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Decomposition of even-hole-free graphs
with star cutsets and 2-joins

Murilo V. G. da Silva * and Kristina Vugkovié¢

November 15, 2008; revised May 25, 2012

Abstract

In this paper we consider the class of simple graphs defined by excluding, as induced
subgraphs, even holes (i.e. chordless cycles of even length). These graphs are known as
even-hole-free graphs. We prove a decomposition theorem for even-hole-free graphs, that
uses star cutsets and 2-joins. This is a significant strengthening of the only other pre-
viously known decomposition of even-hole-free graphs, by Conforti, Cornuéjols, Kapoor
and Vuskovié¢, that uses 2-joins and star, double star and triple star cutsets. It is also
analogous to the decomposition of Berge (i.e. perfect) graphs with skew cutsets, 2-joins
and their complements, by Chudnovsky, Robertson, Seymour and Thomas. The similar-
ity between even-hole-free graphs and Berge graphs is higher than the similarity between
even-hole-free graphs and simply odd-hole-free graphs, since excluding a 4-hole, auto-
matically excludes all antiholes of length at least 6. In a graph that does not contain a
4-hole, a skew cutset reduces to a star cutset, and a 2-join in the complement implies a
star cutset, so in a way it was expected that even-hole-free graphs can be decomposed
with just the star cutsets and 2-joins. A consequence of this decomposition theorem
is a recognition algorithm for even-hole-free graphs that is significantly faster than the
previously known ones.

Key words: Even-hole-free graphs, star cutsets, 2-joins, recognition algorithm, decomposition.

1 Introduction

All graphs in this paper are finite, simple and undirected. We say that a graph G contains
a graph F, if F is isomorphic to an induced subgraph of G. A graph G is F'-free if it does
not contain F. Let F be a (possibly infinite) family of graphs. A graph G is F-free if it is
F-free, for every F € F.

A hole is a chordless cycle of length at least four. A hole is even (resp. odd) if it contains
an even (resp. odd) number of nodes. A hole of length n is also called an n-hole. In this paper
we study the class of even-hole-free graphs, i.e. graphs that are F-free where F denotes the
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family of all even holes. In this paper we prove a decomposition theorem for even-hole-free
graphs using star cutsets and 2-joins, and we show how it leads to a recognition algorithm
for even-hole-free graphs, that is significantly faster than the previously known ones [19, 10].

Many interesting classes of graphs can be characterized as being F-free, for some family
F. The most famous such example is the class of perfect graphs. A graph G is perfect if for
every induced subgraph H of G, x(H) = w(H), where x(H) denotes the chromatic number
of H, i.e. the minimum number of colors needed to color the vertices of H so that no two
adjacent vertices receive the same color, and w(H) denotes the size of a largest clique, where
a clique is a graph in which every pair of vertices are adjacent. The famous Strong Perfect
Graph Theorem (conjectured by Berge [4], and proved by Chudnovsky, Robertson, Seymour
and Thomas [11]) states that a graph is perfect if and only if it does not contain an odd hole
nor an odd antihole (where an antihole is a complement of a hole). The graphs that do not
contain an odd hole nor an odd antihole are known as Berge graphs.

The structure of even-hole-free graphs was first studied by Conforti, Cornuéjols, Kapoor
and Vuskovi¢ in [18] and [19]. They were focused on showing that even-hole-free graphs can
be recognized in polynomial time (a problem that at that time was not even known to be
in NP), and their primary motivation was to develop techniques which can then be used in
the study of perfect graphs. In [18] they obtained a decomposition theorem for even-hole-
free graphs that uses 2-joins and star, double star and triple star cutsets (all these cutsets
are defined in Section 1.3), and in [19] they used it to obtain a polynomial time recognition
algorithm for even-hole-free graphs. This is the same paradigm that was used to obtain
recognition algorithms for balanced matrices [16, 20]. All these algorithms use “cleaning”, a
technique first developed by Conforti and Rao [23] to recognize linear balanced matrices. This
technique was invented to make use of strong cutsets, such as star cutsets, in a decomposition
based recognition algorithm. If one is able to clean the graph for the even-hole-free graph
recognition problem, one can then make use of not only star cutsets, but also double star and
triple star cutsets, and for that reason all these cutsets were used in the decomposition of
even-hole-free graphs in [18]. That decomposition gave the first known recognition algorithm
for even-hole-free graphs, but it was always clear that a stronger decomposition theorem
was possible. At that time that problem was put aside, since the focus now was on perfect
graphs, trying to prove the Strong Perfect Graph Conjecture and obtain a polynomial time
recognition algorithm for Berge graphs.

The Strong Perfect Graph Conjecture was proved by Chudnovsky, Robertson, Seymour
and Thomas in [11], by decomposing Berge graphs using skew cutsets, 2-joins and their
complements. Soon after, the recognition of Berge graphs was shown to be polynomial by
Chudnovsky, Cornuéjols, Liu, Seymour and Vuskovié¢ in [8].

Note that by excluding a 4-hole, one also excludes all antiholes of length at least 6. So if we
switch parity, the analogous class to even-hole-free graphs are the Berge graphs, rather than
just the odd-hole-free graphs. In a graph that does not contain a 4-hole, a skew cutset reduces
to a star cutset, and a 2-join in the complement implies the star cutset. The decomposition
of Berge graphs with skew cutsets, 2-joins and their complements [11] provided a motivation
to believe that it is also possible to decompose even-hole-free graphs with just the star cutsets
and 2-joins.

As expected, the key to obtaining a polynomial time recognition algorithm for Berge
graphs [8] was the cleaning. What was surprising, as Chudnovsky and Seymour observed, was



that once the cleaning is performed, one does not need the decomposition based recognition
algorithm, one can simply look for the “bad structure” (in this case an odd hole) directly. So
in [8] two recognition algorithms for Berge graphs are given: an O(n?) Chudnovsky/Seymour
style (that uses the direct method) algorithm, and an O(n'®) decomposition based recognition
algorithm. (The high complexity of all of these algorithms is primarily due to cleaning). Then
Zambelli [37] showed that by using the cleaning with the direct method, the complexity of
the recognition algorithm for balanced 0,+1 matrices dramatically drops, in comparison with
their original recognition in [16] that is based on the decomposition method.

Another twist in the story is the case of the recognition algorithm for even-hole-free
graphs. The original algorithm from [19] is of complexity of about O(n*°). In [10] Chud-
novsky, Kawarabayashi and Seymour obtain an O(n3!) recognition algorithm for even-hole-
free graphs, using cleaning with the direct method. In the same paper they sketch another
more complicated algorithm that, they claim, runs in time O(n'?). This algorithm first needs
to test for thetas and prisms in that time (thetas and prisms are defined in Section 1.2). It
turns out that testing for thetas can be done in time O(n'!) [12]. Detecting a prism is NP-
complete in general [30]. In [10] it is claimed that under the assumption that the graph does
not contain a theta one can use cleaning to test for prisms in time O(n!?). This turns out to
be false. Detecting a theta or a prism using the outlined method ends up being of complexity
O(n?3) [9]. In this paper we show that our decomposition of even-hole-free graphs yields an
O(n'?) time recognition algorithm. So this is the first example in which a decomposition
based method performs faster. Subsequently, using the same paradigm given here, Chang
and Lu [5] managed to reduce the complexity to O(n'!). Their algorithm uses the decompo-
sition theorem from this paper. They obtain an improved complexity by introducing a new
idea of a “tracker” that allows for fewer graphs that need to be recursively decomposed by
star cutsets, and they improve the complexity of the cleaning procedure by first looking for
certain structures, using the three-in-a-tree algorithm from [12], before applying the cleaning.
They also use a recent faster algorithm for detecting 2-joins from [6].

We note that it is still not known whether it is possible to recognize odd-hole-free graphs
in polynomial time. Finding a maximum clique, a maximum independent set and an optimal
coloring are all known to be polynomial for perfect graphs [26, 27]. The complexities of
finding a maximum independent set and an optimal coloring are not known for even-hole-free
graphs nor for odd-hole-free graphs. Finding a maximum clique for odd-hole-free graphs is
NP-complete (follows from 2-subdivision [32]). One can find a maximum clique of an even-
hole-free graph in polynomial time, since as observed by Farber [24] 4-hole-free graphs have
O(n?) maximal cliques and hence one can list them all in polynomial time. In [33] da Silva
and Vuskovié¢ show that every even-hole-free graph contains a vertex whose neighborhood is
triangulated (i.e. does not contain a hole). This characterization leads to a faster algorithm
(that is also robust) for computing a maximum weighted clique of an even-hole-free graph.
Together with the work in [1], the algorithm ends up being of complexity O(nm).

More recently, Addario-Berry, Chudnovsky, Havet, Reed and Seymour [3], settle a con-
jecture of Reed, by proving that every even-hole-free graph contains a bisimplicial vertex (a
vertex whose set of neighbors induces a graph that is a union of two cliques). This imme-
diately implies that if G is an even-hole-free graph, then x(G) < 2w(G) — 1 (observe that
if v is a bisimplicial vertex of G, then its degree is at most 2w(G) — 2, and hence G can be
colored with at most 2w(G) — 1 colors). It is interesting that this result is also obtained us-



ing decomposition, although in [3] not all even-hole-free graphs are decomposed, but enough
structures are decomposed using “fake” double star cutsets (cutsets that when certain edges
are added end up being double star cutsets) to obtain the desired result.

Another motivation for the study of even-hole-free graphs is their connection to S-perfect
graphs introduced by Markossian, Gasparian and Reed [31]. For a graph G, let 6(G) be
the minimum degree of a vertex in G. Consider the following total order on V(G): order
the vertices by repeatedly removing a vertex of minimum degree in the subgraph of vertices
not yet chosen and placing it after all the remaining vertices but before all the vertices
already removed. Coloring greedily on this order gives the upper bound x(G) < f(G), where
B(G) =max{§(G’') + 1 : G’ is an induced subgraph of G}. A graph is S-perfect if for each
induced subgraph H of G, x(H) = 5(H).

It is easy to see that [-perfect graphs belong to the class of even-hole-free graphs, and
that this containment is proper. A diamond is a cycle of length 4 that has exactly one
chord. A cap is a cycle of length greater than four that has exactly one chord, and this chord
forms a triangle with two edges of the cycle. In [31] it is shown that (even-hole, diamond,
cap)-free graphs are (-perfect, and in [25] de Figueiredo and Vuskovi¢ show that (even-hole,
diamond, cap-on-6-vertices)-free graphs are S-perfect. Recently these results were extended
by Kloks, Miiller and Vuskovi¢ who show in [29] that (even-hole, diamond)-free graphs are
B-perfect (implying that this class of graphs can be colored in polynomial time, by coloring
greedily on a particular easily constructable ordering of vertices). This result is obtained by
proving that every (even-hole, diamond)-free graph contains a simplicial extreme (where a
vertex is simplicial if its neighborhood set induces a clique, and it is a simplicial extreme if
it is either simplicial or of degree 2). And the existence of simplicial extremes is obtained
as a consequence of a decomposition of (even-hole, diamond)-free graphs in [29] that uses
2-joins, clique cutsets and bisimplicial cutsets (a special type of a star cutset). We note that
the decomposition theorem for even-hole-free graphs in this paper uses the one in [29] by
reducing the problem to the diamond-free case.

The fact that (even-hole, diamond)-free graphs have simplicial extremes implies that for
such a graph G, x(G) < w(G) + 1 (observe that if v is a simplicial extreme of G, then its
degree is at most w(G), and hence G can be colored with at most w(G) 4 1 colors). So this
class of graphs, as well as the class of even-hole-free graphs by the result in [3], belong to the
family of x-bounded graphs, introduced by Gyéarfds [28] as a natural extension of the family
of perfect graphs: a family of graphs G is x-bounded with x-binding function f if, for every
induced subgraph G’ of G € G, x(G') < f(w(G")). Note that perfect graphs are a x-bounded
family of graphs with the y-binding function f(x) = z.

The essence of even-hole-free graphs is actually captured by their generalization to signed
graphs, called the odd-signable graphs, and in fact the decomposition theorem that we prove
in this paper is for the class of graphs that are 4-hole-free odd-signable. In Section 1.1 we
introduce the terminology and notation that will be used throughout the paper, and odd-
signable graphs are introduced in Section 1.2. The decomposition theorem is described in
Section 1.3, where we also give an overview of its proof. The recognition algorithm for even-
hole-free graphs that uses the main decomposition theorem is given in Section 2. All the
other sections of the paper are devoted to the proof of the main decomposition theorem.



1.1 Terminology and notation

For S C V(G) and A C E(G), we denote by G \ (S U A) the subgraph of G obtained by
removing the nodes of S (and all edges with at least one endnode in S) and the edges of A.
SUA is a cutset if G\ (SUA) contains more connected components than G. For an induced
subgraph H of G, we say that a cutset S of G separates H if there are nodes of H in different
components of G\ S.

For S C V(G), N(S) denotes the set of nodes in V(G) \ S with at least one neighbor in
and N[S] denotes N(S)US. For x € V(G), we also use the following notation: N(z) = N({z})
and N[z] = N[{z}]. For V' C V(G), G[V'] denotes the subgraph of G induced by V’. For
x € V(G), the graph G[N(x)] is called the neighborhood of .

Let S C V(G) and =z € V(G). Node z is adjacent to S, if x is adjacent to some node
of S. Node z is strongly adjacent to S, if z is adjacent to at least two nodes of S. For an
induced subgraph H of G, a node v € V(G) \ V(H) is a twin of a node x € V(H) w.r.t. H,
if Nw)NV(H)= Nz]nV(H).

A path P is a sequence of distinct nodes x1, ..., x,, n > 1, such that z;x;11 is an edge, for
all 1 <4 < n. These are called the edges of a path P. Nodes x; and x, are the endnodes
of the path. The nodes of V(P) that are not endnodes are called the intermediate nodes of
P. Let x; and z; be two nodes of P, such that [ > ¢. The path x;,z;11,...,z; is called the
z;x;-subpath of P. Let @ be the x;z;-subpath of P. We write P = 21, ..., %;—1, Q, Tj11, ..., Tn.
A cycle C is a sequence of nodes x1, ..., Zp, T1, n > 3, such that nodes z1, ..., x, form a path
and z1x, is an edge. The edges of the of the path z1, ..., x,, together with the edge z1x,, are
called the edges of C. The length of a path P (resp. cycle C') is the number of edges in P
(resp. C).

Given a path or a cycle ) in a graph GG, any edge of G between nodes of () that is not an
edge of @ is called a chord of Q. Q is chordless if no edge of G is a chord of (). As mentioned
earlier a hole is a chordless cycle of length at least 4. It is called a k-hole if it has k edges. A
k-hole is even if k is even, and it is odd otherwise.

Let A, B be two disjoint node sets such that no node of A is adjacent to a node of B. A
path P = x1,...,x, connects A and B if either n = 1 and x1 has a neighbor in A and B, or
n > 1 and one of the two endnodes of P is adjacent to at least one node in A and the other
is adjacent to at least one node in B. The path P is a direct connection between A and B if
in G[V(P)U AU B] no path connecting A and B is shorter than P. The direct connection P
is said to be from A to B if x1 is adjacent to a node in A and x,, is adjacent to a node in B.

In figures, solid lines represent edges and dotted lines represent paths of length at least
one.

A note on notation: For a graph G, let V (G) denote its node set. For simplicity of notation
we will sometimes write G instead of V(G), when it is clear from the context that we want
to refer to the node set of G. We will not distinguish between a node set and the graph
induced by that node set. Also a singleton set {z} will sometimes be denoted with just .
For example, instead of “u € V(G) \ {z}”, we will write “u € G \ 2”. These simplifications
of notation will take place in the proofs, whereas the statements of results will use proper
notation.



1.2 Odd-signable graphs

We sign a graph by assigning 0, 1 weights to its edges. A graph is odd-signable if there exists
a signing that makes every triangle odd weight and every hole odd weight. To characterize
odd-signable graphs in terms of excluded induced subgraphs, we now introduce two types of
3-path configurations (3PC’s) and even wheels.

Let z,y be two distinct nodes of G. A 3PC(z,y) is a graph induced by three chordless zy-
paths, such that any two of them induce a hole. We say that a graph G contains a 3PC(-, )
if it contains a 3PC(z,y) for some z,y € V(G). 3PC(-,-)’s are also known as thetas, as in
[9].

Let x1,x9,x3,y1,y2,y3 be six distinct nodes of G such that {z1,z2, 23} and {y1,y2,y3}
induce triangles. A 3PC(x1x2x3,Yy1y2y3) is a graph induced by three chordless paths P, =
T1,...,Y1, Po = To,...,y2 and P3 = x3,...,¥ys3, such that any two of them induce a hole.
We say that a graph G contains a 3PC(A, A) if it contains a 3PC(x1x923, y1y2y3) for some
x1,%2,%3,Y1,Y2, Y3 € V(G). 3PC(A,A)’s are also known as prisms, as in [9].

A wheel, denoted by (H,z), is a graph induced by a hole H and a node x ¢ V(H) having
at least three neighbors in H, say x1,...,z,. Such a wheel is also called a n-wheel. Node x
is the center of the wheel. Edges zz;, for i € {1,...,n}, are called spokes of the wheel. A
subpath of H connecting x; and z; is a sector if it contains no intermediate node z;, 1 <1 < n.
A short sector is a sector of length 1, and a long sector is a sector of length greater than 1.
A wheel (H,x) is even if it has an even number of sectors. See Figure 1.

It is easy to see that even wheels, 3PC(-,)’s and 3PC(A,A)’s cannot be contained in
even-hole-free graphs. In fact they cannot be contained in odd-signable graphs. The following
characterization of odd-signable graphs states that the converse also holds, and it is an easy
consequence of a theorem of Truemper [36].

Figure 1: 3PC(-,-), 3PC(A,A) and an even wheel.

Theorem 1.1 [17] A graph is odd-signable if and only if it does not contain an even wheel,
a 3PC(-,-) nor a 3PC(A, A).

This characterization of odd-signable graphs will be used throughout the paper.

1.3 Decomposition theorem and outline of its proof

A node set S C V(G) is a k-star cutset of G if S is a cutset and is comprised of a clique C'
of size k and nodes with at least one neighbor in C, i.e. C C S C N[C]. We refer to C as



the center of S. A 1-star is also refered to as a star, a 2-star as a double star, and 3-star as
a triple star. If S = N[C], then S is called a full k-star.

A graph G has a 2-join V1|Va, with special sets (A1, A2, By, B2), if the nodes of G can be
partitioned into sets V7 and V5 so that the following hold.

(i) Fori=1,2, A;UB; CV;, and A; and B; are nonempty and disjoint.

(ii) Every node of A; is adjacent to every node of Ag, every node of Bj is adjacent to every
node of By, and these are the only adjacencies between V; and V5.

(iii) For ¢ = 1,2, the graph induced by V;, G[V;], contains a path with one endnode in A;
and the other in B;. Furthermore, G[V;] is not a chordless path.

We now introduce two classes of graphs that have no star cutset nor a 2-join.

Let x1,x2,x3,y be four distinct nodes of G such that z1,x9,x3 induce a triangle. A
3PC(z1x223,y) is a graph induced by three chordless paths Py y = x1,...,y, Py = T2,...,y
and Pp,, = x3,...,y, such that any two of them induce a hole. We say that a graph G contains
a 3PC(A,-) if it contains a 3PC(z1x2x3,y) for some z1,x2, 23,y € V(G). Note that in a
Y. = 3PC(A,-) at most one of the paths may be of length one. If one of the paths of ¥ is
of length 1, then X is also a wheel that is called a bug. If all of the paths of ¥ are of length
greater than 1, then X is a long 3PC(A,-). 3PC(A,-)’s are also known as pyramids, as in
[8]. See Figure 2.

Figure 2: A long 3PC(A,-) and a bug.

We now define nontrivial basic graphs. Let L be the line graph of a tree. Note that every
edge of L belongs to exactly one maximal clique, and every node of L belongs to at most two
maximal cliques. The nodes of L that belong to exactly one maximal clique are called leaf
nodes. A clique of L is big if it is of size at least 3. In the graph obtained from L by removing
all edges in big cliques, the connected components are chordless paths (possibly of length 0).
Such a path P is an internal segment if it has its endnodes in distinct big cliques (when P is
of length 0, it is called an internal segment when the node of P belongs to two big cliques).
The other paths P are called leaf segments. Note that one of the endnodes of a leaf segment
is a leaf node.

A nontrivial basic graph R is defined as follows: R contains two adjacent nodes x and v,
called the special nodes. The graph L induced by R \ {z,y} is the line graph of a tree and
contains at least two big cliques. In R, each leaf node of L is adjacent to exactly one of the
two special nodes, and no other node of L is adjacent to special nodes. The last condition
for R is that no two leaf segments of L with leaf nodes adjacent to the same special node



have their other endnode in the same big clique. The internal segments of R are the internal
segments of L, and the leaf segments of R are the leaf segments of L together with the node
in {z,y} to which the leaf segment is adjacent to.

Let G be a graph that contains a nontrivial basic graph R with special nodes « and y. R*
is an extended nontrivial basic graph of G if R* consists of R and all nodes u € V(G) \ V(R)
such that for some big clique K of R and for some z € {z,y}, N(u) N V(R) = V(K) U {z}.
We also say that R* is an extension of R. See Figure 3.

Figure 3: An extended nontrivial basic graph.

In [18] even-hole-free graphs are decomposed into cliques, holes, long 3PC(A, ) and non-
trivial basic graphs using 2-joins and star, double star and triple star cutsets. We obtain the
following strengthening of that result.

A graph is basic if it is one of the following graphs:

(1)
(2)
3)
(4)

a clique,

a hole,

3) along 3PC(A,-), or
4

an extended nontrivial basic graph.

Theorem 1.2 (The Main Decomposition Theorem) A connected j-hole-free odd-
stgnable graph is either basic, or it has a star cutset or a 2-join.

Here is a simple restatement of Theorem 1.2, that will be used in the recognition algorithm
in Section 2. A graph is a clique tree if each of its maximal 2-connected components is a clique.
A graph is an extended clique tree if it can be obtained from a clique tree by adding at most
two vertices.

Corollary 1.3 A connected even-hole-free graph is either an extended clique tree, or it has
a star cutset or a 2-join.

The key difference in the proof of the decomposition theorem in [18] and the one here,
is that in [18] bugs are decomposed with double star cutsets. Since we are using just star
cutsets, it is not possible to decompose all bugs, and hence we needed to enlarge the class of
basic (undecomposable) graphs to include the extended nontrivial basic graphs.

The proof of Theorem 1.2 follows from the following three results.



Theorem 1.4 [29] A connected j-hole-free odd-signable graph that does not contain a dia-
mond is either basic, or it has a star cutset or a 2-join.

We note that the star cutsets used in [29] to prove Theorem 1.4, are of very special type:
they either induce a clique or two cliques with exactly one node in common.

A connected diamond (see Figure 4) is a pair (3,Q), where ¥ = 3PC(x12923,y) and
Q=aq,...,qc, k> 2, is a chordless path disjoint from ¥ such that the only nodes of () that
have a neighbor in ¥ are ¢; and g;. Furthermore |N(q;) NX| = |N(q1) N{z1,z2, 23} = 2,
say N(q1) N X = {z1,x3}, and one of the following holds:

(i) N(gr) NE = {v1,v2} where vivy is an edge of Py, \ {22}, or

(i) N(gx) "X = {y,y1,y3} where y; (resp. y3) is the neighbor of y in P,y (resp. Pp.y),
and x1y and x3y are not edges.
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Figure 4: Different types of connected diamonds.

Theorem 1.5 Let G be a connected 4-hole-free odd-signable graph. If G contains a diamond,
then G has a star cutset or G contains a connected diamond.

Theorem 1.6 Let G be a connected 4-hole-free odd-signable graph. If G contains a connected
diamond, then G has a star cutset or a 2-join.

Theorem 1.5 is proved in Section 8 and Theorem 1.6 in Appendix A.

The proof of Theorem 1.2 follows the general paradigm for proving a decomposition the-
orem for a class of graphs C: a sequence of structures Si,...,S is identified, that when
contained in a graph G from C will imply a particular decomposition of G. When a decom-
position theorem is obtained of the form: if G € C contains S;, then G has some cutset (that
in particular separates the nodes of S;); in subsequent decompositions it can be assumed



that the graph is S;-free. The order in which the structres are decomposed is crucial, and
finding this order is usually the most difficult and most exciting (for the authors at least)
part of proving a decomposition theorem. Once the order that will allow for the sequential
decompositions is identified, then it is down to unfortunately boring case checking to show
that the decompositions can actually be performed. The following are the steps taken in the
proof of Theorem 1.2.

1. In the process of decomposing we will be breaking holes in a graph. We begin with
analyzing how nodes of a hole, at a particular distance from each other on the hole,
can be connected through paths outside of the hole. In Section 3 we analyze how these
particular connections, that we call appendices, relate to each other.

2. In Section 4 certain types of wheels, called proper wheels, are decomposed with star
cutsets. So from this point on we may assume that our graphs do not contain proper
wheels.

