is an H1-crossing w.r.t. H adjacent
to b1 or a pseudo-twin of b′1 w.r.t. H. But then Σ1, pl and pl+1, ..., pk contradict Lemma 7.1.
So pk is not adjacent to a′1, and hence C ∪ a′1 induces 3PC(a1, pi).

Now suppose that pl is adjacent to a′1, but not a2. Then l > i. By Lemma 7.1 applied
to Σ1, pl and pl+1, ..., pk, node pk has a neighbor in ((Pa1b1 ∪ Pa′

1
b′
1
) \ {a1, a

′
1}) ∪ b2. Let P ′

be a chordless path from pk to a1 in G[Pa1b1 ∪ (Pa′
1
b′
1
\ a′1) ∪ {pk, b2}], and let C be the hole

induced by P ′ ∪ P ∪ x1. Then (C, a′1) is a wheel, and hence it must be a bug, i.e. l = i+ 1.
So pk is not adjacent to a′1. If pk is adjacent to a2, then by (4.1), pk is of type d w.r.t. H
or it is a pseudo-twin of a node of B2 or y when y /∈ {a1, a2} w.r.t. H. But then Σ1, pl and
pl+1, ..., pk contradict Lemma 7.1. So pk is not adjacent to a2, and hence C ∪ a2 induces a
3PC(a1, pi).

Therefore, pl must be adjacent to both a2 and a′1, and hence pl is of type t2 w.r.t. Σ1. If
pk is of type B2, B, d, H1-crossing, H2-crossing or a pseudo-twin of a node of B2 ∪ b1 or y
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when y /∈ {a1, a2} w.r.t. H, then Σ1, pl and pl+1, ..., pk contradict Lemma 7.2.
Suppose that pk is of type p3 w.r.t. H. By Lemma 7.2 applied to Σ1, pl and pl+1, . . . , pk,

a2b2 is an edge and pk is adjacent to a′1. Then a2b
′
2 is not an edge. Let P ′ be the chordless

path from pk to b′1 in G[(Pa′
1
b′
1
\ a′1) ∪ pk], and let C be the hole induced by P ′ ∪ Pa1b1 ∪

{b′2, a2, pl, . . . , pk}. Then (C, a′1) is a 4-wheel.
If pk is of type t3 w.r.t. H with neighbors in B, then by Lemma 7.1 applied to Σ1, pl

and pl+1, ..., pk, N(pk) ∩ H = {b2, b
′
2, b1}. If pk is of type p2 w.r.t. H, then by Lemma 7.2

applied to Σ1, pl and pl+1, ..., pk, N(pk) ∩H ⊆ Pa1b1 . In both cases let P ′ be the chordless
path from pk to a1 in G[Pa1b1 ∪ pk], and let C be the hole induced by P ′ ∪ P ∪ x1. Since
C ∪ a′1 cannot induce a 3PC(a1, pl), (C, a

′
1) is a wheel and hence it must be a bug. But then

H1 ∪ P ∪ {x1, b2} induces a bug (C, a′1) with its center-crosspath. Therefore pk cannot be of
type p2 nor t3 (with neighbors in B) w.r.t. H.

Suppose that pk is a pseudo-twin of b′1 w.r.t. H. By Lemma 7.2 applied to Σ1, pl and
pl+1, ..., pk, node pk is adjacent to a′1. Let C be the hole induced by Pa1b1 ∪P ∪{x1, b2}. Then
(C, a′1) must be a bug, and hence i = l and k = l+1. But then C ∪ a2 induces a 3PC(a1, pl),
or a proper wheel with center a2 (in the case when a2b2 is an edge).

Suppose pk is a pseudo-twin of a1 w.r.t. H. Note that since pk is not adjacent to a1,
N(pk) ∩H = {a2, a

′
1, v1, v2} where v1v2 is an edge of Pa1b1 \ a1. Let C be the hole contained

in (Pa1b1 \ b1) ∪ P ∪ x1. Then (C, a′1) must be a bug, and hence H1 ∪ P ∪ {b2, x1} induces a
bug (C, a′1) and its center-crosspath.

Therefore by (4.1), pk is of type p1 w.r.t. H. By Lemma 7.2 applied to Σ1, pl and
pl+1, ..., pk, a2b2 is an edge and N(pk) ∩ H = va′

1
. But then H1 ∪ P ∪ {b2, x1} induces a

proper wheel with center a′1. This completes the proof of Claim 4.

By (4) and Claims 1 and 2, N(x1) ∩H = r where r ∈ H1. W.l.o.g. r ∈ Pa1b1 . By (6) it
suffices to consider the following cases.

Case 1: xj is of type p1, p2, d or H2-crossing w.r.t. H.
Then N(xj) ∩H ⊆ H2, and H and x1, ..., xj contradict Lemma A.14.