3. The remaining structures that will lead to decompositions when present in the graph
will arise from 3PC(A,-)’s. In Section 5 we analyze how nodes of a ¥ = 3PC(A,-) are
connected through paths outside Y. Here we identify the next sequence of structures
that will be decomposed. They are all of the form: 3PC/(A, ) together with a particular
connecting path.

4. In Section 6 we decompose with star cutsets bugs with certain connecting paths identi-
fied in Section 5. Note that bugs are wheels but also a particular type of a 3PC(A,-).

5. We may now assume that if a graph has a 3PC(A,-), then none of the connecting paths
identified in Section 5 exist. In Section 7, given a ¥ = 3PC(A, ), we analyze how nodes
of G\ ¥, that have a neighbour in 3, "attach” to ¥ in graphs with no star cutsets. In
other words, we prove that some of these nodes lead to decompositions, and for those
that cannot be separated from ¥ by star cutsets, there exist paths that connect them to
Y., which we call attachments. A connected diamond is precisely a 3PC/(A,-) together
with a node that has particular neighbors in it and its attachment to it.

6. In Section 8 we prove Theorem 1.5.

7. Finally in Appendix A, we decompose connected diamonds with 2-joins (proving The-
orem 1.6).

2 Recognition algorithm for even-hole-free graphs

In this section we give a new recognition algorithm for even-hole-free graphs. As already
discussed in Section 1, two different recognition algorithms are given in [19] and [10].
Let H be a hole, and v € V(G) \ V(H). We say that v is major w.r.t. H if there exist
three of its neighbors in H that are parwise nonadjacent. This is the terminology from [10].
Let H be a smallest even hole of a graph G. We say that H is clean if no vertex of G is
major w.r.t. H.
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Let H be a smallest even hole of G. Let uw € G\ H. We say that u is of type gi, for
i=1,2,3,if IN(u)NV(H)| =4 and N(u) NV (H) induces a path on ¢ nodes. We say that u
is of type bl if V(H)U{u} induces a 3PC(-,); u is of type b2 if (H,u) is a 4-wheel that has
exactly two long sectors and these two long sectors do not have a node in common; and w is
of type b3 if (H,u) is a 4-wheel that has exactly two long sectors and these two long sectors
have a node in common. This is the terminology from [19].

Let H be a smallest even hole of G. Let u be a type g3 node w.r.t. H, with neighbors
u1, ug, uz in H such that ujus and ugug are edges. Let H' be the hole induced by (V(H) \
{us}) U {u}. We say that H' is obtained from H by a type-g3-node-substitution. Let Cq(H)
be the set of all holes obtained from H through a sequence of type-g3-node-substitutions.

A graph G is clean if it is either even-hole-free or it contains a smallest even hole H such
that all holes of Cq(H) are clean.

A short 4-wheel is a 4-wheel (H, ) such that either exactly three of the four sectors are
of length 1, or exactly two of the four sectors are of length 1 and they do not have a common
endnode and one of the sectors is of length 3.

In both [19] and [10] a “cleaning procedure” is given, that takes an input graph G and
produces a clean graph G’ that is even-hole-free if and only if G is even-hole-free. In [19] a
smallest even hole is “cleaned” in the sense that all major nodes are eliminated but also the
type bl, b2 and b3 nodes. Here we give the cleaning from [10] that cleans just the major
nodes, and hence has better complexity.

Theorem 2.1 [10] There exists an algorithm with the following specifications:

Input ;A graph G.

Output  : A sequence of subsets Xi,..., X, of V(G) with v < |V(G)|° such that for
every smallest even hole H of G, one of X1,..., X, is disjoint from V(H)
and includes all major vertices for H.

Running : O(|V(G)|'?).

Time

Lemma 2.2 Let H be a smallest even hole of G. If x € V(G)\ V(H) has an odd number of
neighbors in H, then x is of type g1 or g3 w.r.t. H.

Proof: Assume that x has an odd number of neighbors in H, and that it is not of type gl or
g3 wr.t. H. Then (H,z) is a wheel. If S is any sector of (H,x), then V(S) U {z} induces
either a triangle or a hole that is of length smaller than H. So every sector of (H,z) is of odd
length, and since (H,z) has an odd number of sectors, it follows that H is of odd length, a
contradiction. O

Lemma 2.3 Assume that G does not contain a short 4-wheel nor a smallest even hole with
a type b3 node. Let H be a smallest even hole of G. If H is clean, then all holes in Cq(H)
are clean.
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Proof: Assume that H is clean. Let v be a node that is of type g3 w.r.t. H, with neighbors
u1,ug,us in H such that ujus and ugug are edges. Let H' be the hole induced by (V(H) \
{us}) U {u}. To prove the result, it suffices to show that H' is clean.

Suppose that there exists a vertex v that is major w.r.t. H’. Since v cannot be major
w.r.t. H, it follows that v is adjacent to wu, it has at least two nonadjacent neighbors in H,
and it is not adjacent to wuo.

Since v is major w.r.t. H’, by Lemma 2.2 v has an even number of neighbors in H’. So
v has an odd number of neighbors in H. Since v has at least two neighbors in H, by Lemma
2.2, v is of type g3 w.r.t. H. But then either (H’,v) is a short 4-wheel or v is of type b3
w.r.t. H', a contradiction. O

Lemma 2.4 [19] Let G be a graph that does not contain a 4-hole nor a short 4-wheel. Let
H be a smallest even hole of G, and suppose that node u is of type b3 w.r.t. H. Let N(u)N

V(H) = {uy,us,us,us} such that uyus and ugus are edges. If v is major w.r.t. H, then
N(v) N {ug, ug,u} # 2.

Theorem 2.5 There exists an algorithm with the following specifications:

Input ;A graph G that does not contain a 4-hole, nor a short J-wheel.

Output  : A family L of induced subgraphs of G such that if G contains an even hole,
then for some smallest even hole H of G and some G’ € L, G’ contains H

and all holes in Cq(H) are clean. Furthermore, |L| is O(|V(G)|%).

Running : O(|V(G)|'?).

Time

Proof: Consider the following algorithm:
Step 1: Set £ = {G}.

Step 2: For every (Pi, Py, u), where P} = x1,x9, 3 and Py = y1,y2,y3 are disjoint chordless
paths in G and u € N(z2) N N(y2), add to £ the graph obtained from G by removing
the node set N({z2,y2,u}) \ (V(P1) UV (P)).

Step 3: Apply the algorithm from Theorem 2.1 to G, and let Xy,..., X, be the output
sequence of subsets of V(G). For i = 1,...,7 add to £ the graph obtained from G by
removing Xj;.

Clearly this algorithm runs in time O(|V(G)|!Y), and |£] is O(]V(G)|°). Suppose that G
contains an even hole.

First suppose that G contains a smallest even hole H with a type b3 node u. Let N(u) N
V(H) = {u1,u2, ug,us } such that ujus and ugus are edges. Let uf (resp. u}) be the neighbor
of ug in the sector of wheel (H,u) whose endnodes are uy and us (resp. uj). Let G’ be
the graph obtained from G by removing the node set N({ua,uq,u}) \ V(H). Clearly G’
contains H and is one of the graphs added to £ in Step 2. Let H' be any hole of Cev(H). By
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construction of G', H' contains uj, ug, us, us, us,wj and hence u is of type b3 w.r.t. H'. So
by Lemma 2.4 and since no node of G’ is adjacent to any of the nodes of {usg, ug,u}, it follows
that no node of G’ is major w.r.t. H'. Therefore Co/(H) is clean, proving the theorem.
Now we may assume that G does not contain a smallest even hole with a type b3 node.
Let H be any smallest even hole of G. By Theorem 2.1, for some graph G’ added to £ in
Step 3, G’ contains H and H is clean in G'. By Lemma 2.3, all holes in Ce/(H) are clean,
and the theorem holds. O

2.1 Star decomposition

In this section we decompose clean graphs with star cutsets.

Let S = NJz| be a full star cutset of a graph G, and let Cy,...,C),, be the connected
components of G\ S. The blocks of decomposition of G by S are the graphs Gy, ..., Gy, where
G is the subgraph of G induced by V(C;) U S.

Lemma 2.6 Assume that G is a graph that does not contain a theta, a short 4-wheel nor a
4-hole. If H* is a smallest even hole of G and it is clean, then H* contains two nodes that
are at distance at least 3 in G.

Proof: Since G does not contain a 4-hole, H* is of length at least 6, and hence it contains
two nodes u and v that are at distance 3 in H*. Suppose that u and v are not at distance
3 in G. Then there exists a node w € G\ H* that is adjacent to both u and v. Since G
does not contain a theta, w has at least 3 neighbors in H*. By Lemma 2.2, w has at least 4
neighbors in H*. Since G does not contain a 4-hole nor a short 4-wheel, it follows that w is
major w.r.t. H*, contradicting the assumption that H* is clean. O

We note that for the result of the above lemma to hold it is not neccessary to exclude
thetas, there is a way to just deal with type bl nodes as in [19], but since thetas can be
recognized in time O(|V (G)['1) [12], for simplicity of the argument we exclude them here.

We say that w is dominated by v if u is adjacent to v and N(u) C Nv].

Lemma 2.7 Let G be a clean graph such that for some smallest even hole H* of G, all holes
of Ca(H™) are clean. Assume that G does not contain a short 4-wheel. If node u is dominated
by node v, then G\ {u} contains a hole of Co(H™).

Proof: Assume that H* contains u, and let u; and ug be the neighbors of v in H*. Since u
is dominated by v, node v is adjacent to uy, us and w. Since H* is clean and G does not
contain a short 4-wheel, v is of type g3 w.r.t. H*. But then (H*\u)Uwv is in Cq(H*) and in
G\ u. O

A 4-wheel (H,x) is decomposition detectable w.r.t. a full star cutset S if S = N[z], x is
of type b2 w.r.t. H and the interior nodes of the two long sectors of (H,z) are contained in

different connected components of G\ S.

Lemma 2.8 Let G be a clean graph such that for some smallest even hole H* of G, all holes
of Ca(H*) are clean. Assume that G does not contain a short 4-wheel nor a theta. When
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decomposing G with a full star cutset S, then either some hole in Co(H™) is entirely contained
in one of the blocks of decomposition, or there exists a decomposition detectable 4-wheel w.r.t.

S.

Proof: Let S = NJ[z] and suppose that nodes of H* are contained in different connected
components of G\ S. Then x ¢ H* and z has at least two nonadjacent neighbors in H*.
Since G does not contain a theta, x has at least three neighbors in H*.

First suppose that = has an odd number of neighbors in H*. Then by Lemma 2.2, x is
of type g3 w.r.t. H*. Let H be the hole obtained by substituting  into H*. Then H is
contained in Cg(H™*) and in one of the blocks of decomposition by S.

So we may now assume that = has an even number of neighbors in H*, and hence |N(x)N
H*| > 4. Since G does not contain a short 4-wheel, and = cannot be major w.r.t. H*, it
follows that x is of type b2 w.r.t. H*. But then (H*, z) is a decomposition detectable 4-wheel
w.r.t. S. O

Theorem 2.9 There exists an algorithm with the following specifications:

Input ;A connected graph G that does not contain a short 4-wheel, a theta, nor a
4-hole.
Output  :  Fither G is identified as not being even-hole-free, or a list L of induced

subgraphs of G is given with the following properties.
(1) The graphs in L do not have a star cutset.

(2) If G contains a smallest even hole H* such that all holes of Cq(H™)
are clean, then one of the graphs in L contains a hole in Cq(H*).

(8) The number of graphs in L is O(|V(G)|?).

Running : O(|V(G)[*9).
Time

Proof: The algorithm is as follows. Initialize £L = & and £ = {G}, and perform the following
iterative step. If £’ = @, then stop. Otherwise, remove a graph F from £’. If the distance
between every pair of vertices of F' is strictly less than 3 in G, then discard F' and iterate. If
F contains a dominated node u, then add F'\ u to £ and iterate. If F' does not have a full
star cutset, then add F' to £ and iterate. Otherwise, let S be a full star cutset of F. If there
is a decomposition detectable 4-wheel w.r.t. S, then output that G is not even-hole-free and
stop. Otherwise construct the blocks of decomposition by S, add them to £’ and iterate.

Note that if a 4-wheel is found, then clearly G is not even-hole-free. (1) holds by the
construction of the algorithm (note that, as was first observed by Chvétal [15], a graph has a
star cutset if and only if it has a dominated node or a full star cutset). (2) holds by Lemma
2.6, 2.7 and 2.8.

We prove (3) by showing that the number of graphs in £ is bounded by the number of
pairs of vertices at distance at least 3 in G. Let S be a full star cutset of a graph F', and
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let Fy,..., F,, be the blocks of decomposition. Let u and v be two vertices of F' that are at
distance at least 3 in G (and hence in F'). The pair of vertices {u,v} cannot be contained in
two different blocks of decompostion, since otherwise they would both have to be in S, but
since S is a star, all vertices of S are at distance at most 2. Therefore, no pair of vertices
that are at distance at least 3 in G can be contained in different graphs in L.

Finding a dominated node, or finding a full star cutset and constructing blocks of decom-
position can be done in time O(|V(G)|?). For a given full star cutset S = NJz], checking
whether there exists a decomposition detectable 4-wheel can be done in time O(|V(G)[®) as
follows: let C1, ..., C) be the connected components of G\ S; for every 4-tuple (x1, z2, x3, x4),
where {z1,x9, 23,24} C N(x) and G[{z1, z2,x3,24}] consists of exactly two edges, z1x2 and
xgxy; and for every 2-tuple (Cj, Cj), whered, j € {1,...,k} and i # j; check whether 21 and x4
both have a neighbor in the same connected component of C; \ (N (z2) U N (z3)), and whether
x2 and x3 both have a neighbor in the same connected component of C; \ (N(z1) U N(x4)).
All this is performed at most O(|V(G)|?) times, giving O(|V (G)['?) time complexity. 0

2.2 2-join decomposition

In this section we decompose a clean graph that has no star cutset using 2-join decompositions,
without creating any new star cutsets.

Let V1|V; be a 2-join with special sets (A;, Aa, By, By). For i = 1,2, let P; be the family of
chordless paths P = 1, ..., 2, where x1 € A;, x,, € B; and xj € V;\(A;UB;) for 2 < j <n—1.

The blocks of a 2-join decomposition are graphs G; and G5 defined as follows. Block Gy
consists of the subgraph of GG induced by node set Vi plus a marker path Po = as, ..., bs that
is chordless and satisfies the following properties. Node as is adjacent to all nodes in Ay,
node by is adjacent to all nodes in By and these are the only adjacencies between P> and the
nodes of V. Furthermore, let QQ € Ps. The marker path P, has length 3 if ) is of odd length,
and length 4 otherwise. Block G5 is defined similarly.

Theorem 2.10 [19] Let G be a graph that does not contain a 4-hole. Let Gy and Go be
the blocks of a 2-join decomposition of G. G is even-hole-free if and only if G1 and Gy are
even-hole-free. Furthermore, if G does not have a star cutset, then neither do G1 and Gs.

Theorem 2.11 There exists an algorithm with the following specifications:

Input ;A connected graph G that does not have a 4-hole nor a star cutset.

Output  : Fither an even hole of G, or a list L of graphs with the following properties:
(1) The graphs in L do not contain a 4-hole, a star cutset nor a 2-join.
(2) G is even-hole-free if and only if all graphs in L are even-hole-free.
(3) The number of graphs in L is O(|V(G)|).

Running : O(|V(G)[®).

Time
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Proof: The algorithm is as follows. Initialize £ = & and £ = {G}, and perform the following
iterative step. If £ = &, then stop. Otherwise, remove a graph F from £'. If F does not
have a 2-join, then add F to £ and iterate. Otherwise, let V1|V, be a 2-join of F. Construct
the blocks of the 2-join decomposition of F', say F; and F,. For ¢ = 1,2, if |V;| < 7, then
check directly whether F; contains an even hole. If it does, output this result and stop, and
otherwise discard F;. If |V;| > 7, add F; to L', and iterate.

By constructing blocks of decomposition we do not create any 4-holes, and by Theorem
2.10 we do not create any star cutsets. So by the construction of the algorithm, (1) holds.
(2) holds by Theorem 2.10.

In [8] and [19] it is shown how with this construction of the algorithm (3) holds.

Finding a 2-join takes time O(|V(G)|") using the crude implementation in [19], and this
algorithm is applied at most O(|V (G)|) times, yielding an overall complexity of O(|V (G)[®).
O

2.3 Recognition Algorithm

Theorem 2.12 There exists an algorithm with the following specifications:
Input A graph G.

Output : FEVEN-HOLE-FREE when G is even-hole-free, and NOT EVEN-HOLE-
FREE otherwise.

Running : O(|V(G)]*?).
Time

Proof: Consider the following algorithm:

Step 1: Test whether G contains a short 4-wheel, a theta, or a 4-hole. If it does, then output
NOT EVEN-HOLE-FREE and stop.

Step 2: Apply algorithm from Theorem 2.5, and let £1 be the output family of graphs.

Step 3: Let L9 = &. For every graph in £y, apply the algorithm from Theorem 2.9. If
the graph is identified as not being even-hole-free, then output the same and stop.
Otherwise merge the output family of graphs with Ls.

Step 4: Let L3 = &. For every graph in Lo, apply the algorithm from Theorem 2.11. If
the graph is identified as not being even-hole-free, then output the same and stop.
Otherwise merge the output family of graphs with L.

Step 5: Check whether every graph in L3 is an extended clique tree. If some is not then
output NOT EVEN-HOLE-FREE. Otherwise, for each graph in L3 check whether it
contains an even hole. If some does, then output NOT EVEN-HOLE-FREE, and
otherwise output EVEN-HOLE-FREE.
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The correctness of the algorithm follows from Corollary 1.3. Testing whether a graph
contains a short 4-wheel or a 4-hole can be done by brute force in time O(|V (G)|?). Testing
whether a graph contains a theta can be done in time O(|V(G)['!) [12]. So Step 1 can be
implemented to run in time O(|V(G)[*).

By Theorem 2.5, Step 2 can be implemented to run in time O(|V(G)['°) and |£;] =
O(|V(G)|°). By Theorem 2.9 and since |£1| = O(|V(G)|?), Step 3 can be implemented to run
in time O(|V(G)[*?) and |L2| = O(]V(G)[*!). By Theorem 2.11 and since |£2]| = O(|V(G)|'1)
Step 4 can be implemented to run in time O(|V(G)|*?) and |L3] = O(|V(G)[*?).

It is easy to see that in a clique tree there is at most one chordless path between any pair
of vertices. So if G\ x is a clique tree, then to determine whether G contains an even hole we
need only test for every pair of neighbors of x whether the chordless path between them in
G \ x contains no other neighbor of x and is of even length. Similarly one can test whether
an extended clique tree contains an even hole. So, since |L3] = O(|V(G)|'?), Step 5 can be
implemented to run in time O(|V(G)|!7). Therefore the overall running time is O(|V (G)|'?).
a

3 Appendices to a hole

Let H be a hole of a graph G. A chordless path P = py,...,px in G\ H is an appendiz of H
(see Figure 5) if no node of P\ {p1,pxr} has a neighbor in H, and one of the following holds:

(i) k=1and (H,p1) is a bug (N(p1) NV (H) = {u1,u2,u}, such that ujus is an edge), or

(ii) k > 1, py has exactly two neighbors u; and ug in H, ujug is an edge, pi has a single
neighbor u in H, and u & {uy,us}.

Nodes uq,uo,u are called the attachments of appendix P to H. We say that ujue is the
edge-attachment and u is the node-attachment.

Let Hp (resp. H}) be the uju-subpath (resp. ugu-subpath) of H that does not contain
ug (resp. u1). Hp and Hp are called the sectors of H w.r.t. P.

Let @ be another appendix of H, with edge attachment viv2 and node-attachment v.
Appendices P and @ are said to be crossing if one sector of H w.r.t. P contains v; and v,
say H}, does, and v € V(HY) \ {u}.

Lemma 3.1 Assume that G is a 4-hole-free odd-signable graph. Let P = pi,...,pr be an
appendiz of a hole H, with edge-attachment uius and node-attachment u, where py is adjacent
to uy and uy. Let Hp (resp. H}) be the sector of H w.r.t. P that contains uy (resp. ug).
Let Q = q1,...,q be a chordless path in G\ H such that q1 has a neighbor in H, q; has a
neighbor in HY, no node of Q \ {q1,q} is adjacent to a node of H and one of the following
holds:

(i) L =1, q1 is not adjacent to u, and if uy (resp. ug) is the unique neighbor of ¢ in H}
(resp. HY), then g1 is not adjacent to ug (resp. wy) nor p;.

(i) 1> 1, N(q1) "\ V(H) CV(HR) \ {u}, N(@) NV (H) CV(H)\ {u}, ¢1 has a neighbor
in Hp \ {u1}, and q; has a neighbor in H} \ {ua}.
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Figure 5: An appendix P = p1,...,pr of a hole H, with edge-attachment ujus and node-
attachment wu.

Then @Q is also an appendiz of H and its node-attachment is adjacent to u. Furthermore, no
node of P is adjacent to or coincident with a node of Q.

Proof: Let u) (resp. uj) be the neighbor of ¢; in H, that is closest to u (resp. up). Let
uf (resp. uj) be the neighbor of ¢; in H}, that is closest to u (resp. ug). Note that either
u) # uy or uf # uy. Let S (resp. S%) be the uju-subpath (resp. u)ui-subpath) of H}, and
let SY (resp. S¥) be the ufu-subpath (resp. ujus-subpath) of H%. Let H' (resp. H") be the
hole induced by Hj, U P (resp. H}, U P).

First suppose that [ = 1. Note that g; cannot be coincident with a node of P. Suppose
q1 has a neighbor in P. Note that ¢; is not adjacent to u, and if ¢; is adjacent to py, then
u) # up and uf # ug. But then P US| U SY Uq contains a 3PC(¢q1,u). So g1 has no
neighbor in P. Since H U g; cannot induce a 3PC(u},uY), ¢1 has at least three neighbors
in H. Since (H,q;) cannot be an even wheel, w.l.o.g. ¢; has an odd number of neighbors
in Hp and an even number of neighbors in H%. Since H” U ¢, cannot induce a 3PC (uf, u})
nor an even wheel with center ¢1, u/uf is an edge, and thus ¢; has exactly two neighbors in
HY. Since H" U S U g cannot induce an even wheel with center ug (when u) = ug) nor a
3PC (prugug, qruful) (when uf # ug), uf is adjacent to u, and the lemma holds.

Now suppose that [ > 1. So u} # u; and uf # uz. Not both ¢; and ¢; can have a single
neighbor in H, since otherwise H U @ induces a 3PC(u},u). W.lLo.g. uf # uf.

Suppose that ufuj is not an edge. A node of P must be adjacent to or coincident with a
node of Q, else H”"UQ U S} contains a 3PC(q;, u). Note that no node of {¢1, ¢;} is coincident
with a node of {p1,px}, and if a node of @ is coincident with a node of P, then a node of
Q is also adjacent to a node of P. Let ¢; be the node of ) with highest index that has a
neighbor in P. (Note that ¢; is not coincident with a node of P). Let p; be the node of P
with highest index adjacent to ¢;. If j > 1 and ¢ > 1, then HU{p;,...,pk, ¢, -..,q} contains
a 3PC(q,u). If i =1, then S1U ST UQU {pj,...,px} induces a 3PC(qq,u). So i > 1, and
hence j = 1. If i < [, then SY USY U P U{q,...,q} induces a 3PC(p1,q). So i =l. Since
H U g cannot induce a 3PC(uf,u), (H,q) is a wheel. But then one of the wheels (H, ¢;) or

(H",q) must be even. Therefore ufuj is an edge, and thus ¢; has exactly two neighbors in

Y.

P
Suppose that u} # u). Then by symmetry, uju} is an edge, and hence H U @ induces a
3PC(quuluby, quiuf). Therefore v} = ul, i.e. @ is an appendix of H. Note that by definition
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of Q, u} & {uy,u}.

Suppose that a node of P is adjacent to or coincident with a node of Q). Let ¢; be the
node of ) with highest index adjacent to a node of P, and let p; be the node of P with lowest
index adjacent to ¢;. If i > 1 and j < k, then H U {p1,...,p;,¢,...,q} induces an even
wheel with center ug (when uf = ug) or a 3PC(piujug, qujul) (when uf # ug). If i = 1,
then PUQ U ST USY contains a 3PC/(¢1,u). So i > 1, and hence j = k.

If pr has a unique neighbor in @, then Q U S7 U S} U py induces a 3PC(g;,u). So py has
more than one neighbor in Q.

Suppose that k = 1. Then either S5 U S) UQ Up; or S1USY UQ Up; induces an even
wheel with center p1. So k > 1.

Let T" (resp. T”) be the hole induced by S7 U SY U@ (resp. S, USY UQ). If both
(T, pr) and (T", p;) are wheels, then one of them is even. So p; has exactly two neighbors
in Q. Since T” Upy, cannot induce a 3PC(-,-), N(px) NQ = {¢i,¢i—1}. (Note that ¢;_; is not
coincident with a node of P, since j = k). If no node of P\ py has a neighbor in @, then
T"” U P induces a 3PC(piuiusg, prqiqi—1)- So a node of P\ pi has a neighbor in Q. Let p;
be such a node with lowest index. Let ¢s; be the node of @) with highest index adjacent to
pe. It # k—1then HLU{p1,...,pt; Pk, s, ---,q} induces an even wheel with center ¢; or
a 3PC(quiul, prqigi—1). Sot =k — 1, i.e. px and py_; are the only nodes of P that have a
neighbor in Q. If s # 1 then (H\ SY)UPU{qgs,...,q} induces an even wheel with center py.
So s =1. If i > 2, then S] U{q1,...,qi—1,Pk—1,pr} induces a 3PC(q1,px). So i = 2. Since
there is no 4-hole, vju ¢ E(G). But then H U {q1,p} induces a 3PC(u},u).

Therefore, no node of P is adjacent to or coincident with a node of Q. If wju is not an
edge, then (H \ S4)U P UQ induces a 3PC(u},u). Therefore uju is an edge. O

Lemma 3.2 Assume that G is a 4-hole-free odd-signable graph. Let P = p1,...,pr be an
appendiz of a hole H, with edge-attachment uyus and node-attachment w, with py adjacent
to ur,ue. Let Q = q1,...,q be another appendiz of H, with edge-attachment vive and node-
attachment v, with q1 adjacent to vi,ve. If P and Q) are crossing, then one of the following
holds:

(i) uv is an edge,
(11) uw € {v1,v2} and q1 has a neighbor in P, or
(i1i) v € {uy,u2} and p1 has a neighbor in Q.

Proof: Let Hp, (resp. H}) be the sector of H w.r.t. P that contains u; (resp. uz). W.lo.g.
{v1,v2} C Hpp and v; is the neighbor of ¢; in H}, that is closer to u;. Assume wv is not an
edge.

By Lemma 3.1 either v = u or ug = v. W.lo.g. assume that v = u. Let S; (resp.
S3) be the uv-subpath (resp. ugv-subpath) of H%. A node of P must be coincident with or
adjacent to a node of @, else Hp U Sy U P U Q induces a 3PC(prujug, qiviu) (when uy # vy)
or an even wheel with center u; (when u; = v1). Note that no node of {¢1, ¢} is coincident
with a node of {p1,pr}. Let ¢; be the node of @ with lowest index adjacent to P. (So g¢; is
not coincident with a node of P). Let p; be the node of P with lowest index adjacent to g;.
If : =1, then (ii) holds. So assume that ¢ > 1.
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If j < kandi </, then HU{p1,...,pj,q1,...,¢} induces a 3PC(p1uiuz, q1viu) or an
even wheel with center u;. So either j =k or ¢ = [.

Suppose that j = k. If N(px) N Q = ¢;, then S; U Q U py induces a 3PC(u,q;). So pg
has more than one neighbor in Q. Let 7" (resp. T") be the hole induced by S; U @ (resp.
(H\ (S1\v))UQ). Note that (T',px) is a wheel. If (T”,py) is also a wheel, then one of
these two wheels must be even. So (T”,px) is not a wheel, and hence k > 1 and p; has
exactly two neighbors in Q. N(px) N Q = {qi,qi+1}, else T U pg induces a 3PC(-,-). But
then Hp U Sy U Q Upy induces a 3PC(q101u, Prqigi+1)-

So j < k, and hence ¢ = [. In particular, ¢; is the only node of () that has a neighbor in
P. If either j > 1 or v # ug, then S1 UQ U {pj,...,pi} contains a 3PC(u,q). So j =1 and
v = ug, and hence (iii) holds. O

4 Proper wheels

A bug is a wheel with three sectors, exactly one of which is short. A fwin wheel is a wheel
with exactly two short sectors and one long sector. A proper wheel is a wheel that is neither
a bug nor a twin wheel. A wheel (H,x) is a universal wheel, if z is adjacent to all nodes of
H. See Figure 6.

Figure 6: A bug, a twin wheel and a universal wheel with center x.

Theorem 4.1 [33] Let G be a 4-hole-free odd-signable graph. If G contains a universal wheel,
then G has a star cutset.

Theorem 4.2 [3] Let G be a j-hole-free odd-signable graph. If G contains a proper wheel
that is not a universal wheel, then G has a star cutset.

Theorem 4.2 was proved by us and in [3] independently and at the same time. Since [3]
is already published, we do not include our proof of Theorem 4.2 here. We also note that in
[3], the statement of Theorem 4.2 is for even-hole-free graphs, but since in their proof, to
obtain the decomposition they only use the exclusion of 4-holes, even-wheels, 3PC(.,.)’s and
3PC(A, A)’s, they actually prove the above stated version.

These two theorems imply the following result.

Theorem 4.3 Let G be a 4-hole-free odd-signable graph. If G contains a proper wheel, then
G has a star cutset.
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5 Nodes adjacent to a 3PC(A,-) and crossings

Throughout this section ¥ denotes a 3PC(z1x223,y). The three paths of ¥ are denoted by
Py y, Pryy and Py, (where Py, is the path that contains z;). Note that at most one of the
paths of ¥ is of length 1. For i = 1,2,3, we denote the neighbor of y in P,,, by y;. Also let
X = {.%'1, 9, 1‘3}.

Lemma 5.1 Let G be a 4-hole-free odd-signable graph that does not contain a proper wheel.
If u e V(G) \ V(X) has a neighbor in X, then u is one of the following types (see Figure 7).

pi for i=1,2,3 : For some path P of ¥, N(u) NV (X) C P and |[N(u) NV (X)| = 1.
Furthermore, if i > 2, then u has two adjacent neighbors in 3.

crosspath : Node u has exactly three neighbors in 3. For some i € {1,2,3}, u is
adjacent to y;, and the other two neighbors of u in X are contained in
Py y, for some j € {1,2,3}\{i}. Furthermore, V (Py,)UV (Py;y)U{u}
induces a bug with center u.

t2 : Nu)NnV(X)C X and |[N(u) NV ()| = 2.

t3 : Nu)nV(E)=X.

d : Forsomei,j€{1,2,3}, i # j, Nu)NV(X) ={y, vy}
pseudo-twin of a :  We define a pseudo-twin of x1: N(u) NV (2) = {x2, x3,v1,v2}, where
node of X v1 and vy are nodes of Py,. Furthermore, if {x1,y} = {v1,v2} then

xoy and x3y are not edges. Also if x1 ¢ {v1,v9} then vivy is an edge,
and either y ¢ {v1,v2} or xaoy and x3y are not edges. Pseudo-twins
of xo and x3 are defined symmetrically.

pseudo-twin of y : N(u)NV(X) = {y,v1,v2,v3}, where for i = 1,2,3 v; is a node of
Py \{y}, at least two of yv1, yva, yvs are edges, and |N(u)NX]| < 1.

s1 ;X is a bug, where say x;y is an edge. Node u is adjacent to x;, and for
some j € {1,2,3}\{i}, the nodes of N(u)N(V(X)\{x;}) are contained
in Pyy \{y}. Furthermore, V(Pyy) UV (Py,y) U{u} induces a twin
wheel.

82 : For distinct i,7,k € {1,2,3}, ¥ is a bug such that x;y is an edge, and
N(u)NV(2) ={zi,z,y, yr}-

Proof: For i,j € {1,2,3}, i # j, let H;; be the hole induced by Py, U Py;,. We now consider
the following three cases.
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Case 1: |[N(u)NX| < 1.

If for some i € {1,2,3}, N(u) N X C P,,y, then u is of type pl, p2 or p3, else there is
a 3PC(-,-) or a proper wheel. So assume w.l.o.g that u has neighbors in both P, , \ y and
Pp,y \ y, and that it is not adjacent to x3.

Suppose u is not adjacent to y. Note that P,,, is an appendix of Hjs. By Lemma 3.1
applied to Hia, Py and u, node u is also an appendix of Hy2 and its node-attachment is
w.l.o.g. y1. Furthermore, no node of P,,, is adjacent to u, and hence u is a crosspath of ¥.

Now assume that u is adjacent to y. Then (Hi2,u) must be a bug or a twin wheel. Suppose
(Hy2,u) is a twin wheel. If u has no neighbor in P, \ y, then u is of type d. So assume u
has a neighbor in P,,, \ y. Then (Hz3,u) is either a bug or a twin wheel, and hence u is a
pseudo-twin of y w.r.t. X. Suppose now that (Hi2,u) is a bug. W.lLo.g N(u)N Py = {y,y1}
and N(u) N Pyyy = {y,u1}, where yu; is not an edge. If u has no neighbor in P,., \ y, then
Hy3 U induces a 3PC(y,u1). So u has a neighbor in Py, \ y. If N(u) N P,y # {y,y3}, then
(Ha23,u) is a proper wheel. So N(u) N Py, = {y,y3}, and hence u is a pseudo-twin of y w.r.t.
3.

Case 2: |[N(u)N X| = 2.

W.lo.g N(u)NX = {x1,z2}. Assume u is not of type t2. Then u has a neighbor in
¥\ X. First suppose that u does not have a neighbor in Hy2\ {z1,z2}. Then u has a neighbor
in P,y \ {z3,y}. Since Hi3 Uwu cannot induce a 3PC(-,-), u has at least two neighbors in
P,y \{z3,y}. Then (Hi3,u) is a wheel, and hence it must be a bug, and so u is a pseudo-twin
of r3 w.r.t. X.

Now we may assume that u has a neighbor in His \ {z1,22}. Then (Hi2,u) is a twin
wheel or a bug. In particular, N(u) NHia = {21, 22, u1}. W.lo.g. assume that u; € Py, \ 1.
Suppose u; # y. Then u cannot have a neighbor in P,.,, since otherwise (X \ {z1,z3}) Uu
contains a 3PC(u,y). If zoy is not an edge, then (X \ z1) Uu contains a 3PC(x2,y). So xay
is an edge. If zju; is not an edge, then Hy3 U w induces a 3PC(z1,u1). So zju; is an edge,
and hence u is of type s1.

We may now assume that u; = y. Note that at least one of x1y or zsy is not an
edge. W.lo.g. xoy is not an edge. Node u must have a neighbor in P, \ y, else Haz Uu
induces a 3PC(z2,y). So (Has,u) is a wheel, and hence it must be a bug. In particular,
N(u) N Ppyy = {y,y3}, and so u is of type s2 or it is a pseudo-twin of z3 w.r.t. X.

Case 3: N(u)NnX = X.

Assume u is not of type t3. Then u has a neighbor u; in w.lo.g. Py, \ 1. So (Hi2,u)
is a twin wheel or a bug. Similarly, (Hy3,u) is a twin wheel or a bug. So N(u) NV (X) =
{1,292, 23,u1 }. If uy # y or xoy and x3y are not edges, then u is a pseudo-twin of x; w.r.t.

3. So assume that u; = y and w.l.o.g. z2y is an edge. Then u is a pseudo-twin of xo w.r.t.
3. a

Remark 5.2 If a node u is a pseudo-twin of a node of X, say x1, w.rt a X =
3PC(x1x9x3,y), then (X \ {x1}) U {u} contains a ¥’ = 3PC(uxsxs,y). If a node u is a
pseudo-twin of y w.r.t. X, then (X \ {y}) U{u} contains a ¥/ = 3PC(z1x9ws,u). If a node
u is of type p3 w.r.t. &, then X U {u} contains a ¥/ = 3PC(x12x913,y) that contains u. We
say that in all these cases Y/ is obtained by substituting u into X.
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Figure 7: Different types of nodes adjacent to a 3PC(z1x2x3,y).
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A node u adjacent to X is further classified as follows (see Figure 8).

Type p : Node u is of type pl, p2 or p3 w.r.t. X.

Type p3t  : Node u is of type p3 w.r.t. ¥ and N(u) NV (X) induces a path of length 2.

Type p3b  : Node u is of type p3 w.r.t. ¥ and N(u) N V(X) does not induce a path of
length 2.

Type dd : Node u is of type d w.r.t. ¥ such that if ¥ is a bug, then u is not adjacent

to its center.

Type dc : Node u is of type d w.r.t. X, where ¥ is a bug and u is adjacent to its
center.

type dd

Figure 8: Different versions of a type d node w.r.t a 3PC(A,").

A crossing of ¥ is a chordless path P = py,...,pg in G \ X such that either £ = 1 and
p1 is a crosspath w.r.t. 3; or k = 1, ¥ is a bug and p; is of type sl w.r.t. 3; or £ > 1 and
for some 7,5 € {1,2,3}, i # j, N(p1) N V(E) C V(Py,y), N(pr) NV (X) € V(Py,y), p1 has a
neighbor in V(Py,y) \ {y}, pr has a neighbor in V(P,,,) \ {y}, and no node of P\ {p1,px}
has a neighbor in X.

We now define three special types of crossings.

A crossing P = p1,...,pr of X is called a hat if kK > 1, p; and pi are both of type pl w.r.t.
¥ adjacent to different nodes of {z1, z2,x3} (see Figure 9).

Let P =pq,...,pr be a crossing of ¥ such that one of the following holds:
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(i) k=1 and p; is a crosspath w.r.t. X, say p; is adjacent to y; for some i € {1,2,3}, and
it has two more neighbors in P, ,, \ {y}, for some j € {1,2,3} \ {i}.

(ii) k=1, ¥ is a bug and p; is of type sl w.r.t. X, such that for some i € {1,2,3} and for
some j € {1,2,3} \ {i}, x;y is an edge and N (p1) N {z1,z2, 23} = {24, 2;}.

(iii) k > 1, p1 is of type pl and py is of type p2 w.r.t. X, for some i € {1,2,3}, p; is adjacent
to y;, and for some j € {1,2,3} \ {i}, N(px) NV (%) C V(Pey) \ {y}.

Such a path P is called a y;-crosspath of . We also say that P is a crosspath from y; to
Pyy. If say w3y is an edge, then ¥ induces a bug (H,z), where z = z3 = y3. In this case,
the ys-crosspath (or z-crosspath) of X, is also called the center-crosspath of the bug (H,z)
(see Figure 10).

Suppose that ¥ is a bug. A crossing P of ¥ is an ear if &k > 1, p; is of type pl w.r.t. X
adjacent to the center of bug X, and py is of type p2 w.r.t. ¥ adjacent to y (see Figure 9).

-

P —_—_—

Figure 10: A y;-crosspath P of a 3PC(x12z9x3,y). When 21 = y;, P is also a center-crosspath
of a bug.

We next prove the following sequence of decompositions. The order in which these de-
compositions are obtained is of crucial importance.

Theorem 5.3 Let G be a 4-hole-free odd-signable graph. If G contains a bug with a center-
crosspath then G has a star cutset. In particular, if G has no star cutset, then no node is of
type s1 w.r.t. a 3PC(A,-).
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Theorem 5.4 Let G be a 4-hole-free odd-signable graph. If G contains a 3PC(A,-) with a
hat, then G has a star cutset.

Theorem 5.5 Let G be a 4-hole-free odd-signable graph. If G contains a bug with an ear,
then G has a star cutset.

Theorem 5.6 Let G be a 4-hole-free odd-signable graph. If G contains a bug with a type s2
node, then G has a star cutset.

We prove Theorems 5.3, 5.5 and 5.6 in Section 6. We close this section by proving Theorem
5.4 (assuming Theorem 5.3 to be true). But first we prove a useful lemma about crosspaths.

Lemma 5.7 Let G be a 4-hole-free odd-signable graph that does not contain a proper wheel.
Then ¥ = 3PC(x1x223,y) of G can have a crosspath from at most one of the nodes y1,y2,ys.

Proof: Suppose not and let P = uq,...,u, be a yj-crosspath and Q = vi,...,0m a Yo-
crosspath. Let u/,u” (resp. v',v") be adjacent neighbors of u,, (resp. v,,) in X. Note that by
definition of a crosspath, y does not coincide with any of the nodes v/, u”,v’,v”. It suffices
to consider the following three cases.

Case 1: v/, u" € P,,, and v',v" € Py,,.

Note that in this case neither x1y nor xoy can be an edge and hence neither u; nor wv;
can be of type sl w.r.t ¥. Let H be the hole induced by P, , U P.,,. Then P and Q are
crossing appendices of H and their node-attachments are not adjacent. So by Lemma 3.2,
w.lo.g. y1 € {v/,v"} and v, has a neighbor in P.

W.lo.g. « is the neighbor of u, in P,,, that is closer to x2. Let R’ (resp. R”) be the
subpath of P,,, with endnodes v’ (resp. u”) and x5 (resp. y). Since there is no 4-hole, m > 1.
Node vy, has a unique neighbor in P, else (Py,, \ y) U P U R’ U vy, induces a proper wheel
with center v,,. The neighbor of v, in P is uj, else P U R” U {y1, v, } induces a 3PC(y1,-).
But then Py, U P,y U R” U P Uy, induces an even wheel with center y;.

Case 2: v/, u" € P,y and v/, 0" € Py,,.

Note that x3y is not an edge, and at most one of 1y, xoy is an edge. Suppose there exists
a path from y; to y2 in PU QU (Pyyy \ {23,43,9}) U{y1,¥2}, and let R be a shortest such
path. Then Py, U Py,, U R induces a 3PC(y1,y2). So no such path exists. In particular,
no node of P is adjacent or coincident with a node of (), and x3ys is an edge. In particular,
since there is no 4-hole, ¥ cannot be a bug. But then (XU PUQ) \ y induces a proper wheel
with center xj.

Case 3: v/, u" € P,y and v/, 0" € Py,y.

Note that z1y is not an edge and hence u; is not of type sl w.r.t. . Let H be the hole
induced by Py, U Py,y. Let P’ be the shortest path between y; and x5 in P U (Ppuy \ y) Uys.
Suppose that v; is of type sl w.r.t. X. Then xoy is an edge. If v; has no neighbor in P, then
P'U(Py,y\y)U{z2,v1} induces an even wheel with center ;. So v has a neighbor in P and let
u; be such a neighbor with lowest index. Note that since {z1, y1,22,y} cannot induce a 4-hole,
v1 is not adjacent to y;. But then (H \ 1) U{v1,u1,...,u;} induces a 3PC(y1,v1). Therefore
vy is not of type s1 w.r.t. ¥, and hence P’ and ) are crossing appendices of H. Since x3
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does not have a neighbor in @, by Lemma 3.2 applied to H, Q and P’, y; € {v/,v"} and vy,
has a neighbor in P. Let H' be the hole induced by P’ U P, \ y. Then (H',vy,) is a wheel,
and hence it is a twin wheel or a bug. If (H’,v,,) is a bug, then P U (P \ 3) U{y1,y,vm}
contains a 3PC(y1,-). So (H',vy,) is a twin wheel. In particular, u; is the unique neighbor
of vy, in P. Since {vy,,y1,y,y2} cannot induce a 4-hole, m > 1. But then (X \ z3) U P U vy,
contains an even wheel with center y;. a

Proof of Theorem 5.4: Assume G contains a ¥ = 3PC(x1x9x3,y) with a hat P = py, ..., pg,
but G does not have a star cutset. By Theorems 4.3 and 5.3, G does not contain a proper
wheel nor a bug with center-crosspath. For i = 1,2,3, let 2} be the neighbor of z; in P,,,.
W.lo.g. pi is adjacent to x1 and pi to x2. Since S = Nlx1]\ {p1,2}} is not a star cutset,
there exists a direct connection @ = qp,...,q; from P to ¥\ S in G\ S. We may assume
w.lo.g. that P and @) are chosen so that |P U Q| is minimized.

By Lemma 5.1 and definition of ), and since G does not contain a bug with a center-
crosspath, ¢ is of type p, d, s2 or crosspath w.r.t. ¥ or it is a pseudo-twin of xy or y w.r.t.
3.

Let p; (resp. p;) be the node of P with lowest (resp. highest) index adjacent to g;. Note
that 1 has no neighbor in @, ¢; has a neighbor in ¥ \ {z1, 22,23}, and the only nodes of
Y. that may have a neighbor in @ \ ¢; are x5 and z3. If 25 or x3 has a neighbor in @ \ ¢,
then let ¢; be such a neighbor with lowest index. Let R be a chordless path from x; to ¢; in
G[(X2\ {z2,z3}) Uq] (note that such a path exists since ¢; has a neighbor in ¥\ {z1, z2, 23}).

Case 1: i = k.

Let H be the hole induced by RUPUQ. Since H Uxg cannot induce a 3PC(x1, py) nor a
proper wheel, (H,z2) must be a bug. In particular, N(z2) N Q = ¢; and R does not contain
x%. Node x3 cannot have a neighbor in @, since otherwise Q U P U {z1, z2, 23} would contain
a 4-wheel with center xo. In particular, ¢; is not of type s2 w.r.t. X nor is it a pseudo-twin
of 1 w.r.t. ¥. If ¢ has a neighbor in P,y \ y, then (Py,y \ y) U PUQ U {x1, 22,23} contains
a 4-wheel with center z5. So ¢; does not have a neighbor in P, \ y. In particular, ¢; is not
a pseudo-twin of y w.r.t. 3. Suppose that ¢; is of type d or crosspath w.r.t. . Then ¢
has a neighbor in P, \ vy and a neighbor in P,,, \ y. Hence z1y is not an edge, since by
definition of @), z1 cannot be adjacent to ¢;. Let R’ be the chordless path from ¢; to z3 in
G2\ {x1,2),22) Ugq]. Then PUQU R' U {x1,22} induces a proper wheel with center z5.
So q; is not of type d or crosspath w.r.t. X, and hence ¢; is of type p w.r.t. >.

Suppose that z1y is an edge. Then the neighbors of ¢; in ¥ are contained in P,,,. Since
R does not contain %, ¢; has a neighbor in Py,, \ {z2,z4}. Let P’ be the chordless path from
x2 to y in G[(Pyyy \ 24) UQ]. Then P’ U Py, Ux; induces a bug with center z1, and P is its
center-crosspath, a contradiction. Therefore x1y is not an edge.

If N(¢) N ¥ =), then P, U Py,, UQ induces a 3PC(x],x2). So ¢ has a neighbor in
Y\ {z1,2}}. Let P’ be the chordless path from ¢ to z3 in G[(X \ {1, z2,2]}) U¢q]. Then
P U P'U{x1,x9,23} induces a 4-wheel with center z;.

Case 2: i < k.
First note that if [ > 1, then either ¢ = j or j =1 + 1, since otherwise the chordless path
from p; to pg in (P \ pi+1) Uq and @ \ ¢1 contradict the minimality of |P U Q|. Let H be
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the hole induced by RUQ U {p1,...,p; }.

Suppose that 5 has a neighbor in Q. Since H Uxy cannot induce a 3PC(+, ) nor a proper
wheel, (H,z3) is a bug. In particular, either [ > 1 or {x9,25} C N(q) NE C {x9, ), x3}.
If j =i+ 1, then pj,...,py is a center-crosspath of (H,z2). So j # i+ 1. If i = j, then
PUQU{x1,x9} contains a 3PC(x2,p;). So j > i+ 1. But then I = 1, and hence {za, x5} C
N(q)NXE C {x9, 24, z3}. By Lemma 5.1 and Theorem 5.3, N(q) N X = {za,25}. If 21y is
not an edge, then Py,, U Py, U{x1,q1,p1,...,p;} induces a 4-wheel with center z2. So z1y is
an edge. But then X is a bug and pq, ..., p;, q1 is its center-crosspath. Therefore xo does not
have a neighbor in Q). In particular, ¢; is not of type s2 w.r.t. X, nor a pseudo-twin of x;
w.r.t. 2.

Suppose that z3 has a neighbor in @ \ ¢;. Then paths p1,...,pi,q1, ..., ¢ and Giy1, ..., q
contradict the minimality of [P U @Q|. So x3 does not have a neighbor in @ \ ¢;.

Suppose that j = i+ 1. If ¢; has a neighbor in ¥\ {z1, 2], x2, 24}, then (X\{z], 25})UPUQ
contains a 3PC(q1pipi+1, x1x2x3). So g does not have a neighbor in ¥\ {z1, 2}, z9, 24 }. Since
¢ is not adjacent to z1 nor z9, N(gq) N X C {z},25}. If N(¢) N Y = %, then P,y U Py, U
QU{p1,...,p;} induces a 3PC(z1,25). If N(¢;)NXE =, then Py, y U Pryyy UQU{pit1, ..., Pk}
induces a 3PC(z2,}). So N(q)NY = {z},z5}. By Lemma 5.1, ¢, must be of type p2 w.r.t.
¥, and hence either x}, = y or 2} = y. But then {x1,z9, 2], 24} induces a 4-hole. So j # i+ 1.

Suppose that ¢ = j. If ¢ has a neighbor in X\ {x1, 22, 23,2}, then (X \ {2}, 23}) U
P UQ contains a 3PC(p;,x2). So ¢ is adjacent to 2} and it does not have a neighbor in
Y\ {z1, 2, 3,2, }. Since {x1, ), x3, ¢} cannot induce a 4-hole, N(q;)NYE = 2. If i # 1, then
PpiyU Py UQU{pi, ...,pr} induces a 3PC(z2,2)). So i =1. But then P, U Py UPUQ
induces a proper wheel with center x1. So i # j. Therefore j > ¢ + 1, and hence [ = 1.