Case 2: xj is of type Ad or a pseudo-twin of a2 when |A2| = 1 w.r.t. H.
Suppose that r 6= a1. If xj has a neighbor in Pa2b2 \a2, then (Pa2b2\a2)∪Pa1b1∪{x1, ..., xj}

contains a 3PC(r, xj). Otherwise (Pa′
2
b′
2
\ a′2) ∪ Pa′

1
b′
1
∪ {x1, ..., xj} contains a 3PC(r, xj). So

r = a1.
Let P be the path from Claim 4. If no node of P is adjacent to or coincident with a node

of {x2, ..., xj}, then Pa1b1 ∪ Pa′
1
b′
1
∪ P ∪ {x1, ..., xj} together with either b2 or b′2 induces a

4-wheel with center a1. So a node of P is adjacent to or coincident with a node of {x2, ..., xj}.
Let pi be the node of P with highest index that has a neighbor in {x2, ..., xj}, and let xl be
the node of {x2, ..., xj} with highest index adjacent to pi. If xj has a neighbor in Pa2b2 \ a2,
then Pa1b1 ∪ (Pa2b2 \ a2) ∪ {pi, ..., pk, xl, ..., xj} contains a 3PC(va1 , xj). So xj does not have
a neighbor in Pa2b2 \ a2, and hence xj is of type Ad w.r.t. H, |A2| = 1, y = a2 and
N(xj) ∩H = {a′1, a1, a2, yb′2}. But then Pa1b1 ∪ (Pa2b

′
2
\ a2) ∪ {pi, ..., pk, xl, ..., xj} contains a

3PC(va1 , xj).

Case 3: xj is of type A1 w.r.t. H.
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If r 6= a1, then Σ1, xj and x1, ..., xj−1 contradict Lemma 7.2. So r = a1. Let P be the
path from Claim 4. Then Pa1b1 ∪Pa2b2 ∪P ∪ {x1, ..., xj} contains a proper wheel with center
a1.

Case 4: xj is of type A w.r.t. H.
First suppose that r 6= a1. Let P be the chordless path from xj to b1 in G[(Pa1b1 \ a1) ∪

{x1, ..., xj}]. Then H2 ∪ P ∪ Pa′
1
b′
1
induces a short connected diamond H ′ which by Theorem

A.9 contradicts our choice of H. So r = a1. Let P be the path from Claim 4. Let P ′ be the
chordless path from xj to b1 in G[(Pa1b1 \a1)∪P ∪{x1, ..., xj}]. Then H2∪P ′∪Pa′

1
b′
1
induces

a short connected diamond H ′ which by Theorem A.9 contradicts our choice of H.

Case 5: xj is of type B2 w.r.t. H.
By Lemma A.14 applied to H and x1, ..., xj , r = b1. Let P be the path from Claim 3.
Suppose that P satisfies (i) of Claim 3. Let P ′ be a chordless path from xj to a1 in

G[(Pa1b1 \ b1)∪P ∪{x1, ..., xj}]. Then H2∪P ′∪Pa′
1
b′
1
induces a short connected diamond H ′

which by Theorem A.9 contradicts our choice of H.
So P satisfies (ii) of Claim 3. If no node of P is adjacent to or coincident with a node

of {x2, ..., xj}, then (Pa′
1
b′
1
\ a′1) ∪ P ∪ {b1, b

′
2, x1, ..., xj} contains a 3PC(b′2, x1). Otherwise,

there exists a chordless path P ′ from xj to a′1 in G[(Pa′
1
b′
1
\ b′1) ∪ P ∪ {x2, ..., xj}], and hence

H2 ∪ P ′ ∪ Pa1b1 induces a short connected diamond H ′ which by Theorem A.9 contradicts
our choice of H.

Case 6: xj is of type B w.r.t. H.
If r 6= b1, then Pa1b1 ∪ Pa′

1
b′
1
∪ {x1, ..., xj} induces a 3PC(r, xj). So r = b1. Let P be the

path from Claim 3. Suppose that P satisfies (i) of Claim 3. If no node of P is adjacent to or
coincident with a node of {x2, ..., xj}, then Pa1b1 ∪ Pa2b2 ∪ P ∪ {x1, ..., xj} induces a 4-wheel
with center b1. Otherwise, Pa1b1 ∪Pa′

1
b′
1
∪P ∪{x2, ..., xj} contains a 3PC(xj , vb1). So P must

satisfy (ii) of Claim 3.
If a node of P is adjacent to or coincident with a node of {x2, ..., xj}, then Pa1b1 ∪ (Pa′

1
b′
1
\

b′1) ∪ Pa2b2 ∪ P ∪ {x2, ..., xj} contains a 3PC(xjb1b2, a1a
′
1a2). So no node of P is adjacent to

or coincident with a node of {x2, ..., xj}. If j = 2, then (Pa′
1
b′
1
\ a′1) ∪ P ∪ {b1, b2, x1, ..., xj}

contains a 4-wheel with center xj . So j > 2. But then (Pa′
1
b′
1
\a′1)∪P ∪{b1, x1, ..., xj} contains

a 3PC(x1, xj). 2
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