If ¢1 has a neighbor in X\ {z2, 25, 3}, then (X\ {24, z3})U{p1, ..., pi, P}, .., Dk, q1 } contains
a 3PC(q1,71). So ¢ is adjacent to 24, and it has no neighbor in ¥\ {z},z3}. But then
{z1, 22,24, D1, ..., Pis Pj, s Pk, 1 } induces a 3PC(qq,x2). O

6 Bugs

For a bug (H,z) we use the following notation in this section. Let x1,x2,y be the neighbors
of z in H, such that ;x5 is an edge. Let Hy (resp. Hs) be the sector of (H,z) that contains
y and x1 (resp. x2). Let y; (resp. y2) be the neighbor of y in Hy (resp. Ha).

Proof of Theorem 5.3: By Theorem 4.3 we may assume that G does not contain a proper
wheel. Choose a bug (H,z) and its center-crosspath P = pi,...,pr so that |H U P| is
minimized.

W.lo.g. py is adjacent to x, and let uq, us be the neighbors of py in H. W.l.o.g. u1,us €
Hy\ y, and uy is the neighbor of py in Hs that is closer to y. We now show that S = N[x] is
a star cutset separating Hp from Ho.

Assume not and let Q = ¢1,...,q be a direct connection from H; to Hy in G\ S. Note
that no node of @ is adjacent to x. So no node of @) is of type t3, s1, s2 nor a pseudo-twin
of x1, w9, x or y w.r.t. (H,z). Also by Lemma 5.7, no node of @ is of type crosspath w.r.t.
(H,z). Hence by Lemma 5.1, either (i) [ > 1, and ¢; and ¢; are of type p, or (ii) [ = 1 and
q1 is of type d. Suppose (ii) holds. Note that ¢; cannot be coincident with a node of P. If ¢;
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does not have a neighbor in P, then (H \ z2) UPU{x, ¢;} contains a 4-wheel with center y. So
N(q1) NP # @. If ¢; has more than one neighbor in P, then (Hs \ z2) UP U {x,q;} contains
a proper wheel with center ¢, a contradiction. So ¢; has a unique neighbor p; in P. Since
there is no 4-hole, i > 1. But then Ho U{x, ¢1,p;, ..., pr } induces either a 3PC(q1yy2, pruiusz)
or a 4-wheel with center ys, a contradiction. So (i) holds. Furthermore, ¢; has a neighbor in
Hq \ {z1,y} and ¢ has a neighbor in Hy \ {z2,y}. Also, the only nodes of H that may have
a neighbor in @\ {q1, ¢} are x1,z2,y. Since there is no 4-hole, every node of Q \ {q1, ¢} has
a neighbor in at most one of the sets {x1,x2}, {y}.

Claim 1: At most one of the sets {x1,x2} or {y} may have a neighbor in Q \ {q1,q}.

Proof of Claim 1: Assume not. Then there is a subpath Q" of @ \ {¢1,¢;} such that one
endnode of Q' is adjacent to y, the other is adjacent to a node of {z1, x5}, say to x1, and no
intermediate node of @’ has a neighbor in H. Then H; U Q' Uz induces a 3PC(x1,y). This
completes the proof of Claim 1.

Claim 2: ¢ is not of type p3b.

Proof of Claim 2: Assume q; is of type p3b, and let H' be the hole of H U g; that contains
q1,%1,x2,y. Then (H' z) is a bug. If ¢; is not adjacent to a node of P, then (H',z) and P
contradict the minimality of |H U P|. So ¢ is adjacent to a node of P. Let p; be the node of
P with lowest index adjacent to ¢;. Then Hy U{z,q1,p1,...,p;} contains a 3PC(q1,x). This
completes the proof of Claim 2.

Let H{ (resp. H}) be the subpath of Hy (resp. Hz) whose one endnode is x; (resp. z2),
the other endnode is adjacent to ¢; (resp. ¢), and no intermediate node of H| (resp. H)) is
adjacent to g1 (resp. q;). Let vy (resp. vg2) be the neighbor of ¢ in H; that is closest to x;
(resp. y).

By Lemma 3.1 applied to H, x and ) and Lemma 5.7, either y has a neighbor in @, or a
node of {x1,z2} has a neighbor in Q \ {¢1,¢;}. We now consider the following two cases.

Case 1: No node of {z1, 22} has a neighbor in Q \ {q1, ¢}
Then y has a neighbor in Q. Let ¢; be the node of @ with lowest index adjacent to y. By
Claim 2, ¢ is of type pl, p2 or p3t. We now consider the following two cases.

Case 1.1: No node of P is adjacent to or coincident with a node of Q.

Let R be a chordless path from ¢; to x in (Ha \ {z2,y}) U P U{z,q}.

First suppose that ¢; is of type p3t. If t # 1, then H;U{q, ..., ¢, x} contains a 3PC(q1,y).
So t = 1 and consequently vy = y. Suppose g1 is the unique node of () adjacent to y. If
N(q;) N Hy # {y2}, then ¢ has a neighbor in Hs \ {x2,y,y2} (since xays is not an edge,
else {x,y,z2,y2} induces a 4-hole) and hence Q U R U H| Uy induces a 3PC(q1,x). So
N(q;) N Hy = {y2}. But then (H \ y1) UQ induces a 3PC(q1,y2). So N(y) N (Q\ ¢1) # @. If
N(y)N(Q\q1) # {q2} or N(¢/)NH C {y,y2}, then QURUH|U{z,y} induces a proper wheel
with center y. So ¢y is the unique neighbor of y in @ \ ¢1 and N(¢;) N H is not contained in
the node set {y,y2}. But then Q U H) U H{ U {z,y} induces a 3PC(z122%, q1q2Y).

So ¢ is of type pl or p2. Suppose that g; is of type pl. Then, t > 1. Node vy is adjacent
to y, else Hy U{z,q1,...,q} induces a 3PC(v1,y). But then H; UQ U R induces a proper
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wheel with center y. Therefore, g1 must be of type p2.

Suppose that g1 is adjacent to y. Then Hy UQ U R must induce a bug with center y, and
hence y2 ¢ R and N(y) NQ = ¢;. In particular, yo & H). But then Hy U H) U Q U x induces
a 3PC(z1x22, q1yy1). Therefore, ¢; is not adjacent to y.

Since H{ UQ U RUy cannot induce a 3PC(z, ¢;), it must induce a bug, and hence either
(i) y2 € Rand N(y) N Q = {qt,qi+1}, or (ii) y2 € R and t = [. If (i) holds, then yo & HJ,
and hence Hy; U H) U @ induces a 3PC(yqiqi+1,1v1v2). So (ii) holds. So ¢ is adjacent to
y and yo. Since there is no 4-hole, ¢; is not adjacent to xo. If ¢; is of type p3, then there
exists a chordless path from ¢; to = in (Hy \ {z2,y}) U P U {z, ¢} that does not contain ys,
contradicting the analysis thus far (that shows that y, € R). So ¢; is of type p2, and hence
H U Q induces a 3PC(q1v1v2, qiyy2).

Case 1.2: A node of P is adjacent to or coincident with a node of Q).

Let ¢; be the node of @ with lowest index adjacent to a node of P, and let p; (resp. p;)
be the node of P with highest (resp. lowest) index adjacent to ¢;. If i < ¢, then by Lemma
3.1, q1,...,G,Pj,- .-, Dk is a crosspath, contradicting Lemma 5.7. So 7 > t.

Suppose t = 1. Then, by Claim 2, ¢ is of type p2 or p3t. Suppose ¢; is of type
p2. Since Hy U {z,y,q1,...,¢,p1,-..,pj} cannot induce a proper wheel with center y, q;
is the unique neighbor of y in ¢i,...,¢;. But then H U {qi,...,q,pj,...,pr} induces a
3PC(A,A). So ¢ is of type p3t. If ¢ is the unique neighbor of y in {q1,...,¢}, then H] U
{a1, - 415, vy, y} induces a 3PC(qi,x). So y has a neighbor in {go,..., ¢}, and hence
H{ U{q1,.--,qi,p1,...,pj,y} induces a bug with center y. In particular N(y) N {q1,...,qi} =
{q1,92}. Let R be an xoug-subpath of Hy. Since P is a crosspath, yuy is not an edge, and
hence Hy U RU {q1, ..., ¢, pj, ..., vk} induces an even wheel with center ¢;. So ¢t > 1.

HiU{z,y,q1,.-.,¢ip1,.-.,p;} must induce a bug with center y (since it cannot induce
a 3PC(q, x) nor a proper wheel, and it cannot induce a twin wheel because y is not adjacent
to any node of PUz1), and hence y; ¢ H{ and N(y)N{q1,-..,¢} = {qt, q+1} If q1 is of type
pl or p3, then H;U{z,q1,...,q} either induces a 3PC(v1,y) or contains a 3PC(q1,y). So q1
is of type p2. If i <1 then (H \ y2) U{q1,...,¢,pj,-..,pr} contains a 3PC(q1v1v2, YqtGi+1)
(recall that since P is a crosspath, pj has a neighbor in Hs \ {y,y2}). So i = 1. If ¢; has a
neighbor in Hs \ {y,y2}, then (H \ y2) U Q contains a 3PC(q1v1v2, yqrqi+1). So q; does not
have a neighbor in Hs \ {y,y2}. Suppose t + 1 =[. Let H' be the hole induced by P Uz and
the yuj-subpath of Hy. Since (H’,q;) cannot be a proper wheel, 7/ = j. Since there is no
4-hole, j > 1. But then (Hz \ y2) U P U g contains a 3PC(p;,x). So t +1 < l. In particular
N(a) N H = ys,.

Suppose j' = k and py, is adjacent to yo. If k = 1, then {z, p,y, y2} induces a 4-hole. So
k > 1. But then Ho U {x, gt 11, ...,q, pr} induces a 4-wheel center yo. So either j/ # k or py
is not adjacent to yo. But then {z,y,v2,qi11,-.-,q,p1,...pj} induces a 3PC(y, q).

Case 2: A node of {z1, 22} has a neighbor in Q \ {q1, ¢}

By Claim 1, y has no neighbor in Q \ {q1,¢}. Let ¢; be the node of @ \ g1 with lowest
index adjacent to a node of {z1,z2}. Note that i < [.

Suppose that ¢; is not adjacent to x1. If ¢ is of type pl or p3t, then H U {q,...,q}
either induces a 3PC/(x2,) or contains a 3PC(x2,q1). So ¢ is of type p2. But then x and
q1,--.,q; are crossing appendices of H, and since zoy is not an edge and N(x) N Q = &,
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Lemma 3.2 is contradicted. Therefore, ¢; is adjacent to xy.

Let g; be the node of @ with highest index adjacent to z7. Let R be the chordless path
from ¢; to y in Hy U ¢;. Note that R does not contain s, since by definition of @), ¢; has a
neighbor in Hy \ {z2,y}. Let H' be the hole induced by Hi URU {gj,...,q}. Then H' Uz
induces a 3PC(z1,y). O

Lemma 6.1 Let G be a 4-hole-free odd-signable graph. If G contains a bug (H,z) and has
no star cutset, then G has a path P = p1,...,px disjoint from V(H) U {xz} such that no node
of P is adjacent to x, no node of H\ {y} has a neighbor in P\ {p1,px}, p1 has a neighbor in
Hi\{z1,y}, pr has a neighbor in Hy\ {z2,y} and P is one of the following types (see Figure
11).

A: P and x are crossing appendices of H. Node y is adjacent to the node-attachment of P
in H and N(y) NP = 0.

D: k=1 and py is a node of type dd w.r.t. (H,zx).
C: k > 1 and one of the following holds.

(i) P is of type C1: nodes p1,px are of type p2 not adjacent to y, node y has precisely
one neighbor in P, and that neighbor lies in P\ {p1,pr}-

(ii) P is of type C2: nodes p1,py, are of type p2, exactly one of them, say p1, is adjacent
toy, and N(y) N P = {p1,ps2}.

(iii) P is of type C3: one of {p1,px} is of type p3t adjacent to y and the other is of
type p2. Say py is of type p3t. Then N(y) NP = p;.
(iv) P is of type C4: k =2, one of {p1,pr}, is of type pSt and the other is of type p2.
Both p1,pr are adjacent to y.
(v) P is of type C5: k = 2; one of {p1,pr} is of type p3b and the other is of type p2.
Both p1,pr are adjacent to y, say py is of type p3b. The node-attachment of py in
H isy.

T: Node y has exactly 3 neighbors in P, that are furthermore consecutive in P. Nodes py
and py are of type p2 or p3 w.r.t. (H,z). If p1 (resp. px) is of type p3, then it is
adjacent to y. If p1 (resp. py) is of type p2, then it is not adjacent to y.

Furthermore, any direct connection from Hy to Hy in G\ Nlx] is of type A,D,C or T.

Proof: By Theorems 4.3 and 5.3 we may assume that G does not contain a proper wheel
nor a bug with a center-crosspath. Since N|z| is not a star cutset separating H; from Hs,
let P = py,...,pr be a direct connection from H; to Hs in G \ N[z]. So no node of P is
adjacent to x and hence no node of P is of type t3, s1, s2, dc w.r.t. (H,z) nor a pseudo-twin
of z1,x9,x or y w.r.t. (H,x). By Theorem 5.3, no node of G is of type sl w.r.t (H,z). If
k =1, then, by Lemma 5.1, p; is either of type crosspath w.r.t. (H,z) not adjacent to = or
of type dd w.r.t. (H,z). So P is either of type A or D w.r.t. (H,z). So assume that k > 1.

By Lemma 5.1, p; and py, are of type p w.r.t. (H,x). Note that the only nodes of H that
may have a neighbor in P\ {p1,pr} are x1,z9,y . Also p; has a neighbor in H; \ {z1,y} and
pi has a neighbor in Hy \ {z2,y}.
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Claim 1: At most one of the sets {x1,z2} or {y} may have a neighbor in P\ {p1,px}-

Proof of Claim 1: Assume not and let P’ be a shortest subpath of P\ {p1,pr} with the
property that one endnode of P’ is adjacent to y and the other endnode of P’ is adjacent to
a node of {x1,x2}. W.lo.g. 7 is adjacent to an endnode of P’ . Then H; U P’ Uz induces a
3PC(z1,y). This completes the proof of Claim 1.

Claim 2: No node of {x1,x2} has a neighbor in P\ {p1,pr}.

Proof of Claim 2: Assume not. By symmetry, w.l.o.g we may assume that xo has a
neighbor in P\ {p1,pr}. Let p; be such a neighbor with lowest index. By Claim 1,
y does not have a neighbor in P \ {p1,pr}. Let R be the subpath of H; whose one
endnode is y, the other endnode is adjacent to p;, and no intermediate node of R is adjacent
to p1. Then HoURU{z,p1,...,p;} induces a 3PC(z2,y). This completes the proof of Claim 2.

So by Claim 2, no node of H \ y has a neighbor in P\ {p1,px}. If N(y) N P = &, then
by Lemma 3.1, P is of type A. So we may assume that N(y) N P # @&. Let p; (resp. p;) be
the node of N(y)N P with lowest (resp. highest) index. Let v; (resp. v2) be the neighbor of
p1 in Hy that is closest to 21 (resp. y). Let v} (resp. v}) be the neighbor of py in Hy that is
closest to xo (resp. y). Let H{ (resp. H}) be the xzjvi-subpath (resp. zov}-subpath) of H;
(resp. Hs). Let H' be the hole induced by H; U H, U P.

Claim 3: p; and pg are not of type pl.

Proof of Claim 3: Suppose p; is of type pl. If vyy is not an edge, then Hy U {z,p1,...,pi}
induces a 3PC(v1,y). So v1y is an edge. Suppose i # j. Since there is no proper wheel and
p1 is of type pl, (H',y) must induce a bug. But then z is its center-crosspath. So i = j.
Note that v} # y. If v] = yo, then (H',y) is either a proper wheel or a bug that has a
center-crosspath x. So v] # ys. But then H' Uy induces a 3PC(v1,p;). So pp is not of type
pl, and by symmetry neither is pi. This completes the proof of Claim 3.

By Claim 3 it suffices to consider the following two cases.

Case 1: At least one of {p1,px} is of type p3.

Assume w.l.o.g. that p; is of type p3. If vo # y, then Hy U {x,p1,...,p;} contains a
3PC(p1,y). So vy =y.

Suppose that pi is not of type p2. So, by Claim 3, py is of type p3. Then by symmetry
vh = y. If k= 2, then Hy U H, U P induces a 4-wheel with center p;. So k > 2. If
N(y) N (P\ {p1,pr}) = &, then H' Uy induces a 3PC(p1,px). So N(y) N (P\{p1,px}) # 2.
Since there is no proper wheel, (H',y) is either a bug or a twin wheel. If (H',y) is a bug,
then z is its center-crosspath. So (H',y) is a twin wheel and hence P is of type T.

So we may assume that py is of type p2.

Suppose that p; is of type p3b. If N(y)N(P\p1) = &, then (H,p;) is a bug and P\ p; is
its center-crosspath. So N(y) N (P \p1) # @. If k = 2, then either P is of type C5 or (H,p1)
is a bug with a center-crosspath ps. So k > 2. Since vy = y and N(y) N (P \ p1) # &, y has
at least two neighbors in H’'. In particular, j > 2. Suppose |[N(y) N H'| = 2. If j = 2, then
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H{UH,U P induces a 3PC (p1p2y, viv5pk). So j > 2. But then H' Uy induces a 3PC(p1, pj).
So |[N(y) N H'| > 2. Since there is no proper wheel and k£ > 2, (H’,y) must be a bug or a
twin wheel. If (H',y) is a bug, then z is its center-crosspath. So (H’,y) is a twin wheel, and
hence P is of type T.

So we may assume that p; is of type p3t. Suppose vf, = y. If k = 2, then P is of type
C4. So assume k > 2. Since (H',y) cannot be a proper wheel, (H',y) is a bug. But then
x is its center-crosspath. So we may assume that v} # y. If p; is the unique neighbor of y
in P, then P is of type C3. So we may assume that j > 1. If p; is the unique neighbor of
y in P\ p1, then either H' Uy induces a 3PC(p1,p;) (if 7 > 2) or H{ U H, U P induces a
3PC(p1pay, vivhpy) (if 7 = 2). So y has at least three neighbors in H'. Since (H',y) is not a
proper wheel nor a bug that has a center-crosspath x, (H',y) is a twin wheel, and hence P
is of type T.

Case 2: p; and pg are both of type p2.

Suppose that p1, pr are not adjacent to y. Soi # 1 and j # k. If i = j, then P is of type
Cl. Soi < j. If pip; is an edge, then H' U{z,y} induces a 3PC(z1x2x, pip;jy). So pip; is not
an edge. If p;, p; are the only two neighbors of y in P, then H' Uy induces a 3PC(p;,p;). So
y has at least three neighbors in H'. Since (H',y) cannot be a proper wheel or a bug that
has a center-crosspath z, (H',y) is a twin wheel, and hence P is of type T.

Suppose now w.l.o.g that p; is adjacent to y. Node pg is not adjacent to y, since otherwise
(H',y) is a proper wheel. If N(y) N P = py, then H U P induces a 3PC(vivap1, v]vhpk).
Therefore, since (H',y) is not a proper wheel nor a bug that has a center-crosspath z, (H',y)
is a twin wheel and hence N(y) NP = {p1,p2}. So P is of type C2. O

A path as described in Lemma 6.1 is called a bridge of (H,x).

Proof of Theorem 5.5: Assume G does not have a star cutset. Then by Theorems 4.3, 5.3
and 5.4, G does not contain a proper wheel, a bug with center-crosspath nor a 3PC(A,-)
with a hat.

Let (H,z) be a bug and P = pq, ..., py its ear. W.lo.g. N(pr) N H = {y,y2}. Let H' be
the hole induced by (Hz \ y) U PUz. Then (H',y) is a bug and H; \ y its ear.

Claim 1: Ifu is a node of type p2 or p3 w.r.t. (H,x) such that {y} C N(u)N(HUz) C Hy,
then u does not have a neighbor in P. Furthermore, if N(u) N (H Uz) = {y}, then u does
not have a neighbor in P\ pg.

Proof of Claim 1: Let u be one of the types from the statement of the claim. If u has a
neighbor in P\ pg, then by Lemma 5.1 u must be of type sl or crosspath w.r.t. (H',y), and
hence u is a center-crosspath of (H',y), a contradiction. So u does not have a neighbor in
P\ py.

Suppose that u is of type p2 w.r.t. (H,z) such that N(u) N H = {y,y1}. If u is adjacent
to pg, then H; U P U {u,x} induces a 4-wheel with center y. So u cannot have a neighbor in
P.

Now suppose that u is of type p3 w.r.t. (H,x) such that {y} C N(u) N (H Uz) C H;.
Suppose u is adjacent to pg. If w is of type p3t w.r.t. (H,x), then (Hy \ y1) U P U {u,z}
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Figure 11: Bridges of a bug (H,x).
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induces a bug with center y, and node y; is its center-crosspath. Similarly, if u is of type p3b
w.r.t. (H,x) not adjacent to y;, then Hy U P U {u,x} induces a bug with center y with a
center-crosspath. So we may assume that u is of type p3b w.r.t. (H,z) and u is adjacent to
y1. Then (H,u) is a bug and py, its center-crosspath. This completes the proof of Claim 1.

Claim 2: There exists a bridge of type D w.r.t. (H,x).

Proof of Claim 2: Assume not. Then by Lemma 6.1 there exists a bridge Q = q1, ..., q w.r.t.
(H,z) of type A, C or T. W.l.o.g. ¢1 has a neighbor in H; \ y and ¢; in Hy \ y. Note that the
only nodes of p1,pr,q1 and ¢; that may coincide are pg and ¢;.

Case 1: Q is of type A.

Then N(y) N Q = @. First suppose that no node of P is adjacent to or coincident with a
node of Q. If N(q1) N Hy = y1, then (H \ y) UPUQ Uz induces a 3PC(A, A) or a 4-wheel
with center xo. Otherwise, N(q;) N Hy = y2 and hence H; U P U Q U {x,y2} induces a bug
with center y with a center-crosspath.

So a node of P is adjacent to or coincident with a node of (). Let p; be the node of P
with lowest index adjacent to a node of @, and let ¢; be the node of @ with lowest index
adjacent to p;.

Suppose that ¢ < k. If N(¢1) N Hy = y1, then Hy U {x,p1,...,pi,q1,...,q;} induces a
3PC(y1,x). Otherwise N(q;) N Hy = yo. If j < I, then {p1,...,ps,q1,...,q;} induces a center-
crosspath of bug (H,z). So j =I. But then ¢; and (H',y) contradict Lemma 5.1. Therefore
1 =k.

If N(q;)NHa = ya, then (H1\y1)UPU{x, q1, ..., q; } contains a 3PC(x,pg). So N(q1)NH; =
y1. If j =1, then HyU{x, pg, q;} induces a 3PC(A,A) or a 4-wheel with center yo. So j < I.
But then Hy U P U {z,qi,...,q;} induces a proper wheel with center y.

Case 2: Q is of type C or T.

Then y has a neighbor in ). First suppose that no node of P is adjacent to or coincident
with a node of . Let R be the chordless path from ¢; to y2 in (Hz \ {y,22}) Uq, and let S
be the chordless path from ¢; to z1 in (Hy \ y) Ugi. Then RUSUQ U P U {x,y} induces a
proper wheel with center y.

So a node of P is adjacent to or coincident with a node of Q). Let p; be the node of P with
lowest index adjacent to a node of @, and let g; be the node @ with lowest index adjacent
to p;. Let H{ be the subpath of H; whose one endnode is 1, the other is adjacent to ¢; and
no intermediate node of H{ is adjacent to ¢;. We now consider the following 2 cases.

Case 2.1: q; is of type p3 w.r.t. (H,x).

Then ¢; is adjacent to y. Suppose that i < k and j < [. If no node of g, ..., g; is adjacent
to y, then (Hy \y1)U{x,p1,....,0:,q1,-..,q; } contains a 3PC(x,q1). So y is adjacent to a node
of g2,...,q;, and hence @ is a bridge of type T. In particular, N(y) N Q = {q1,¢2,q3}. By
Claim 1, j > 3. But then H{ U {xz,y,p1,...,pi, q1, ..., q; } induces a proper wheel with center
y. So either i = k or j = 1.

Suppose that i = k. By Claim 1, j > 1. But then if j < [, HHUPU{z,y,q1,...,q;} induces
a proper wheel with center y. So 5 = [. Note that since j > 1, pi and ¢; cannot coincide. If
q is adjacent to y, then H] U P U Q U {z,y} induces a proper wheel with center y. So ¢; is
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not adjacent to y, and hence it is of type p2 w.r.t. (H,x). But then Hy U {x, pg, ¢} induces
a 3PC(A,A) or a 4-wheel with center ys.

So i < k, and hence j = [. Suppose that ¢ is adjacent to y. Then H{UQU{z,y,p1,...,p;i}
induces a wheel with center y. This wheel must be a bug. In particular [ = 2, i.e. @ is
a bridge of type C4 or C5, and hence ¢; is of type p2 w.r.t. (H,z). Let P’ = p1,....,pi, q-
Then P’ is an ear of (H,z) and ¢ is of type p3 w.r.t. (H,x) adjacent to y and a node of P,
contradicting Claim 1. So ¢; cannot be adjacent to y. But then |[N(y) N Q| = 1 or 3, and
hence H; UQ U {z,y,p1,...,p;} induces a 3PC(qy1,x) or a proper wheel with center y.

Case 2.2: q; is of type p2 w.r.t. (H,z).

First suppose that ¢; is not adjacent to y. Suppose that ¢ < k and j < [. If no node
of ga,...,q; is adjacent to y, then {pi,...,p;,q1,...,q;} induces a center-crosspath of (H,zx).
So a node of g, ...,q; is adjacent to y. If y has a unique neighbor in g, ...,q;, then Hj U
{z,y,p1,...,pi,q1, ..., q;} induces a 3PC(z,-). So y has more than one neighbor in gs, ..., g;.
In particular, @ is a bridge of type T. By Claim 1 y has three neighbors in g, ..., ¢; and hence
H{ U{z,y,p1,..,Pi,q1, ..., ¢; } induces a proper wheel with center y. Therefore, either i = k
or j =1I.

Suppose that i = k and j < [. If nonode of qo, ..., ¢; is adjacent to y, then HU{p, q1, ..., ¢;}
induces a 3PC(A, A). So anode of go, ..., g; is adjacent to y. So H{UPU{z,q1,...,q; } induces
a wheel with center y. This wheel must be a bug. But then Hy \ (H] Uy) is a center-crosspath
of this bug.

Suppose that i = k and j = [. Then p; and ¢; do not coincide. If g; is not adjacent to
y, then ¢ is of type p2 w.r.t. (H,z) and hence Hs U {x, pk, q;} induces a 3PC(A,A) or a
4-wheel with center y2. So ¢ is adjacent to y. Then Hi UPUQU{x,y} induces a wheel with
center y, which must be a bug, and hence Hy \ (Hj Uy) is its center-crosspath.

Therefore i < k and j = 1. If q; is of type p3 w.r.t. (H,x), then ¢ is adjacent to y and
hence (Hy \ y2) U {z,p1,...,pi,q} contains a 3PC(z,q;). So ¢ is of type p2 w.r.t. (H,x).
If ¢; is not adjacent to y, then p1,...,p;, ¢ is a center-crosspath of (H,x). So ¢ is adjacent
to y, and hence @ is a bridge of type C2. In particular, N(y) N Q = {q;,q;—1}. But then
H,uQU{z,p1,...,pi} induces a bug with center y with a center-crosspath (namely the path
induced by Hy \ (H{ Uy)).

Finally we may assume that ¢ is adjacent to y. So @ is a bridge of type C2, C4 or
C5. By Claim 1, ¢; does not have a neighbor in P and hence 5 > 1. Suppose that ¢; is
of type p3 w.r.t. (H,z). Then @ is a bridge of type C4 or C5, and in particular | = 2
and ¢; is adjacent to y. Note that j = [ = 2, and hence H; U Q U {z1,p1,...,p; } induces
a proper wheel with center y. So ¢ must be of type p2 w.r.t. (H,z), and hence @ is a
bridge of type C2. In particular, ¢; is not adjacent to y and N(y) N Q = {q1,¢2}. But then
HyU{z,p1,....,pi,q1,-..,q; } induces a proper wheel with center y. This completes the proof
of Claim 2.

By Claim 2, let u be a bridge of (H,z) of type D. Then N(u)N(H Uzx) = {y,y1,y2}. By
analogous argument applied to bug (H',y) and its ear Hy \ y, (H',y) has a bridge of type
D, say v. So N(v) N (H'Uy) = {z,p1,22}. Node u must have a neighbor in P\ pg, else
Hy U P U{x,y2,u} contains a proper wheel with center y. By symmetry, v has a neighbor
in Hy \ 1. Since {x,y,u,v} cannot induce a 4-hole, uv is not an edge. By Lemma 5.1,
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u is a pseudo-twin of py w.r.t. (H’,y), and hence it has two neighbors in P. But then
(Hy \ z1) UPU{u,v} contains a 4-wheel with center u. O

Proof of Theorem 5.6: Assume not. Choose a bug (H,z) and a type s2 node u so that |H| is
minimized. W.l.o.g. u is adjacent to x, x1, y, yo. By Theorems 4.3 and 5.3 we may assume
that G does not contain a proper wheel nor a bug with a center-crosspath (and in particular
no bug with a type sl node). By Lemma 6.1, there is a direct connection P = py, ..., py from
Hy to Hy in G\ N[z] of type A, D, C or T w.r.t. (H,z). Let v; (resp. v2) be the node of
N(p1) N Hy (resp. N(pg) N Hz) that is closest to x1 (resp. x2). Let H] (resp. HJ) be the
subpath of Hy (resp. Hs) with endnodes z1 (resp. z2) and vy (resp. vy). We now consider
the following cases.

Case 1: P is of type A w.r.t. (H,z).

Suppose that the node-attachment of P in H is y;. Suppose that N(u) NP = &. Then P
and u are crossing appendices of H, and since y;x1 cannot be an edge (otherwise there is a
4-hole), Lemma 3.2 is contradicted. So N(u) N P # @. Let p; be the node of N(u) N P with
lowest index. Then Hy U{p1,...,p;,u} induces a 3PC(u,y1). So the node-attachment of P in
H is ys. But then H{ U P U {x,u,y,y2} induces a proper wheel with center w.

Case 2: P is of type T w.r.t. (H,x).

Let p;—1,pi,pi+1 be the neighbors of y in P. Let ¥; be the 3PC(xx1x2,y) induced by
Hy U HY U {pit1, .., pr} and Xy be the 3PC(zx122,y) induced by Hj U Hy U {p1,...,pi—1}-
Since w is strongly adjacent to 31, by Lemma 5.1, N(u) N {pi+1, ..., Pk} = {pi+1}. By Lemma
5.1 applied to 3o, N(u) N {p1,...,pi—1} = &. Let H' be the hole induced by H| U H, U P.
If up; ¢ E(G), then H' Uw induces a 3PC(x1,pi+1). So up; € E(G) and hence (H',u) is a
bug. If py is of type p3t, then i + 1 = k and y9 is of type s1 w.r.t. (H',u), a contradiction.
Suppose that py is of type p3b w.r.t. (H,z). Then i+ 1 = k. Let H” be the hole contained
in (H \ y2) Upg. Then (H”,z) and u contradict our choice of (H,z) and u. So py is not of
type p3 w.r.t. (H,x), and hence it is of type p2 w.r.t. (H,x) not adjacent to y. But then
Hs \ (H) Uvy) induces a center-crosspath of bug (H', u).

Case 3: P is of type D w.r.t. (H,x).

So k = 1 and p; is a node of type dd w.r.t. (H,x). If upy is not an edge, then Hy U
{u,p1,y2} induces a 4-wheel with center y. So up; is an edge.

Since (H,u) is a bug and G does not have a star cutset, by Lemma 6.1 there is a path
Q=q,..,q of type A, D, Cor T wr.t. (H,u). Wlo.g. ¢ has a neighbor in Hy \ {z1,y}
and ¢; in Hs \ {y2,y}. Note that x is of type s2 w.r.t. (H,u). By symmetry and Cases 1 and
2 applied to (H,u) and @, path @ cannot be of type A or T w.r.t. (H,u).

Suppose that @ is of type D w.r.t. (H,u). If xq; is not an edge, then Hy U {z,x2,q1}
induces a 4-wheel with center ;. So z¢q; is an edge. Since {q1,p1,z,y} cannot induce a
4-hole, p1q; is not an edge. But then H| U {q1,p1,x,u} induces a 4-wheel with center x;. So
@ must be of type C w.r.t. (H,u).

Note that p; cannot be coincident with a node of Q. Let H” be the hole induced by
(H\y)Up;. By Lemma 6.1 applied to (H”,u) and @, no node of @\ {¢1,¢;} can be adjacent
to p1. Let Ry (resp. Ry) be the subpath of Hy (resp. Hs) whose one endnode is y, the other
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endnode of R; (resp. Ry) is adjacent to ¢; (resp. ¢;), and no intermediate node of Ry (resp.
Rs) is adjacent to ¢; (resp. q).

Suppose N(z) N Q = &. Suppose that ¢; has a neighbor in Hy \ x3. Then ¢ must in
fact have a neighbor in Hs \ {z2,y,y2}, and hence @ is a direct connection from H; to Hs in
G \ NJz], and hence by Lemma 6.1 applied to (H,z) and @, nodes 1 and z do not have a
neighbor in @ \ {q1,q}. Since x1; does not have a neighbor in @ \ {q1, ¢}, and @ is of type
C wa.t. (H,u), @ must be of type C3, C4 or C5 w.r.t. (H,u). Suppose that @ is of type
C4 or C5 w.r.t. (H,u). Since we are assuming that ¢; has a neighbor in Hy \ xa, it follows
that ¢; is of type p3 w.r.t. (H,u) and hence q; is of type p2 w.r.t. (H,u), and both ¢; and
q; are adjacent to x1. But then (H,z) and @ contradict Lemma 6.1. Therefore ) must be of
type C3 w.r.t. (H,u). If q; is of type p3t w.r.t. (H,u), then (H,z) and @ contradict Lemma
6.1. So ¢ is of type p2 w.r.t. (H,u) and ¢ is of type p3t w.r.t. (H,u) adjacent to x1. But
then by Lemma 6.1 applied to (H,z) and @, @ is of type C3 w.r.t. (H,x), ¢ is of type p3t
w.r.t. (H,z) and ¢; is adjacent to y. But then {x1,y,z, ¢} induces a 4-hole. So ¢; does not
have a neighbor in Hs \ z2 and hence ) must be of type C2, C4 or C5 w.r.t. (H,u) and
N(q) N H = {x1,z2}. But then Q U Ry U {z1,x9,x} is a proper wheel with center z;. So
N(z)NnQ # 2.

Suppose that @ is of type Cl or C3 w.r.t. (H,u). Let g; be the neighbor of z; in
Q). Suppose that z has a unique neighbor in Q). If ¢; is not adjacent to both x and v,
then Q U Ry U Ry Uz induces a 3PC(y,-). So ¢ is adjacent to both z and y. If ¢ < [, then
HyU{x1,x,q1,...,q; } induces a 4-wheel with center x. So ¢ = [, and hence ¢; is of type p3t w.r.t.
(H,u) (i.e. ¢ is adjacent to x1,x9 and the neighbor of z9 in Hs). But then Hy U {q;, z1,2}
induces a 4-wheel with center xo. Therefore |[N(x) N Q| > 2. If N(z) N {q1,...,¢;} # &, then
R1U{q,...,qi,r1,u, z} induces a proper wheel with center z. So N(x)N{q1,...,q;} = &, and
hence |N(x) N {qi,...,qi}| > 2, But then (R2 \ v) U{q,...,q, 1, u,x} induces a proper wheel
with center z.

So @ is of type C2, C4 or C5 w.r.t. (H,u). Suppose N(q;)NH = {x1,z2}. If N(2)NQ # q,
then Q U Ry U Ry Uz induces a proper wheel with center . So N(x) N Q = ¢;. Note that py
is not adjacent to ¢, else {p1, q;, x,y} induces a 4-hole. But then QU {x1,z,u,p1} U (R1\y)
contains a proper wheel with center z1. So N(q;)NH # {x1,x2}, and hence ¢; has a neighbor
in Ho \ {z2,y} and q; is of type p2 w.r.t. (H,u) adjacent to x;. Let g; be the neighbor of
x in @ with lowest index. Note that p; cannot be adjacent to ¢, else {p1,q1,z1,u} induces
a 4-hole. Also p; cannot be adjacent to g;, else {p1,q;, x,u} induces a 4-hole. But then
{q1, -, @i, x1,x,u,p1} U (Ry \ y) induces a proper wheel with center z;.

Case 4: P is of type C w.r.t. (H,x).

Suppose that P is either of type C1 or C3. Let p; be the neighbor of y in P. Let X
be the 3PC(z1xox, p;) contained in H U P U x. Note that p; cannot be adjacent to z1, else
{z1,x,y,p;} induces a 4-hole. Similarly p; is not adjacent to zo. In particular ¥ is not a bug,.
But then since node wu is strongly adjacent to 3, Lemma 5.1 is contradicted. So P is of type
C2, C4 or C5 w.r.t. (H,x).

Suppose that N(p1) N H = {y,y1} and p; has a neighbor in Hs \ {y,y2}. Let R be the
subpath of Hs \ y whose one endnode is y,, the other endnode of R is adjacent to pg, and
no intermediate node of R is adjacent to py (note that possibly R = y2). If N(u) N P = &,
then H; U RU P Uw induces a proper wheel with center y. So N(u) N P # &. Let p; be
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the node of N(u) N P with lowest index. If ¢ > 1, then H; U {u,p1,...,p;} induces a 4-wheel
with center y. So ¢ = 1. If p; is the unique neighbor of w in P, then P U R U {y,u} induces
a 4-wheel with center y. So |N(u) N P| > 2. Let H' be the hole induced by H; U H, U P.
Since (H',u) cannot be a proper wheel and y; # x1, (H',u) must be a bug. In particular,
N(u) NP = {p1,p2}. Suppose that py is of type p3b w.r.t. (H,z). Then k = 2. Let H” be
the hole contained in (H \ y2) U pg. Then (H”,z) and u contradict our choice of (H,z) and
u. So py is not of type p3b w.r.t. (H,z) and hence it is of type p2 or p3t w.r.t. (H,z). But
then R is the center-crosspath of (H', u).

So p1 has a neighbor in H; \ {y,y1} and N(px) N H = {y,y2}. If N(u) N P = @&, then
H{UPU{u,y,y2} induces a 4-wheel with center y. So N(u) N P # @&. Let H' be the hole
induced by H; U H, U P. Since (H',u) cannot be a proper wheel and yy # x2, (H',u) must
be a bug. So N(u) NP = {px}.

Since (H,u) is a bug, and G has no star cutset, and x is a node of type s2 w.r.t. (H,u),
by Lemma 6.1 and by symmetry, there is a path Q = qy, ..., q of type C2, C4 or C5 w.r.t.
(H,u), such that N(g) N H = {x1,22}, N(z) N Q = {q}, ¢1 has a neighbor in H; \ {z1,2]}
(where 2 is the neighbor of z1 in Hj) and no neighbor in Hs \ y. Note that since p; is of
type p2 or p3 w.r.t. (H,x), p; has a neighbor in H; \ {z1,y}. Similarly, ¢g; has a neighbor
in Hy \ {z1,y}. Let R be the shortest path from ¢; to py in PUQU (Hy \ {z1,y}). Then
RU (Hz \ y) U{z,u} induces a 3PC(qz2x, pry2u). O

7 Attachments

In the section we use the following notation. Let ¥ = 3PC(z1x223,y). The three paths of ¥
are denoted Py, y, Py,y and Py, (where P, is the path that contains x;). For i =1,2,3, we
denote the neighbor of y (resp. x;) in P,y by y; (vesp. «}). For 4,5 € {1,2,3}, i # j, let H;;
be the hole induced by P, U Py

Lemma 7.1 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
u be a type pl node w.r.t. ¥ adjacent to x1. Let P = pq,...,px be a chordless path in G\ X
such that py is adjacent to u, px has a neighbor in ¥\ {x1, 2,3}, no node of P\ {p1} is
adjacent to u and no node of P\ {pr} has a neighbor in . Then py is one of the following

types:
(i) pi is of type p2 with neighbors in Py .
(ii) pi is of type p1 adjacent to z.
(iit) py is of type d and it has no neighbor in Py, \ {y}.

(i) pi is adjacent to x1 and it is either of type p3 or d, or it is a pseudo-twin of x1, x2, T3
ory w.r.t. ¥, or it is a crosspath w.r.t. ¥ adjacent to x1,x} and a node of {y2,y3}.

Proof: By Theorems 4.3, 5.3, 5.5 and 5.6 we may assume that G does not contain a proper
wheel, a bug with a center-crosspath, a bug with an ear nor a 3PC(A,-) with a type sl or
s2 node. Since py has a neighbor in ¥\ {x1,x9,z3}, pr cannot be of type t2 nor t3 w.r.t. X.
So, for the node pg, it sufices to examine the following remaining possibilities of Lemma 5.1.
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Case 1: pg is of type pl w.r.t. X.
Let v be the node of N(px) N X. Note that v ¢ {x1,22,23}. If v # 2, then YU P Uu
contains a 3PC(x1,v). So v = x| and hence (ii) holds.

Case 2: pyg is of type p2 w.r.t. 2.

If N(pr) C Py,y, then (i) holds. So w.l.o.g. assume that N(py) C Py,y. If 21y is not an
edge, then Hog U P Uw induces a 3PC(z1x923,A) or a 4-wheel with center xs. So x1y is an
edge. But then u, P is either a center-crosspath or an ear of bug X.

Case 3: py is of type p3 w.r.t. 2.
If prx; is not an edge, then XU PUwu contais a 3PC(x1,px). So prx1 is an edge and hence
(iv) holds.

Case 4: pyg is of type crosspath w.r.t .

Let v (resp. v1v2) be the node-attachment (resp. edge-attachment) of py in an appropriate
hole of ¥. Note that since there is no bug with a center-crosspath, v ¢ {x1,z2,23}. Suppose
v =1yi. W.Lo.g. vivg is an edge of P,,,. Then HosUPU{x1,u} induces a 3PC(x1x2x3, prv1v2)
or a 4-wheel with center x2. So v = ys or v = y3. W.l.o.g. let v = y2. Suppose viva € Py,y.
Let R be the subpath of P,,, with one endnode x3 and the other endnode adjacent to py.
Then Py, URU P U{u,y} induces a 3PC(x1,pi). So viva € Pp,y. Let R be the subpath
of P, , with one endnode z; and the other endnode adjacent to py. If pyxq is not an edge,
then (Py,y \ y) U RU P Uw induces a 3PC(z1,pg). So prxy is an edge, and hence (iv) holds.

Case 5: p; is a pseudo-twin of z1, x9 or x3 w.r.t. 3.

Suppose that p;, is not adjacent to z1. Then p; has two adjacent neighbors in P,,,. Let R
be the subpath of P,,, with one endnode z; and the other endnode is adjacent to py. Then
PURU {u,x2} induces a 3PC(x1,pg). So py is adjacent to x1, and hence (iv) holds.

Case 6: py is of type d w.r.t. 3, or it is a pseudo-twin of y w.r.t. X.

W.lo.g. pi has a neighbor in P,,, \ y. If pyx; is not an edge and p; has a neighbor in
Py \y, then (X\ Py,y) U P Uu contains a 3PC(x1,pi). So either pyx; is an edge and hence
(iv) holds, or p; does not have a neighbor in P, \ y and hence (iii) holds. 0

Lemma 7.2 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
u be a type t2 node w.r.t. ¥ adjacent to ro and xr3. Let P = pq,...,pr be a chordless path in
G\ X such that p; is adjacent to u, pg has a neighbor in X\ {1, 2,23}, no node of P\ {p1}
is adjacent to u, and no node of P\ {px} has a neighbor in ¥2. Then py, is one of the following

types:

(1) pr is of type p2 w.r.t. ¥ and its neighbors in X are contained in Py,,.

(ii) x3y is an edge and py is of type pl w.r.t. 3 adjacent to ', or x2y is an edge and py, is
of type p1 w.r.t. ¥ adjacent to x%.

(iii) py is of type p3 w.r.t. ¥, and either pyro and x3y are edges, or prxs and x2y are edges.
(iv) pi is of type d not adjacent to y1 and neither xoy nor xsy is an edge.

(v) px is a pseudo-twin of x1, xo or x3 w.r.t. 3.
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Proof: By Theorems 4.3, 5.3 and 5.6 we may assume that G does not contain a proper wheel,
a bug with a center-crosspath nor a 3PC(A,-) with a type sl or s2 node. Since p; has a
neighbor in ¥\ {x1,z9, 23}, px cannot be of type t2 nor t3 w.r.t. X.

Claim 1: pg is not of type crosspath or a pseudo-twin of y w.r.t. 2.

Proof of Claim 1: Suppose that py is of type crosspath. Let v (resp. wvivy) be the node-
attachment (resp. edge-attachment) of py in an appropriate hole of ¥. Suppose v = y;.
W.lo.g. {vi,v2} C Pyyy. Then Hog U P Uw induces a 3PC(uxaxs, prviv2) or a 4-wheel with
center x3. So v # y;. W.lo.g. v = y3. Note that since pi cannot be a center-crosspath of
bug X, y3 # x3. Suppose vivp is an edge of P, ,. Let R be the subpath of P, , with one
endnode z; and the other adjacent to pi. Then P,,, URUPU{u,ys} induces a 3PC(x2, py).
So vivg is an edge of Py,,. But then (P \ py) Uwu is the center-crosspath of the bug (Has, pr).
So pg is not of type crosspath w.r.t. 3.

Now suppose that pg is a pseudo-twin of y w.r.t. 3. Then either pipzs or prrs is not an
edge. W.Lo.g. prs is not an edge. But then (X \ P,,,) U PUwu contains a 3PC(x3,py). This
completes the proof of Claim 1.

Suppose that (v) does not hold. Then by Claim 1 and Lemma 5.1, py is of type p or d
w.r.t. 2.

Suppose that pg is of type d. Suppose that pry; € E(G). So w.l.o.g. N(pp) NE =
{y,y1,y2}. If 29y ¢ E(G), then (Hyz \ y) U P Uw induces a 3PC(x2,p). So xoy € E(G).
But then (P, \ ) U P U {u, 22,23} induces a 4-wheel with center z2. So pry1 ¢ E(G).
Suppose that one of {zoy, z3y} is an edge (note that by definition of 3PC(A, ), at most one
of {zay, z3y} can be an edge). W.lo.g. zoy € E(G). But then Hio U P U{u,z3} induces a
proper wheel with center z3. So no one {z2y, 3y} is an edge, and hence (iv) holds.

Suppose that py is of type pl. Let v be the neighbor of p; in ¥. Note that v ¢ {x1, x2, x3}.
If v € Py,y, then HjoUPUuw induces a 3PC(x2,v). Sov ¢ Py . W.lo.g. v € Ppyy. If v # b,
then Hio U P Uw induces a 3PC/(z2,v). So v = z4. If 23y is not an edge, then Hio U P U x3
induces a 4-wheel with center xo. So 3y is an edge and hence (ii) holds.

Suppose that py is of type p2. Let v1,v9 be the nodes of N(pg) N X. Suppose that vivy
is not an edge of P,,,. W.lLo.g. wviv2 is an edge of P,,,. Then Hs3 U P U u induces a
3PC(uxoxs, prv1v2) or a 4-wheel with center xp. So vivy is an edge of P, ,, and hence (i)
holds.

Suppose that py is of type p3. If N(py)NE C Py, then Hi2UPUu contains a 3PC(z2, py).
So w.lo.g. assume N(py) N X C Pp,y. If ppas is not an edge, then Hip U P U u contains a
3PC(xz2,pk). So prrs is an edge. If x3y is not an edge, then Hijs U P U {u,x3} contains a
4-wheel with center z2. So x3y is an edge and hence (iii) holds. O

Lemma 7.3 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
u be a type t3 node w.r.t. . Let P = py,...,pr be a chordless path in G\ ¥ such that py is
adjacent to u, py has a neighbor in ¥\ {x1,x2,x3}, no node of P\ {p1} is adjacent to u, and
no node of P\ {px} has a neighbor in X. Then py is one of the following types:

(i) pr is of type p1, p3t, or it is a pseudo-twin of x1, xo or xz w.r.t. L.
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(ii) pr is a pseudo-twin of y w.r.t. 3. Furthermore, if N(px) N X # {y,y1,y2,y3}, then py
is adjacent to a node of {x1,x2,x3} and X is not a bug.

(iii) py is of type p3b adjacent to x;, for some i € {1,2,3}, but not to .

Proof: By Theorems 4.3, 5.3 and 5.6 we may assume that G does not contain a proper wheel
nor a bug with a center-crosspath nor a 3PC(A,-) with a type sl or s2 node. Since py has a
neighbor in ¥\ {z1, 22,23}, pr cannot be of type t2 nor t3 w.r.t. X.

Claim 1: pg is not of type p2, crosspath nor d w.r.t. 3.

Proof of Claim 1: Suppose that py is of type p2. W.lo.g. N(py) N¥ C Py,,. But then
Hs3 U P U w induces a 3PC(A, zox3u) or a 4-wheel with center z3. So py is not of type p2
w.r.t. 2.

Suppose that pi is of type crosspath. W.lo.g (Has,pr) is a bug and yo is the node-
attachment of p; in Ha3. Note that since pi cannot be a center-crosspath of X, yo # xo. But
then (P \ px) Uu is a center-crosspath of (Has,pr). So pg is not of type crosspath w.r.t. X.

Finally suppose that py is of type d w.r.t. . W.lo.g. N(px) NE = {y,y1,y3}. But then
Hj3 U P Uw induces a 3PC(uxzaxs, pryys) or a 4-wheel with center x3. This completes the
proof of Claim 1.

Assume (i) does not hold. Then by Claim 1 and Lemma 5.1, py is of type p3b or it is a
pseudo-twin of y w.r.t. X. Suppose first that py, is of type p3b. W.Lo.g. N(pp)N3E C Py, If
x3 is not the node-attachment of py in Hag, then (P\ px)Uu is a center-crosspath of (Has, pi).
So 3 is the node-attachment of py in Hag, and hence (iii) holds.

Suppose now that py is a pseudo-twin of y w.r.t. 3. We may assume that N(pg) N #
{y,91,y2,y3}, else (ii) holds. W.lo.g. N(pr) NY = {y,y1,y3,v}, where v is a node of
Py \{y,y2}. If v # x2, then (P \ py) Uu is a center-crosspath of (Has,py). So v = x. Since
pr is a pseudo-twin of y w.r.t. X, |N(px) N {x1,x2,23}| < 1 and hence ¥ cannot be a bug, so
(ii) holds. O

8 Connected diamonds

In this section we prove Theorem 1.5. Recall the definition of a connected diamond (X%, Q)
from Section 1. Note that if Q = ¢, ..., qx, then ¢; is of type t2 w.r.t. ¥ and g is of type p2
ord w.r.t. X.

Lemma 8.1 Let G be a 4-hole-free odd-signable graph. If G contains a 3PC(A,-) with a
node of type dd, then either G has a star cutset or G contains a connected diamond.

Proof: Assume not. By Theorems 4.3, 5.3 and 5.6, G does not contain a proper wheel nor a
bug with a center-crosspath nor a 3PC(A,-) with a type sl or s2 node. Let u be a type dd
node w.r.t. a ¥ = 3PC(z1x2x3,y) of G, such that w.l.o.g. N(u) NE = {y,y1,y3}. So z1y
and x3y are not edges.

Since S = Nly] \ {u,y2} is not a star cutset separating u from ¥ \ S, there is a direct
connection P = py,...,pg from u to ¥ in G\ S. So p; is adjacent to u and py has a neighbor
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in ¥\ S. Note that the only nodes of ¥ that may have a neighbor in P\ pj are y; and ys.
For i,j € {1,2,3}, i # j, let H;; be the hole induced by Py, U P, ;. By Lemma 5.1 and since
pr is not adjacent to y, pg is of type p, t2, t3, crosspath or it is a pseudo-twin of 1, x5 or x3
w.r.t. 2.

Claim 1: At most one of y1,y3 has a neighbor in P\ py.

Proof of Claim 1: Suppose both y;,ys have a neighbor in P\ pg. Let R be a shortest subpath
of P\ pr with one endnode adjacent to y; and the other to y3. Then Hiz U R induces a
3PC(y1,y3). This completes the proof of Claim 1.

We now consider the following cases.
Case 1: p;, does not have a neighbor in Py, \ x2.

Case 1.1: No node of {y1,y3} has a neighbor in P \ py.
Then no node of ¥ has a neighbor in P \ py.

Case 1.1.1: pg is of type crosspath w.r.t. X.

Since py cannot be a center-crosspath of bug ¥, py is not adjacent to xo. W.lo.g. N(px)N
P,y = y1 and py has two adjacent neighbors in P,,,. If k& = 1, then (Hiz\ y) U {u,p1}
induces a 4-wheel with center p;. So & > 1. Let R be the shortest path from u to pg in
(Pryy \ y) U{u,pr}. Then PU RU {y;} induces a 3PC(u,py).

Case 1.1.2: py is of type t2, t3 or it is a pseudo-twin of z1, x9 or xg w.r.t. X.

If pg is of type t2 adjacent to x; and x3, then ¥ U P U w induces a connected diamond.
Note that since pj does not have a neighbor in P,,, \ 2, pr cannot be a pseudo-twin of z
w.r.t. ¥. So w.lo.g. py is adjacent to x; and x5 and N(pg) N (X \ {z1,22}) € Pryy. Recall
that pg cannot be adjacent to y. But then Hjs U P Uu induces a 3PC (uyyi, z1x2py).

Case 1.1.3: pg is of type p w.r.t. 3.

Suppose pi is of type pl and let p’ be the neighbor of py in ¥\ S. If p’ = x9, then
YU PUu induces a connected diamond (X', @), where ¥’ = 3PC(yy1u, x2) and Q = Py, \ y.
So p/ # x9. But then (His \ y) U P Uwu induces a 3PC(u,p’). So py is not of type pl. So the
neighbors of py in ¥\ S lie in either P, or Py,,. W.lo.g. N(py) NE C P,y If py is of type
p2, then Ha3 U P Uwu induces either a 3PC(uyys, A) or a 4-wheel with center ys3. So py is of
type p3. If k = 1, then (Hi3 \ y) U {u,p1} induces a 4-wheel with center p;. So k > 1. But
then (Hi3 \ y) U P Uw contains a 3PC (u, pg).

Case 1.2: A node of {y1,y3} has a neighbor in P\ py.
By Claim 1, exactly one of {y1,y3} has a neighbor in P \ pi. Note that k& > 1.

Case 1.2.1: py is of type p.

If py, is of type pl adjacent to o, then ¥ U P contains a 3PC(x2,y1) (if y1 has a neighbor
in P\ px) or a 3PC(x9,ys3) (if y3 has a neighbor in P \ px). So by symmetry w.l.o.g.
N(pr) N X C Py \ y. Let p’ (resp. p”) be the node of N(py) N P,y closest to y3 (resp. x3).
Note that if pj, is of type pl, then p’ € P,y \ {y,ys}. Let R be the subpath of P,,, between
p"” and z3. Let H be the hole induced by P,,, UP URU u.
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Suppose N(y3) N (P \ pr) # &. Since (H,ys) is not a proper wheel, |[N(y3) N P| =1 and
p"y3 is not an edge. Let p; be the unique neighbor of y3 in P. Note that 1 < k. If py is of
type pl, then Ho3 U P contains a 3PC(ys,p’). So py is of type p2 or p3. If N(y3) N P = py,
then P, UPURU {y3,u} induces a 4-wheel with center u. So ¢ > 1. If p;, is of type p2,
then (H,ys3) is a bug and Py, \ (RU{y, y3}) is its center-crosspath. So py, is of type p3. But
then Hosz U {p;, ..., px} contains a 3PC(ys, k).

So N(ys) N (P \ px) = @. Hence N(y1) N (P \ px) # @. Since (H,y;) is not a proper
wheel, y; has a unique neighbor, say p;, in P. Let R’ be the subpath of P,,, between y3 and
pl. It i =1, then PU R U{y,y1,u} induces a 4-wheel with center u. So i > 1. But then
P U R U{y1,u} induces a 3PC(u,p;).

Case 1.2.2: p;, is of type t2, t3 or it is a pseudo-twin of z1, xo or xg w.r.t. X.

Suppose pi is of type t2 adjacent to z1 and z3. By symmetry w.l.o.g. N(y3s) NP # &
and N(y;) NP = &. Let H be the hole induced by P,,, U P U {x3,u}. Since (H,y3) is not a
proper wheel, z3ys is not an edge. But then Ho3 U P contains a 3PC(z3,y3). So pg is not of
type t2 adjacent to x; and x3.

Recall that pi has no neighbor in P, \ 2. So by symmetry w.l.o.g. py is adjacent to
both z; and zo and N(px) N (X \ {z1,22}) C Py \ y. f N(y1) NP = @, then Hip UPUu
induces a 3PC(uyyy, x122pk). So N(y1) N (P \ pr) # @ and N(y3) N (P \pr) = . Let H be
the hole induced by P,,, U PUw. Since (H,y;) is not a proper wheel 3; has unique neighbor,
say p;, in P.

Suppose py, is of type t3. If i = 1, then P,,, U P U {y1,u} induces a 4-wheel with center
w. So ¢ > 1. But then (P, \ y) U P U{y1,u} induces a 3PC(p;,u). So py is not of type t3.

Suppose pg is of type t2. If yxo is an edge, then since there is no 4-hole y;z; is not an
edge. But then P, U {p;,...,pk, y1, 22,21} induces a 4-wheel center x2. So yz is not an
edge. But then Hosz U {p;, ..., pk,y1} induces a 3PC(y, x2).

So pr is a pseudo-twin of x3 w.r.t. X. Let R be the shortest path from p, to ys in
PryUpg. If i =1, then PURU {y1,y,u} induces a 4-wheel with center u. So i > 1. But
then PU R U {y;,u} induces a 3PC(u,p;).

Case 1.2.3: pyg is of type crosspath w.r.t. X.

Since pr cannot be a center-crosspath of bug 3, px is not adjacent to x».

W.lo.g. N(pk) N Pryy = y3 and N(px) N (X \ y3) € Pry \ y. Let p’ (resp. p”) be the
node of N(py) N Py, closest to y; (resp. x1). Let R’ (resp. R”) be the y;p’-subpath (resp.
x1p”-subpath) of Py ,. If N(y3)N (P \pg) # &, then PUP,,, UR"U{u,ys} induces a proper
wheel with center y3. So N(y3) N (P \px) =@ and N(y1) N (P \pr) # &. Let p; be the node
of N(y1)N P with highest index. If i = 1, then PU{y,y1,ys,u} induces a 4-wheel with center
u. Soi > 1. Let H be the hole induced by R” U P,,, U P Uw. If p’ =y, then (H,y1) is a
proper wheel. So p’ # y1, and hence (H,y1) is a bug. But then R\ y; is a center-crosspath
of (H,y1).

Case 2: p;, has a neighbor in P, \ z2.

Case 2.1: pg is of type p w.r.t. X.
In this case N(pr) N X C Py,y.
Suppose that {yi1,y3} have no neighbor in P\ pg. If py is of type pl, then ¥ U P induces a
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connected diamond (X', P,y \y) (where ¥/ is the 3PC(y1yu, -) induced by Py, U Py, UP). If
pr is of type p2, then Hio U P Uw induces a 3PC(uyyy, A). So pg is of type p3. Let R be the
chordless path from y to 3 in P,,,Upy, that contains p. Then P, ,UP,,, UPURUu induces
a connected diamond (X', Py, \ y) (where X' is the 3PC(y1yu, pi) induced by P, URUP).
So one of {y;,y3} has a neighbor in P\ py.

Therefore £ > 1. By Claim 1, we may assume w.l.o.g. N(y3) N (P \ pr) # @ and
N(y1) N (P \ pg) = @. Let R’ (resp. R") be the shortest path in P,,, U p; between y
(resp. x2) and pg. Let H be the hole induced by R’ U P Uw. Since (H,ys) is not a proper
wheel, y3 has a unique neighbor, say p;, in P. Note that i < k. If py is of type pl, then
Ho3 U{p;, ..., pr } induces a 3PC(y3,-). If py is of type p3, then R' U R" U Ppyy U {pi, ..., 01}
induces a 3PC(ys, pr). So py is of type p2. If i > 1, then (H,y3) is a bug and the path induced
by (Prsy \{v,y3})U(R"\pg) is its center-crosspath. So i = 1. But then P,,, UPUR"U{y3,u}
induces a 4-wheel with center wu.

Case 2.2: py, is of type t2, t3 or it is a pseudo-twin of x1, z9 or x3 w.r.t. X.

Then py, is a pseudo-twin of xo w.r.t. X. Let ¥’ = 3PC(z1pgxs, y) obtained by substituting
pk into X. If no node of {y1,ys} has a neighbor in P\ pg, then ¥’ U PUw induces a connected
diamond (¥”, @), where ¥ = 3PC(y1yu, pr) and Q = Py, \ y. So w.l.o.g. y3 has a neighbor
in P\ pg. Let p; be the node of P with highest index adjacent to ys3. Note that ¢ < k. But

then (X' \ (Pryy \ y)) U{pi,...,p} induces a 3PC(ys, pi)-

Case 2.3: py is of type crosspath w.r.t. X.

Suppose N (px) N Pryy = y2. W.lo.g. N(pr) N (X \ y2) € Ppyy \ vy and, in particular,
(Has, pr) is a bug. If N(ys3) N (P \ px) = &, then (P \ px) Uu induces a center-crosspath
of (Has,pr). So N(y3) N (P \ pr) # & and consequently k > 1. Let p’ (resp. p”) be the
neighbor of py in Py, closest to y3 (resp. x3). Let R be the subpath of P,,, between "
and z3. Let H be the hole induced by P U {u,y,y2}. Since (H,ys) is not a proper wheel,
y3 has a unique neighbor in P\ p; and p’ # y3. Let p; be the neighbor of y3 in P. If
i =1, then P, URU P U {y3,u} induces a 4-wheel with center w. So i > 1. But then
(Ppy \y) UPURU {u,y3} induces a 3PC(u,p;). So N(pg) N Pryy # Y.

W.lo.g. N(pr)N Py = y3 and py, has two adjacent neighbors in P,,,. Let p’ (resp. p”)
be the node of N(py) N Py, closest to ya (resp. x2). Let R’ (resp. R”) be the subpath of
P,y between y (resp. z2) and p’ (vesp. p”). If k =1, then P, , U R” U {p1,y3,u} induces
a 4-wheel with center u. So k > 1. If no node of {y1,y3} has a neighbor in P \ p, then
(Ppiy \y) UPUR"U{u,y3} induces a 3PC(u,pg). So by Claim 1, exactly one of y,y3 has a
neighbor in P\ pg. Suppose y; has a neighbor in P\ p; and let p; be the node of N(y;) N P
with highest index. Then His U {p;,...,px} induces a 3PC(y1,y3). So y; does not have a
neighbor in P\ p; and hence N(y3) N (P \ px) # &. But then P U R’ U {u,y3} induces a
proper wheel with center ys. O

Lemma 8.2 Let G be a 4-hole-free odd-signable graph. If G contains a bug with a type dc
node, then G has a star cutset or G contains a connected diamond.

Proof: Assume not. By Lemma 6.1 every bug (H, ) has a bridge P. Choose a bug (H, z) with

a type dc node u, and a bridge P = py, ..., pr of (H,x) so that the length of P is minimized.
Let x1, x9, y be the neighbors of z in H such that ;x5 is an edge. Let Hy (resp. Hz) be the

45



sector of (H,x) with endnodes y and x1 (resp. z3). Let y1 (resp. y2) be the neighbor of y in
H; (resp. Hs). So u is adjacent to x,y and a node of {y1,y2}. W.Lo.g. p; has a neighbor in
Hi\ {z1,y} and p in Ha \ {x2,y}.

By Lemma 8.1 G does not contain a 3PC(A,-) with a type dd node, and hence P is not
a bridge of type D. Let H' be the hole of (H \ y) U P that contains P. If P is a bridge of
type C2, C4, C5 or T, then H' U {x,y} induces a union of a 3PC(x1x22,y) and a type dd
node w.r.t. this 3PC, a contradiction.

Suppose that P is a bridge of type C3. W.l.o.g. p; is adjacent to y, i.e., p1 is of type p3t
w.r.t. (H,z). Note that since {z1,z,y,p1} cannot induce a 4-hole, p;x; is not an edge. But
then H' U {x,y} induces a 3PC(x12z2x,p1) and y; is of type dd w.r.t. it, a contradiction.

Suppose that P is a bridge of type C1. Let p; be the unique neighbor of y in P. Note
that 1 < i < k. Let ¥ = 3PC(z129x,p;) induced by H' U{z,y}. W.Lo.g. u is adjacent to ys.
If u does not have a neighbor in P, then (H \ {y1,z2}) U P U{x,u} contains a 4-wheel with
center y. So u has a neighbor in P. By Lemma 5.1 applied to ¥ and u, N(u) N P = {p;},
{pit1} or {pi—1}. Since G does not contain a 4-hole, N(u) N P = {p;}. Let H{ = H' N Hy
and H) = H' N Hy. Let H” be the hole induced by Hy U H) U {p;,...,pr}. Then (H” z) is
a bug, u is of type dc w.r.t. (H”,z) and P’ = pq,...,p;—1 is a bridge of (H”,z), and hence
(H”,z), uw and P’ contradict our choice of (H,z), u and P.

Therefore P is a bridge of type A. W.lLo.g. N(p1) N H; = y; and py has two adjacent
neighbors in Hj \ y. First suppose that u is adjacent to y2. If u does not have a neighbor in
P, then (H \ z2) U P U{u,x} contains a 4-wheel with center y. So u has a neighbor in P,
and let p; be such a neighbor with highest index. Since {y,y1,u,p1} cannot induce a 4-hole,
i > 1. But then H U {u,p;,...,pr} induces a 3PC(A, A) or a 4-wheel with center ys.

So u must be adjacent to y;. If u has a neighbor in P, then (Hz \ y2) U P U {u,y1,2}
contains a proper wheel with center u. So u does not have a neighbor in P. But then
Hy U PU{x,y1} induces a 3PC(A,y), and u is of type dd w.r.t. it, a contradiction. O

Lemma 8.3 Let G be a 4-hole-free odd-signable graph. If G contains a 3PC(A,-) with a
node of type d, then either G has a star cutset or G contains a connected diamond.

Proof: Follows from Lemmas 8.1 and 8.2. a

For a twin wheel (H,z) we use the following notation. Let x1, 2, x3 be the neighbors of
x in H such that z1z5 and xoxs are edges. Let o) (resp. x%) be the neighbor of z1 (resp. z3)
in H\ z2. Anodeu e V(G)\ (V(H)U{z}) is said to be of type d w.r.t. (H,z) if uz is an
edge and N(u) N H is either {z1,2}} or {x3, 25}

Lemma 8.4 Let G be a 4-hole-free odd-signable graph. If G contains a twin wheel with a
type d node, then either G contains a star cutset or G contains a connected diamond.

Proof: Assume not. By Theorem 4.3, Theorem 5.3 and Lemma 8.3, G does not contain a
proper wheel, a bug with a center-crosspath, nor a 3PC(A,-) with a type d node. Let u be
a type d node w.r.t. a twin wheel (H,x) in G. Let 21,29, z3 be the neighbors of x in H such
that x129 and xoxs are edges. Let Py = x3,p1,..., Pk, €1 be the long sector of (H,x). Let

P=pi,...,pk.
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Note that since there is no 4-hole, k£ > 1. W.l.o.g. N(u)NH = {z3,p1}. Since S = N|z]\x2
is not a star cutset of G separating xs from P, there exists a direct connection @ = ¢q1, ..., ¢
from z to P in G\ S. Let p; (resp. py) be the node of N(g;) N P with lowest (resp. highest)
index. Note that x; and x3 are the only nodes of H that may have a neighbor in @ \ ¢;.

Claim 1: Both u and z3 have a neighbor in Q.

Proof of Claim 1: N(u)NQ # &, else QU {x, x2, x3,u,p1, ..., p; } induces a proper wheel with
center x3. Now suppose N (z3)NQ = &. Let H' be the hole induced by QU{z2, x3,p1, ..., pi }.
So (H',u) is a bug or a twin wheel. If (H’,u) is a bug, then x is a center-crosspath of (H’,u).
So (H',u) is a twin wheel, and hence ¢ = 1 and N(u) N Q = ¢;. Since {u,z,z1,q} cannot
induce a 4-hole, x1¢q; is not an edge. Since {u,xs,z2,q} cannot induce a 4-hole, I > 1.
Suppose i’ = 1. If N(x1) N Q = &, then H U Q induces a 3PC(x2,p1). So N(z1) N Q # 2.
Let g5 be the node of N(x1) N Q with highest index. Then {z,x1,x3,p1, s, ..., ¢, u} induces
a 4-wheel with center u. So ¢ > 1. But then {u, z1, 2, x3,q;, pir, ..., Dk, x} induces a 4-wheel
with center . So N(x3) N Q # &. This completes the proof of Claim 1.

Claim 2: N(z;)NQ = @.

Proof of Claim 2: Suppose z1 does have a neighbor in ). By Claim 1, v and z3 both have
neighbors in Q. Let g5 (resp. ¢) be the node of @ with lowest index adjacent to x3 (resp.
u). If s <t, then {x,x9,23,u,q1,...,q:} induces a proper wheel with center x3. So s > t. In
particular, ¢ <l and s > 1.

If 21 has a neighbor in @ \ ¢, then both 27 and u (since ¢ < [) have a neighbor in @ \ ¢
and hence (Q \ ¢) U PU{x,u,z1} contains a 3PC(x1,u). So z1 does not have a neighbor in
Q \ ¢, and hence N(z1) N Q ={q}.

Let H' be the hole induced by Q U {x1,z2}. Since H' U z3 cannot induce a 3PC(-, "),
(H',x3) is a wheel, and hence it is a twin wheel or a bug. Since s > 1, (H', x3) must in fact
be a bug. But then z is of type d w.r.t. bug (H', x3), a contradiction. This completes the
proof of Claim 2.

By Claim 1, let ¢4 (resp. ¢;) be the node of @ with lowest index adjacent to x3 (resp. u).
If s =1, then {x,x9,x3,u,q1,...,q:} induces a proper wheel with center z3, a contradiction.
So s > 1. By Claim 2, the node set Q U {x1, z2,py, ..., pr } induces a hole, say H'. Node z3
must have at least two neighbors in @, else H' U x3 induces a 3PC(x2,¢qs). So (H',x3) is a
wheel. By our assumption (H',z3) cannot be a proper wheel, and since s > 1 it cannot be a
twin wheel, hence it is a bug where x9 does not belong to the short sector of (H',x3). But
then node z is of type d w.r.t. (H',z3), a contradiction. O

Proof of Theorem 1.5: Suppose not. By Theorems 4.3 and 5.3 and Lemmas 8.3 and 8.4
we may assume that G does not contain a proper wheel, a bug with a center-crosspath, a
3PC(A,-) with a node of type d, nor a twin wheel with a node of type d.

We may assume that G contains a diamond induced by, say, {u, v, a,b}, where ab ¢ E(G).
Let S = N[u] \ {a,b}. Since S cannot be a star cutset separating a from b, there is a direct
connection P = py,...,pr in G\ S from a to b. If v has a neighbor in P, then P U {a,b,u,v}
induces a proper wheel with center v. So N(v) N P = @. Let S’ = N[u] \ v. Since S" cannot
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be a star cutset of G, there is direct connection @ = ¢y, ..., q from v to P. Let p; (resp. py)
be the node of N(g;) N P with lowest (resp. highest) index.

Suppose both a and b have a neighbor in @ \ ¢;. Let R be a shortest path between a and
b in the subgraph induced by (@ \ ¢;) U {a,b}. Then PU R U {a,b,u} induces a 3PC(a,b).
So one of a,b does not have a neighbor in @ \ ¢;. W.lLo.g. N(b)N(Q\ ¢) = 2.

Claim 1: N(b)NQ = @.

Proof of Claim 1: Suppose not. So N(b) N @Q = ¢;. Suppose | = 1. Since there is no 4-hole,
aq; is not an edge. Since P U {v,a,b,q} cannot induce a proper wheel with center ¢y, i = 4'.
If : = k, then PU{a,b,u,v} induces a twin wheel with a node of type d. So i < k. But then
{p1, .-, Pisq1,a,b,u,v} induces a 4-wheel with center v. So [ > 1.

Suppose N(a) N Q = @. If i = k, then P U Q U {a,b,u,v} induces a bug with center b
with a node u of type de. So i < k. But then Q U {p1, ..., pi, a,b,v} induces a 3PC (v, q;). So
N(a)NnQ # o.

Suppose a has a unique neighbor, say ¢;, in Q. If j = 1, then Q U {a, b, u, v} induces a 4-
wheel with center v. So j > 1. But then QU{a, b, v} induces a 3PC(v, ¢;). So |N(a)NQ| > 2.
Let H be the hole induced by @ U {v,b}. Since there is no proper wheel, (H,a) is either a
bug or a twin wheel. If (H,a) is a bug, then w is either its center-crosspath or a node of type
dc. So (H,a) is a twin wheel. But then w is a node of type d w.r.t. (H,a). This completes
the proof of Claim 1.

Suppose N(a) NQ = &. If i =4, then PUQ U{a,b,v} induces a 3PC(v,p;). So i’ > i.
If p;pys is an edge, then PUQ U {a, b, v} induces a 3PC(q;p;p;/,v) with a node of type dd. So
pipi is not an edge. If [ = 1, then P U {a,b,v,q1} induces a proper wheel with center ¢;. So
[ > 1. But then Q U {a,b,v,p1,...,0i, P}, ..., i} induces a 3PC(v,q). So N(a) N Q # 2.

Let H be the hole induced by Q U {b,v,py, ...,pr}. Note that since a has a neighbor in
@, it has at least two neighbors in H. Suppose |N(a) N H| = 2 and let v/ be the neighbor
of ain H \ v. If vv/ is an edge, then H U {a,u} induces a 4-wheel with center v. So vv' is
not an edge. But then H Ua induces a 3PC(v,v"). Therefore, since (H,a) cannot induce a
proper wheel, (H,a) is either a bug or a twin wheel. If (H,a) is a bug, then u is either its
center-crosspath or a node of type dc. So (H,a) is a twin wheel, and hence u is a node of
type d w.r.t. (H,a). O

9 Conclusion

Star cutsets and 2-joins, as well as their generalizations, appear in decompositions of complex
hereditary graph classes such as balanced bipartite graphs (i.e. balanced matrices) [20, 16],
perfect graphs [11], odd-hole-free graphs [21] and even-hole-free graphs. In trying to under-
stand why this is the case, observe that in order to simplify a graph we need to break some
holes. To do that we can either use a node that has neighbors on a hole as a centre of a star
cutset (or its generalization), or when no such node exists we can hope that two edges of this
hole will extend to a 2-join (or its generalization) that breaks the hole. The star cutsets are
the key reason why none of the above mentioned decomposition theorems lead to construc-
tions for these classes (where a construction for a class of graphs C would mean showing that
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every graph in C can be built from basic graphs that can be explicitly constructed, gluing
them together by prescribed composition operations, and all graphs built this way are in
C). Such constructions are known for graph classes that, in addition to excluding different
types of 3-path-configurations, either do not have any wheels, such as triangulated graphs
or unichord-free graphs [34], or where the wheels that can occur are very limited, such as
claw-free graphs [13] and bull-free graphs [7]. None of these graph classes require star cutsets
for their decomposition, so it is easy (relatively speaking) to turn their decompositions into
compositions, and hence obtain the desired constructions.

A more important question is whether the decomposition theorems we have discussed
can be turned into algorithms or used to prove other interesting properties of the respective
graph classes. Some recent research that has turned in this direction suggests that in orther
to do that new techniques need to be invented.

As we have seen, the key idea that allows us to turn decomposition theorems that use
star cutsets (and their generalizations) into recognition algorithms is the cleaning. The next
question would be how to exploit the decomposition theorems to get algorithms for opti-
mization problems such as finding the size of a largest clique, or stable set or coloring the
graph. In Section 2 we saw that the decompositions by star cutsets and 2-joins can be
separated (which remains true when decomposing with their generalizations as well, as in
[16, 8]), i.e. even-hole-free graphs can be decomposed into basic graphs by first perform-
ing star cutset decompositions, and then the 2-join decompositions, without reintroducing
star cutsets. So it makes sense to take the bottom-up approach, and first try to develop
techniques for using 2-joins in optimization algorithms, which is what is done in [35]. In
[35] polynomial time algorithms are constructed for finding a maximum weighted stable set
of even-hole-free graphs with no star cutset (that using the decomposition result presented
here, reduces to even-hole-free graphs decomposable by 2-joins) and perfect graphs with no
balanced skew-partition, homogeneous pair and 2-join in the complement (and also the al-
gorithms for maximum weighted clique and colouring for this class). What came out of this
work is that the idea of using extreme non-crossing 2-joins is fundamental in turning 2-joins
into optimization algorithms. These ideas are then extended in [14] where an O(nS) algo-
rithm is given for maximum weighted stable set problem for perfect graphs with no balanced
skew-partitions. Since this class is self-complementary, this algorithm also solves the maxi-
mum weighted clique problem, and it follows that coloring this class can be done in O(n")
time. All these algorithms are also robust, in the sense that they take any graph as input
and they either correctly solve the given optimization problem or they correctly identify the
input graph as not belonging to the particular class.

An extreme decomposition, w.r.t. a particular set of cutsets, is one in which one of the
blocks of decomposition does not have any of the cutsets from the set. If a graph has a 2-join
it does not necessarily imply that it will have an extreme 2-join, but in [35] it is shown that
this will hold in graphs with no star cutset. This result, and its extension to dealing with
star cutsets, was fundamental in [2] for proving the Conforti and Rao Conjecture for linear
balanced bipartite graphs. The Conforti and Rao Conjecture [22] states that every balanced
bipartite graph contains an edge that is not the unique chord of a cycle. This conjecture
was formulated in the same paper where the authors give a decomposition theorem for linear
balanced bipartite graphs that uses star cutsets and 2-joins. So the decomposition of linear
balanced bipartite graphs has been known for 20 years, and yet it was not clear how to use it
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to prove the existence of an edge that is not the unique chord of a cycle, until new techniques
for manipulating decompositions theorems were invented.
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A Decomposing connected diamonds

In this appendix we prove Theorem 1.6, by decomposing connected diamonds with 2-joins.
We first review some known facts about 2-joins and blocking sequences which will help in the
proofs.

A.1 2-joins and blocking sequences

In this section we consider an induced subgraph H of G that contains a 2-join Hp|Hy. We
say that a 2-join Hy|Hs extends to G if there exists a 2-join of G, Hj|H) with H; C H{ and
Hy C H). We characterize the situation in which the 2-join of H does not extend to a 2-join
of G.

Definition A.1 A blocking sequence for a 2-join Hi|Hs of an induced subgraph H of G is
a sequence of distinct nodes x1,...,x, in G\ H with the following properties:
(1) (i) Hi|Ha Uz is not a 2-join of H U x1,
(i) Hy Ux,|Hs is not a 2-join of HU x,, and
(iii) ifn > 1 then, fori=1,...,n—1, H{Ux;|HoUx; 1 is not a 2-join of HU{x;, x;11}.

(2) z1,...,xy is minimal w.r.t. property (1), in the sense that no sequence xj,, ...,z , with

{xj,...,zj,} C{z1,...,xn}, satisfies (1).

k
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Blocking sequences for 2-joins were introduced in [18], where the following results are
obtained.

Let H be an induced subgraph of G with 2-join H;|Hs and special sets (A1, A2, By, B2).
In the following results we let S = z1,...,x, be a blocking sequence for the 2-join Hq|Hs of
an induced subgraph H of G.

Remark A.2 Hi|Hs Uu is a 2-join of H U wu if and only if N(u) N Hy = (), Ay or Bj.
Similarly, Hy Uu|Hy is a 2-join of H Uw if and only if N(u) N Hy =0, Ay or Bs.

Lemma A.3 Ifn > 1 then, for every node xj, j € {1,...,n — 1}, N(z;) N Hy = 0, Ay or
By, and for every node xj, j € {2,...,n}, N(z;) N Hi =0, A; or By.

Lemma A.4 Assumen > 1. Nodes x;,x;11, 1 <i <n—1, are not adjacent if and only if
N(wz) N Hy = Ay and N(wi“) NHy = A, or N(wz) N Hy = By and N(xi-i-l) NH, = B;.

Theorem A.5 Let H be an induced subgraph of a graph G that contains a 2-join Hi|Hs.
The 2-join Hi|Hy of H extends to a 2-join of G if and only if there exists no blocking sequence
for Hi|Hy in G.

Lemma A.6 Forl<i<n, HU{zy,...,zi—1}|HoU{xit1,...,2n} is a 2-join of HU(S'\

{zi})-

Lemma A.7 If xjxp, n > k > i+ 1 > 2, is an edge, then either N(x;) N Hy = Az and
N(mk) NHy = Ay, or N(.%'Z) N Hy = By and N(.%'k) NH; = B;.

Lemma A.8 If x; is the node of lowest index adjacent to a node of Ho, then x1,...,x; is
a chordless path. Similarly, if x; is the node of highest index adjacent to a node of Hy, then
Zj,..., Ty 18 a chordless path.

Theorem A.9 Let G be a graph and H an induced subgraph of G with a 2-join Hi|Hs and
special sets (A1, Ag, B1,Bs). Let H' be an induced subgraph of G with 2-join H{|Hy and
special sets (A}, A, By, Ba) such that Af N Ay # 0 and By N By # 0. If S is a blocking
sequence for Hi|Hs and H{ NS # (), then a proper subset of S is a blocking sequence for
H'{|Hy.

A.2 The decomposition

Recall that a connected diamond is a pair (X,Q), where ¥ = 3PC(z1x923,y) and Q =
q1, - qr, kK > 2, is a chordless path disjoint from ¥ such that the only nodes of Q) adjacent
to X are ¢; and gi. Furthermore ¢ is of type t2 w.r.t. 3 adjacent to, say z1 and x3 and one
of the following holds:

(i) gx is of type p2 such that N(gx) NV(E) C V(Py,y) \ {22} , or

(ii) g is of type d adjacent to y,y1,ys such that z1y and x3y are not edges.
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Figure 12: Different types of connected diamonds.

We rename some nodes and introduce some additional notation (see Figure 12). Let
a} = qr and let a; be the closest neighbor of @} to z3 in P,,,. Let b1 = z2, V) = qu,
by = x1 and by = z3. Now let Ay = {a1,d}}, Ay = V(E) N N(a))\ {a1}, B1 = {b1,b}} and
By = {by,b,}. Let A = A3 U As and B = By U By. When df is of type d w.r.t. X, A has
cardinality 2 and let as = y1, ab, = y3, whereas when a] is of type p2, Ay has cardinality 1
and we let as = a}, denote its unique node. The connected diamond (X, Q) is denoted by
H(Ay, Ay, By, B3). Let R be the subpath of P,,, between a; and b;. Now let Hy = RUQ
and Ho = H(Ay, Ay, B1,Bs) \ Hy. Let P,,p, be the chordless path from as to by in Hy \ b)),
and define Py, similarly. When [As| = 2, Pyyp, and Py, are node-disjoint paths. When
|Aa| = 1, these two paths are identical between ay = af, and y. In this case, we refer to the
agy-subpath of P,p, as P,y path, and the boy-subpath (resp. bhy-subpath) of P,,p, (resp.
Puy,) as Poyy (vesp. Pyy,) path. Let Py,p, be the chordless path from a; to by in Hy\ a}, and
define Py y similarly. The two paths P,p, and Py y of Hy will be called the side-1-paths of
H and the two paths P,,;, and Py, of Hs will be called the side-2-paths of H. We say that
H is short if out of all connected diamonds of GG, the two side-2-paths of H have as few nodes
in common as possible, i.e. there is no connected diamond H’ of G such that the side-2-paths
of H' have fewer nodes in common that the side-2-paths of H.

We denote by X the 3PC(aja)ag, ba) induced by HiUP,,;, and by Yo the 3PC/(a;d)al, b))
induced by HiU Py . X' denotes the 3PC (bbb}, y) when [Az| = 1 and the 3PC (bbb}, a))
when |As| = 2 induced by H \ P,,p,. We denote v,, (resp. vp,) the neighbor of a; (resp. by)
in Py,p,, and we define vgr, vy, vp,, vy, similarly. If [As] = 2, then we let vy, (vesp. vg) be
the neighbor of ay (resp. aj) in Py,p, (vesp. Pyp,). If [A2] = 1 and ag # y, then we let vg,
be the neighbor of ay in P,,,. Finally, when |As| = 1, we let y,, Y, be the neighbor of y
in Py, and Py respectively. If |As| =1 and y # az, we let y,, denote the neighbor of y in
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Py, .

A segment of H is a path P of H whose endnodes are of degree at least 3, whose inter-
mediate nodes are all of degree 2, and P is not an edge of G[A] or G[B.

Lemma A.10 Let G be a 4-hole-free odd-signable graph that does not have a proper wheel,
a bug with a center-crosspath nor a bug with a type s2 node. Let H(Ay, A2, By, B2) be a short
connected diamond of G. A node u of G\ H that has a neighbor in H is one of the following
types (see Figures 13, 14, 15, and 16).

pi, for i=1,2,8

Ay

Bs

t3

Ad

Hi-crossing

For some segment S of H, N(u) " H C S and |[N(u) N H| = i.
Furthermore, if 1 > 2, then u has two adjacent neighbors in H. Also
if i =3, [A2] = 1 and S = Py,y, then N(u) N H induces a path of
length 2.

N(u) NH=A;.

N(u)NnH = A.

|A2| =1 and u has two neighbors in H, the node of As and one node
OfAl.

N(u)NH = B.

N(u)N H = By.

Node u has three neighbors in H: either two nodes of By and one of

By ; or |As| =2 and u is adjacent to two nodes of Ay and one node of
As.

|A2| =1 and u has three neighbors in H: if y = aa, then N(u) N H =
{y,be,yb/Q}, and otherwise the neighbors of w in H are y and two

nodes from {ym,ybgaybg}-

|As| =1, y = ag and u has four neighbors in H: ay,a,as and either
Yby OT Yy -

Either N(u) N H = {b1,v1,v2} where vivy is an edge of Py y \ by or
N(u) N H = {b},v1,v2} where vivy is an edge of Pyp, \ b1.
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Hs-crossing

pseudo-twin of a
node of By

pseudo-twin of a
node of Bo

pseudo-twin of a
node of Ay

pseudo-twin of a

node of As

pseudo-twin of y

sl

s2

s3

If |As| = 1, then either yp, # by and N(u) N H = {yp,,v1,v2}
where vivy is an edge of Py, \'y, or yy # by and N(u) N H =
{ys,» v1,v2} where vivy s an edge of Py, \ y. If |As| = 2, then
N(u) N H = {ag,v1,v2} where vivy is an edge of Py, \ ab, or
N(u) N H = {ah,v1,v2} where vivy is an edge of Py,p, \ as.

We define pseudo-twin of by: N(u)NH = By U{v1,ve}, where vy and
vy are nodes of Pyp, . Furthermore, if by ¢ {vi,v2}, then vivy is an
edge. Pseudo-twin of by is defined symmetrically.

We define pseudo-twin of by: N(u) N H = BU{v}, where if |As| = 2,
then v is a node of Py, \ be, and if |As] = 1, then v is a node of
Py,y \ ba and not both yby, and yu are edges. Pseudo-twin of by is
defined symmetrically.

We define pseudo-twin of ay: N(u) N H = Ag U {d),v1,v2}, where vy
and vy are nodes of Py,,p,. Furthermore, if a; ¢ {v1,va}, then |As| =1
and v1vy s an edge. Pseudo-twin of ay is defined symmetrically.

We define pseudo-twin of as: If |As| = 2, then N(u) N H = A U
{v1,v2}, where v1 and vy are nodes of P,p,. Furthermore, if ay ¢
{v1,v2}, then vivy is an edge. If |A2] =1 and ay # y, then N(u) N
H = Ay U{ag,vq,}. If |A2] = 1 and ay = y, then N(u) N H =
Ay U {az,v1,v2} where vi € Py \ Yy, v2 € Py, \ y, at least one of
{v1,v9} is adjacent to y, and u is adjacent to at most one of {ba, by}.
Pseudo-twin of aly is defined symmetrically.

If y = a1 or az, then pseudo-twin of y is defined as corresponding
pseudo-twins above. So assume |A2| =1 and ag # y. Then N(u) N
H = {y,ya,,v1,v2} where v1 € Py, \ 'y, va € Py, \ y, at least one of
{v1,v2} is adjacent to y, and u is adjacent to at most one of {ba, by}.

N(u) N H = {v1,v9} where either v € By and vy € Bg; or |As| = 2,
v1 € Ay and vy € As.

|As| =1, y # ag and N(u)NH = {by, b, v1,v2} where vivy is an edge
of Payy. Furthermore, if y = vy or vg, then yby and ybly are not edges.

|As| =1 and either N(u) N H = By U {aa,d),b1} and asbly is not an
edge, or N(u) N H = By U{ag,a1,b}} and asbs is not an edge.
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84 : |Ag| =1, asbe and axbly, are not edges, and N(u) N H = AU Bs.

Proof: We first prove the following two claims.
Claim 1: If |A2| = 1, then N(u) N H # {y, Y, Ypy, b1} and N(u) N H # {y, Yb,, Yu,» b7 }-

Proof of Claim 1: Assume not. By symmetry, w.l.o.g. assume that N(u) N H =
{y,be,ybg,bl}. If yby (resp. ybh) is an edge, then by definition of a connected diamond
ybly (resp. yby) is not an edge, H \ Py, induces a bug with center by (resp. by) and wu is of
type s2 w.r.t. this bug, contradicting our assumption.

So yby and ybl, are not edges, and hence yp, # by and Yo, # by. So (H \ Pyyp,) U{by,u}
induces a connected diamond H'(A}, Ay, Bi, B2) where A} = {u,y} and Ay = {yb,,ys}-
The two side-2-paths of H’ have fewer nodes in common than the two side-2-paths of H,
contradicting our assumption. This completes the proof of Claim 1.

Claim 2: If |[N(u) N A] > 2 and |N(u) N B| > 2, then u is of type s3 or s4 w.r.t. H.

Proof of Claim 2: Assume that [N(u) N A| > 2 and |N(u) N B| > 2. We first show that
|As| = 1. Assume not. First suppose that N(u) N By = By. Let H’' be the hole induced by
Prayb, UPyp,Uai. Since (H',u) cannot be a proper wheel, [N (u)N(A2Ua})| < 1. By symmetry,
|N(u)N(A2Uaq)| < 1. From these two inequalities, and the assumption that |N(u) N A| > 2,
it follows that N(u) N A = Aj. By symmetry N(u) N B = Bs. In particular, (H',u) is a bug
and hence N(u) N H' = {a), ba, by}. By symmetry, N(u) N (Pyyp, U Payp, Ube) = {a1,a], ba}.
In particular, N(u) N H = A; U By. But then ¥ and u contradict Lemma 5.1. Therefore,
N(u) N By # By. By symmetry we may assume that |[N(u) N Bz| <1 and |N(u) N A < 1.
Since {bg, by, b}, u} and {b, by, b}, u} cannot induce 4-holes, [N (u)NBs| > 1, and by symmetry
|IN(u) M Ay] > 1. Hence |[N(u) N Ba] =1 and |[N(u) N A1 = 1. W.lo.g. N(u) N By = ba.
By symmetry we may assume that u is adjacent to by. Since {b},b1,b],u} cannot induce a
4-hole, N(u) N B = {b1,ba}. Suppose that u is adjacent to a;. Then it is not adjacent to aj.
By Lemma 5.1 applied to ¥ and u, N(u) N = {b1, ba, a1, ah}. But then 39 and u contradict
Lemma 5.1. So u is not adjacent to aj, and hence it is adjacent to a)j. But then ¥’ and u
contradict Lemma 5.1. Therefore |As| = 1.

Next we show that N(u) N By = By. Assume not, i.e. assume that |[N(u) N By| < 1.
Since {ba,b1,b],u} and {b},by,b],u} cannot induce 4-holes, |N(u) N By| > 1, and hence
|IN(u) N Ba] = 1. W.lo.g. N(u)N By = by. By symmetry we may assume w.l.o.g. that u is
adjacent to by. Since {b},b1,b],u} cannot induce a 4-hole, it follows that N(u)NB = {b1,ba}.
Since |N(u) N'A| > 2 and |As| = 1, u is adjacent to a; or ag. But then ¥ and u contradict
Lemma 5.1 (note that by our assumption G does not contain a bug with a center-crosspath,
and so u cannot be of type s1 w.r.t. X). Therefore, N(u) N By = Bs.

Suppose that N(u)NA; = A;. Since Py, p, U Pyy U {b2,u} cannot induce a proper wheel,
N(u) N (Payp, U Parp;) = A1. By Lemma 5.1 applied to ¥ and u, N(u) N % = {b2, ), a1, as}.
Therefore N(u) N H = By U A. If agby is an edge, then ¥ is a bug and u is of type s2 w.r.t.
¥, a contradiction. So agbs is not an edge, and by symmetry neither is asb), and therefore u
is of type s4 w.r.t. H.

Now we may assume that N(u) N A; # Aj, and so w.lo.g. N(u) N A = {aj,a2}. By
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Lemma 5.1 applied to ¥ and u, N(u) NYX = {be, b}, a1,a2}. By Lemma 5.1 applied to ¥ and
u, N(u) N = {ba,b,,b],a2}. Hence N(u) N H = By U {b|,a1,a2}. If asbs is an edge, then
Y is a bug and u is of type s2 w.r.t. X, a contradiction. So agby is not an edge and hence u
is of type s3 w.r.t. H. This completes the proof of Claim 2.

By Claim 2 we may assume that either |[N(u) N A] < 1 or |[N(u) N B| < 1. We may
assume that |N(u) N H| > 2, since otherwise u is of type pl w.r.t. H. Suppose that u is not
strongly adjacent to ¥ nor ¥’. Then u has exactly one neighbor in P,,;, and one in Puy,
By Lemma 5.1 applied to 37 and u, N(u)N¥; = Ay, and hence u is of type Ay w.r.t. H. By
symmetry between ¥ and ¥’ we may now assume that u is strongly adjacent to X. Since G
does not contain a bug with center-crosspath, u cannot be of type s1 w.r.t. ¥ (nor any other
3PC(A,")). So by Lemma 5.1 it suffices to consider the following cases.

Case 1: u is of type t3 w.r.t. 2.
By Lemma 5.1 applied to X1, N(u) N H = {b1,b2,b5} or B and hence u is of type t3 or
B wrt. H.

Case 2: u is of type t2 w.r.t. X.

Suppose N(u) NY = {by,ba} or {by,bs}, wlo.g. say N(u) NX = {b1,ba}. Since there is
no 4-hole, ub] is not an edge. Then by Lemma 5.1 applied to ¥; and u, N(u) N Poy, = 2
and hence u is of type s1 w.r.t. H. Suppose now that N(u) N X = {be,b,}. By Lemma 5.1
applied to X', u is of type Ba, t3 or a pseudo-twin of b} w.r.t. H.

Case 3: u is a pseudo-twin of a node of {by,ba, b5} w.r.t. X.

If |[N(u) N {by,be,b4}| = 2, then let v; and vy be the two adjacent neighbors of u in
Y\ {b1, b2, b5}. Otherwise let v1 = v9 be the neighbor of u in ¥\ {by, be, b5 }. Since |N(u)NB| >
2, by our assumption |N(u) N Al < 1.

First suppose that v1,ve are contained in the bjy-path of ¥. Then N(u) N By = Bs.
If |Ao| = 2, then by Lemma 5.1 applied to X1 and u, N(u) N Pyy = @ and hence u is a
pseudo-twin of b; w.r.t. H. So we may assume that |A2| = 1. Since |[N(u) N A| <1, v; and
v are contained in either P, or in Pp,,. If {vi,v2} C P, p,, then by Lemma 5.1 applied
to X1 and u, N(u)N Py, = @ and hence u is a pseudo-twin of by w.r.t. H. So assume that
{vi,v2} C P,,y. Suppose that vjvy is an edge, i.e. |N(u) N {b1,b2,b5}| = 2. By Lemma 5.1
applied to X1 and u, N(u) N Poy =2. Ity ¢ {v1,v2}, then u is of type s2 w.r.t. H. So
assume w.l.o.g. that y = vo. W.Lo.g. yby is not an edge, and suppose that yb, is an edge.
Let H' be the hole induced by P, 5, U P,,p,. Then (H', b)) is a bug and u is of type s2 w.r.t.
(H',bl). So neither ybe nor ybl, is an edge, and hence u is of type s2 w.r.t. H. We may now
assume that v1 = ve, i.e. |N(u) N {b1,be,by}| = 3. Then ub; is an edge. Note that by our
assumption, u cannot be adjacent to both a} and ag, and hence by Lemma 5.1 applied to
¥ and w, N(u) N Puy, = by. If v; # y, then H; U P,,p, U u induces a connected diamond
H'(A1, As, By, B}) where B} = {b, u}, whose side-2-paths have fewer nodes in common than
the side-2-paths of H (note that the common nodes of side-2-paths of H are the nodes of
Py,y, and the common nodes of side-2-paths of H’ are the nodes of the asvi-subpath of Py, ),
a contradiction. Hence v1 = y. W.l.o.g. yb) is not an edge, and hence u is a pseudo-twin of
by w.rt. H.

We may now assume that vy, ve are contained in the boy-path of ¥ or the bly-path of X.
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By symmetry we may assume w.l.o.g. that v1, vy are contained in the boy-path of ¥. Then
u is adjacent to by and b,. First suppose that |As| = 1. If [N (u) N {b1,be,b5}| = 2, then by
Lemma 5.1 applied to ¥1 and u, N(u) N Py = &, and hence (Payp, \ U,) U Pyryy U{b1, by, u}
contains a 4-wheel with center b,. So |N(u) N {b1,ba, b5} = 3, i.e. v1 = vy and ubs is an
edge. Note that by the argument in the previous paragraph we may assume that v; # y. By
Lemma 5.1 applied to X' and u, N(u) N Poy, = b}, and hence u is a pseudo-twin of by w.r.t.
H.

We may now assume that |As| = 2. Since |N(u) N A| < 1, {v1,v2} C Pap,- If [N(u) N
{b1,be,b5}| = 2, then by Lemma 5.1 applied to ¥; and u, N(u) N Pyy, = @, and hence
(Pasbs \ V) U Py, U{b1, b5, u} contains a 4-wheel with center b5. So [N (u)N{b1,bs, b5} = 3,
i.e. v; = vy and uby is an edge. Since v; € P,,p,, by Lemma 5.1 applied to ¥’ and w,
N(u) N Py, = b, and hence u is a pseudo-twin of by w.r.t. H.

Case 4: u is a pseudo-twin of y w.r.t. 3.

First suppose that all nodes of N(u) N (X \ y) are adjacent to y. If |As| = 2, then by
Lemma 5.1 applied to X1, N(u)N Py, = a} and hence u is a pseudo-twin of a; w.r.t. H. So
assume that |As| = 1. W.lo.g. ybe is not an edge. If as = y, then by Lemma 5.1 applied to
Y1, N(u) N Puy, = a, and hence u is a pseudo-twin of as w.r.t. H. So we may assume that
az # y. By Lemma 5.1 applied to X1, N(u) N Py = @, and hence u is a pseudo-twin of y
w.r.t. H.

Now assume that some node of N(u)N(X\y) is not adjacent to y, and let v be such a node.
Suppose |Az| = 2. If v is a node of P,,y,, then by Lemma 5.1 applied to 2o, N(u)ﬂPallbll =daj.
But then Lemma 5.1 applied to ¥ and u is contradicted. So, by symmetry, we may assume
that v is a node of P,,p,. Then by Lemma 5.1 applied to X1, N(u) N Poy, = ay and hence u
is a pseudo-twin of a1 w.r.t. H.

Now assume |Ag| = 1. If v is a node of P,,3,, then by Lemma 5.1 applied to £1, v = b; and
N(u) NPy = &, contradicting Claim 1. So we may assume w.l.o.g. that v is a node of Py, .
Suppose y = ag. Then u is adjacent to a;. By Lemma 5.1 applied to 3/, N(u) N Pallbll = a}.
Since |N(u) N A| > 2, by our assumption |N(u) N B|] < 1, and so u cannot be adjacent to
both by and b),. Hence u is a pseudo-twin of ag w.r.t. H. So assume that y # ag. By Lemma
5.1 applied to 31, N(u)N Puyy, = 2. Suppose that u is adjacent to both by and bf. Then yb),
is an edge and N(u) N H = {ba, b}, y,ya, } (since by definition of connected diamond it is not
possible that both ybs and yb,, are edges). But then ¥ is a bug, and w is of type s2 w.r.t. it,
a contradiction. So u cannot be adjacent to both by and b}, and hence u is a pseudo-twin of
y w.r.t. H.

Case 5: u is of type d w.r.t. X.

Suppose |Ao| = 2. If N(u) N X = {a1,a2,v,, }, then by Lemma 5.1 applied to ¥; and
u, uay is an edge. But then, since ua) is not an edge, Lemma 5.1 applied to Yo and u
is contradicted. So N(u) N Y # {a1,a2,vq, }. By symmetry N(u) NYX # {a1,ad},v4,}. So
N(u)NY = {a1,as,dh}. Then ua) is an edge, else {u,as,a),a}} induces a 4-hole. By Lemma
5.1 applied to s, u has at most two neighbors in Pory, - So u is of type A w.r.t. H or it is a
pseudo-twin of a} w.r.t. H.

Assume now that |As| = 1. Suppose u is adjacent to both v, and Y, - So the neighbors
of u in X are Y Ybss Ypy,- By Lemma 5.1 applied to Yo, the only node of Pury, that may be
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adjacent to w is bj. Then by Claim 1, ub) is not an edge and hence u is of type d w.r.t. H.
So we may assume that u is not adjacent to one node of {yb2,yb/2}. Suppose that y = ao.
Suppose u is adjacent to a1, y, yp,. By Lemma 5.1 applied to X1, ua) is an edge and no other
node of Pory, is adjacent to u, and hence v is of type Ad w.r.t. H. Similarly, if u is adjacent
to a1, y, Yy, then by Lemma 5.1 applied to Yo, u must be of type Ad w.r.t. H. Assume now
that y # ag. If u is adjacent to y, Ya,, Yp, (resp. y,y@,ybg), then by Lemma 5.1 applied to
Y1 (resp. X2), uis of type d w.r.t H.

Case 6: u is of type p3t w.r.t. 3.

Suppose that N(u) N Y is contained in Py, 4, or |As| = 2 and it is contained in P, or
Py, or |A2| = 1 and it is contained in P,,, or B, or Py y. Then by Lemma 5.1 applied
to X1 or Yo, N(u) N Py y, = &, and hence u is of type p3 w.r.t. H. So we may assume
w.l.o.g. that u is adjacent to both a; and as. Then by Lemma 5.1 applied to >; or 3o,
N(u) N Pyy, = aj, and hence u is a pseudo-twin of a; or az w.r.t. H.

Case 7: u is of type p3b w.r.t. 3.

Let N(u)NY = {v, vy, va} such that v1vs is an edge. Suppose that |As| = 2. If vive = ajas,
then by Lemma 5.1 applied to X1, N(u) NPy, = al, and hence u is a pseudo-twin of ay w.r.t.
H. Similarly, if vjve = ayab, then u is a pseudo-twin of ab w.r.t. H. If {v,v1,ve} C P, p, or
Pasby or Porp, s then by Lemma 5.1 applied to ¥ or X9 (depending on which path of ¥ the
neighbors of u are contained in), N(u) N Fyy = @ and hence u is of type p3 w.r.t. H. So
we may assume w.l.o.g. that v = a; and vyvy is an edge of P,,p, \ a2. By Lemma 5.1 applied
to X1, N(u) N Py, = aj, and hence u is a pseudo-twin of ay w.r.t. H.

Suppose now that |As| = 1. If vjv9 = ajag, then by Lemma 5.1 applied to 31, N(u) N
Py, = aj. Suppose that v is contained in Py, Note that vaz ¢ E(G). Then (H \ az) U{u}
contains a connected diamond H'(Ay, A}, B1, Ba) where A, = {u}. Since vas is not an edge,
the two side-2-paths of H’ have fewer nodes in common than the two side-2-paths of H,
contradicting our assumption. So v must be contained in P, ,, and hence u is a pseudo-twin
of a; w.r.t. H.

So we may assume that vivy # ajas. Suppose v is a node of P, p,. If viv is an edge of
P,.»,, then by Lemma 5.1 applied to X1, N(u)N Pyy, =2 and hence u is of type p3 w.r.t.
H. Assume now that vivy is an edge of F,,,. By Lemma 5.1 applied to ¥;, v = b; and
N(u) N Py, = @. Say vy is the neighbor of u in Py, closer to y. Then (H \ FPy,p,) U {b1, u}
induces a connected diamond H'(A}, A5, By, By) where A| = {v1, u} and A = {vs}. The two
side-2-paths of H' have fewer nodes in common than the two side-2-paths of H, contradicting
our assumption.

We may now assume that v is not in FP,,;,. Suppose that vivs is in Py p,. Sov € Fy,,. By
Lemma 5.1 applied to 31, v = y, yby € E(G) and N(u) N Pyy = @. Since yby € E(G), by
definition of connected diamonds ybf cannot be an edge. Then P, ;, U Pory, U Payy U {u, b4}
induces a 3PC(aja)as, uv1vs) or a 4-wheel with center a;. So v1ve is not an edge of Py, p,,
and hence {v,v,v3} C P for some P € {Pazy,Pyb2,Pyb/2}. Then by Lemma 5.1 applied to
Y1 or X9, N(u) N H = {v,vi,v2}. If P = P,,,, then H Uu contains a connected diamond
H'(A4, As, By, Bs) that contains u and whose side-2-paths have fewer nodes in common than
the side-2-paths of H, a contradiction. So P € {Pyb2,Pyb/2}, and hence u is of type p3 w.r.t.
H.
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Case 8: u is of type p2 w.r.t. X.

Let vivy be the edge of N(u) N Y. Suppose |Ag| = 2. If vjvy is an edge of P,,3,, then by
Lemma 5.1 applied to X1, u is of type p2 or an Hj-crossing w.r.t. H. Suppose vivs is an
edge of P,,p, or Puypy s w.l.o.g. say vivs is an edge of P,,p,. Then by Lemma 5.1 applied to
Y1 and u, b is the only node of Pa’l ¥, that may be adjacent to w. If ub] is not an edge, then u
is of type p2 w.r.t. H. So assume ub] is an edge. If uby is an edge, then u is of type sl w.r.t.
¥, contradicting our assumption. So ubs is not an edge. Hence Hs U {u,b|,a1} induces a
3PC (babhby, v1vou). We may now assume w.l.o.g. that N(u) N X = {a1,a2}. If u does not
have a neighbor in Py ., then w is of type sl w.r.t. H. So assume u does have a neighbor
in Py 4. By Lemma 5.1 applied to w and X, and since u cannot be of type sl w.r.t. Yo,
N(u) N Py, = aj, and hence u is of type t3 w.r.t. H.

Now assume that |Ag| = 1. If v1v9 is an edge of Py,p,, then by Lemma 5.1 applied to X,
u is of type p2 or an Hi-crossing w.r.t. H. Suppose vivy is an edge of Py, or Py, s w.l.o.g.
say v1v2 is an edge of Py,,. Then by Lemma 5.1 applied to ¥’ and since u cannot be of type
sl w.r.t. X/, either N(u) N Py, = @, or y = az and N(u) N Py, = aj. In the first case u is
of type p2 w.r.t. H, and in the second case, by Lemma 5.1 applied to ¥; and u, node u is
of type sl w.r.t. X1, contradicting our assumption. Now assume that y # as and v1v9 is an
edge of Pp,,. By Lemma 5.1 applied to ¥; and v (and since N(u) N ¥ = {vi,v2}), the only
node of H \ {v1,v2} that may be adjacent to u is b}. If u is not adjacent to b}, then w is of
type p2 w.r.t. H. Suppose that u is adjacent to bj. W.lo.g. vy is closer than vy to y on Pg,,.
So (H \ Pyy,) U{b},u} induces a connected diamond H'(A}, A5, B, B2) where A} = {vi,u}
and A} = {vy}. The two side-2-paths of H’ have fewer nodes in common than the two side-
2-paths of H, contradicting our assumption. Finally suppose that N(u) N ¥ = {a1,a2}. By
Lemma 5.1 applied to 31, u is of type a, A or a pseudo-twin of a} w.r.t. H.

Case 9: u is of type crosspath w.r.t. X.

Let N(u) NYX = {v,v1,v9} such that vjvy is an edge. First suppose that |A2| = 2. Note
that v € {ag,al, vy, }. Suppose that v = v,,. Then by Lemma 5.1 applied to 31 (in the case
where vv2 is an edge of P,,p,) or X2 (in the case where vjvy is an edge of Pa’Qb’Q), a1b; is an
edge. But then w is the center-crosspath of bug . So v = as or a}, w.lo.g. say v = as.
Suppose vive is an edge of P, 5,. Then by Lemma 5.1 applied to ¥; and u, either agbs is an
edge and N(u) N Py, = @, or N(u) N Py = aj. In the first case u is a center-crosspath of
bug ¥, a contradiction. So N(u) N Py, = a, and hence ¥y and u contradict Lemma 5.1.
So v1vg is an edge of Py, . Then by Lemma 5.1 applied to Y/, w is an Hy-crossing w.r.t. H.

Now assume that |As| = 1. Suppose that v ¢ {be,ybé}. So w.l.o.g vivy is an edge of Py,
If y = a3, then v = a1 and by Lemma 5.1 applied to ¥, u is a pseudo-twin of as w.r.t. 3,
ie. N(u)N Pyy = aj. Let v be the neighbor of u in Py, that is closer to by, and let P be
the byvi-subpath of Fy,p,. Then PU Py b, U Py U Py, U w induces a connected diamond
H'(Ay, A, By, By), where A, = {as,u}. The side-2-paths of H' have fewer nodes in common
than the side-2-paths of H, contradicting our choice of H. So y # az. Then v = y,, and by
Lemma 5.1 applied to X1, N(u)NH = {v,v1,v2}. But then (H \ yp,) Uu contains a connected
diamond whose two side-2-paths have fewer nodes in common than the side-2-paths of H,
contradicting our assumption.

So w.l.o.g v = yp,. Since there is no bug with a center-crosspath, ybs is not an edge.
Suppose that v1v2 = ajaz. Then by Lemma 5.1 applied to X1, N(u) N Pa/lb’l = a}, and hence
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Nu)NH = {a1,d},az,yp, . Note that yas is not an edge, else {y, as,u, yp, } induces a 4-hole.
So (H \ P,,y) U {y,u} induces a connected diamond H'(Ai, A}, Bi, B2) where Ay = {u}.
Since yas is not an edge, the two side-2-paths of H' have fewer nodes in common that the
two side-2-paths of H, contradicting our assumption. So vivs # ajas.

Suppose that vjvy is an edge of P, p,. Then, by Lemma 5.1 applied to X1, N(u)ﬂPallbll =
and v is adjacent to ba. So yp,bs is an edge. Node y is not adjacent to bf, otherwise
{Y, Yby, b2, b5} induces a 4-hole. But then Pyup, U Py U (Pagp, \ b2) U {u, b5} induces a
3PC(aydaz,uvive) or a 4-wheel with center a;. So vivy is not an edge of P,,p,. Then by
Lemma 5.1 applied to ¥/, N(u) N H = {v,v1,v2}. Note that since neither {u,yp,,y,v1} nor
{u,Yp,,y,v2} can induce a 4-hole, neither v1y nor vey is an edge. If vive is an edge of Py,
then v is an Hy-crossing w.r.t. H. So assume that vivp is an edge of Fg,,. Let v; be the
neighbor of u in F,,, that is closer to az, and let P be the agvi-subpath of F,,,. Then
PU Pyypy U Pyyy U Py U Pyrgy U w induces a connected diamond H'(Ay, A, By, Bs). Since
vy is not an edge, the two side-2-paths of H' have fewer nodes in common than the two
side-2-paths of H, contradicting our assumption. O

The following three remarks follow from Lemma A.10.

Remark A.11 Let H(Ay, A, By, B2) be a short connected diamond of G, and letw € G\ H.
If IN(u) N A| > 2 and |N(u) N B| > 2, then wu is of type s3 or s4 w.r.t. H.

Remark A.12 Let H(A;, Ay, B1, Bs) be a short connected diamond of G. Letv € AUBU{y}
and let u be a pseudo-twin of v w.r.t. H. Then (H \ {v}) U {u} contains a short connected
diamond H' that contains (AU B U {y}) \ {v}) U {u}. We say that H' is obtained by
substituting u into H.

Remark A.13 Let H(A1, As, By, Ba) be a short connected diamond of G. If u is of type p3
w.r.t. H, then H U wu contains a short connected diamond H'(A1, A, B1, By) that contains
u. We say that H' is obtained by substituting u into H.

We first prove a useful lemma about paths that connect H; to Ho, and then show that if
there is a node of type sl, s2, s3 or s4 w.r.t. H, then there is a star cutset.

Lemma A.14 Let G be a 4-hole-free odd-signable graph that does not have a star cutset.
Let H(Ay, As, By, Bs) be a short connected diamond of G. Let P = py,....,pg, k > 1, be a
chordless path in G \ H such that @ # N(p1) " H C Hy, @ # N(px) N H C Ha, and no
intermediate node of P has a neighbor in H. Then P is one of the following types (see Figure
17):

(i) N(p1) N H = by or by, and py is of type By w.r.t. H.

(ii) pi1 is of type p2 w.r.t. H with neighbors in P, p, or Pury,, and py is of type By w.r.t.
H.

(iii) p1 is of type A1 and py is of type p2 w.r.t. H and the following holds. If |A1| = 1, then
az #y and N(px) C Poyy. If [As| =2, then N(pg) C Poyp, o1 Payyy -

(iv) p1 is of type Ay and N(pr) N H = as or dl.
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Figure 13: Nodes adjacent to a connected diamond.
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Figure 16: Nodes adjacent to a connected diamond that lead to star cutsets.

(v) p1 is of type A1 and py is of type d w.r.t. H such that N(px) N H = {y,yb2,yb/2}.

Proof: Assume G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4, 5.5 and 5.6,
G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A, ) with a hat, a
bug with an ear nor a 3PC(A,-) with a type s2 node.

By definition of P and Lemma A.10, the following hold.

(1) py is of type pl, p2, p3, A;, or Hi-crossing w.r.t. H.

(2) pi is of type pl, p2, p3, d, Ba, s2 or Hy-crossing w.r.t. H, or y ¢ {aj,as} and py is a
pseudo-twin of y w.r.t. H.

By (1) we consider the following cases.

Case 1: p; is of type pl w.r.t. H.

W.lo.g. p; is adjacent to a node v of P,,,. Let Ry (resp. R2) be the subpath of P, s,
with one endnode a; (resp. b;) and the other v.

Suppose that py is of type pl w.r.t. H. W.l.o.g. pj is adjacent to a node of F,,;,. Then
either P is a hat of ¥; (in the case where both pja; and pras are edges), or P is a hat of ¥
(in the case where both p1b; and piby are edges), or P U P, p, U P,,p, induces a 3PC(-, ).

Suppose that py is of type p3 w.r.t. H, and let H'(A;, A, By, Bs) be the short connected
diamond obtained by substituting pj into H. If k¥ = 2, then H’ and p; contradict Lemma
A.10. So k > 2, and hence p;_1 is of type pl w.r.t. H' and a contradiction is obtained in the
same way as in the previous paragraph.

Suppose that py is of type p2 w.r.t. H. W.lo.g. N(px) N H C P,,p,. Let H' be the hole
induced by Pg,p, U Pyp,- Then P and Pa’l p, are crossing appendices of H’, and hence by

2b2
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Lemma 3.2, v = by. If |Ay| = 2, then Hy U P U a) induces a 3PC(A,A) or a 4-wheel with
center by. So [Az| = 1. If N(py) N H C Py, then By U By, U P induces a 3PC(A, A) or
a 4-wheel with center by. So N(py) N H C P,,,. But then (H \ (P, \ b1)) U P induces a
connected diamond whose side-2-paths have fewer nodes in common than the side-2-paths of
H, a contradiction.

Suppose that py is of type d w.r.t. H. So |As] = 1. Suppose N(px) N H = {y,be,ybIQ}.
Let H' be the hole induced by P, U Py,p,. Then P and Py, are crossing appendices of
H’, and hence by Lemma 3.2, v = b;. Suppose one of {ybe,ybs} is an edge, w.l.o.g. say
yby € E(G). Then P U Pyyp, U Py U {b1,b5} induces a proper wheel with center by. So
both yby and ybl, are not edges. But then P U Ha U Porp U b1 induces a connected diamond
H'(A}, Ay, B1, B2), where A} = {py,y}, and Aj = {yp,, Yy, }, and the two side-2-paths of H’
have fewer nodes in common than the two side-2-paths of H, contradicting our assumption.
So w.lo.g. N(pr) N H ={y,Yay, Y, }- But then P U P, 5, U (Pyyp, \ y) induces a 3PC(py, v).

Suppose that py is of type s2 w.r.t. H or y ¢ {aj,as} and py is pseudo-twin of y w.r.t.
H. Then p; has two nonadjacent neighbors in F,,;,. But then P, ;, U P,,, U P contains a
3PC(pk, 1)).

Suppose that py is an Ha-crossing w.r.t. H. First assume that |As| = 2. W.lo.g. py is
adjacent to as. Let v’ be the neighbor of p; in Py, that is closer to ah, and let R be the
v'ag-subpath of P . Then RU P U Ry Uas induces a 3PC(pg,a1). So [Az| = 1. Let H'
be the hole induced by Py, U Py . 1If either v # ay or y # ag, then (H',px) is a bug and
Ry U (P \ px) induces its center-crosspath or an ear, contradiction our assumption. So v = a;
and y = az. W.lo.g. prys, is an edge, and hence Py, U P,,p, U P induces a 3PC(v, yp,)-

So pr must be of type By w.r.t. H. If v # by, then X, p; and pq, ..., pr—1 contradict
Lemma 7.2. So v = by, and hence (i) holds.

Case 2: p; is an Hp-crossing w.r.t. H.

W.lo.g. p1 is adjacent to b]. Let R be the shortest subpath of P, ;, with one endnode
by and the other adjacent to p;. If py is adjacent to be, then P U R U {by,b}} induces a
3PC(p1,b2). If py is adjacent to b, then P U R U {b},b]} induces a 3PC(p1,b,). So neither
prba nor pibl is an edge, and hence py has a neighbor in Hy \ {b2,b5}. By Lemma 7.1 applied
to X, p1 and P\ p1, |As] = 1 and the following holds. Node py is either of type p2 w.r.t.
H with neighbors contained in P,,, or of type d adjacent to {y,be,ybg}. But then in both
cases Py p, U Payp, U P induces a 3PC(A, A).

Case 3: p; is of type A} w.r.t. H.

Note that if |As| = 2, then pj cannot be adjacent to both as and df (else {p, az, ab, a}}
induces a 4-hole). Supose (iv) does not hold. Then pj has a neighbor in Hj \ {ag,a)}. By
symmetry, w.l.o.g. N(pg) N (Pasp, \ a2) # @. By Lemma 7.2 applied to X1, p; and P\ p1, px
is of type p2 w.r.t. ¥; with neighbors in P,,;,. So by (2), p is of type p2 or d w.r.t. H or
|A2| = 1 and pg, is an Ha-crossing w.r.t. H. If py is an Ho-crossing w.r.t. H, then X9, p; and
P\ p; contradict Lemma 7.2. Suppose that py is of type d w.r.t. H. By Lemma 7.2 applied
to Xo, p1 and P\ p1, pg is of type p2 w.r.t. 3o. Hence N(px) N H = {y,be,yb/Q} and so (v)
holds. Finally suppose that py is of type p2 w.r.t. H. If |[As| = 2, then (iii) holds. So assume
that |Aa| = 1. Suppose that y = as. If py is not adjacent to y, then (H \ yp,) U P contains a
connected diamond H'(A;, A), By, Bs), where A}, = {a2,p1}, and the side-2-paths of H' have
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fewer nodes is common than the side-2-paths of H, contradicting our assumption. So py is
adjacent to y and hence Py p, U Payp, U P induces a bug with center az, and Py \ a2 is its
center-crosspath. So y # as. Suppose that N(py) N H C Fy,,. If p; is adjacent to y, then
Y9 and P contradict Lemma 7.2. So pi is not adjacent to y. Then (H \ yp,) U P contains
a connected diamond H'(A;, A), By, By), where A} = {a2,p1}, and the side-2-paths of H’
have fewer nodes in common than the side-2-paths of H, contradicting our assumption. So
N(px) N H C P,,, and hence (iii) holds.

Case 4: p; is of type p2 w.r.t. H.

W.lo.g N(pi)NHCP,4,.

Suppose that py is of type pl, p2 or p3 w.r.t. H. Then w.lo.g. N(py) N H C Pu,.
Let H' be the hole induced by P, U Pap,.- Note that Py, is an appendix of H " with
node-attachment by and edge-attachment ajas. By Lemma 3.1 applied to H’, Pary, and P,
one of the following must hold: py is adjacent to by or N(pp) NH = ag or N(pi) NH = vy,. If
N(px)NH = ag, then X1, py and P\ py contradict Lemma 7.1. Suppose that N (px) NV H = vp,.
Let R be a shortest subpath of P,,;, whose one endnode is b; and the other is a neighbor of
p1in Payp,. If [As| = 2, or [As] = 1 and yby is not an edge, then Pyyp, U Py UP U RUb,
induces a 4-wheel with center by. So [As] = 1 and yb), is an edge. Then yby is not an edge,
ie. vy, # y, and since {ba, by, y,vp, } cannot induce a 4-hole, v,y is not an edge. But then
Poyby U(Payp, \ b1) UP U, contains a 3PC(vp,,y). Therefore py must be adjacent to be. If py
is of type pl w.r.t. H, then X, py and P \ pi contradict Lemma 7.1. If py is of type p2 w.r.t.
H, then H' U P induces a 3PC(A, A). So py is of type p3 w.r.t. H. Let H'(A1, Ay, By, B)
be the short connected diamond obtained by substituing p into H. By Lemma A.10 applied
to H' and p1, k > 2. But now P\ pg is a path such that py is of type p2 w.r.t. H', pg_1 is
of type pl w.r.t. H’, and we have already shown that this cannot happen. So pj cannot be
of type pl, p2 nor p3 w.r.t. H.

Suppose that pg is of type d w.r.t. H. W.lLo.g. pg is adjacent to Ynly» and hence P U
P,p, U Pagby induces a 3PC(A,A). So pi cannot be of type d w.r.t. H.

Suppose that y ¢ {a1,a2} and py is a pseudo-twin of y w.r.t. H. Then w.l.o.g. pi is not
adjacent to by. Let H' be the hole contained in Pp,p, U (Payb, \ y) Upk. Then H', Py and
P\ pi contradict Lemma 3.2. So pj cannot be a pseudo-twin of y w.r.t. H.

If pg is of type s2 w.r.t. H, then (H',px) is a bug, where H' is the hole induced by
P, p, U Payp,, and P\ py is its center-crosspath, a contradiction. So py cannot be of type s2
w.r.t. H.

Suppose that py is an Ho-crossing w.r.t. H. If |Ag| = 2, then w.l.o.g. py is adjacent to as,
and hence 31, py and P \ py contradict Lemma 7.1. So |A3] = 1. Let H' be the hole induced
by Py, U Py, Then (H',pg) is a bug, and the path from pg_; to by in the graph induced
by (P \ pr) U (Pap, \ 1) is its center-crosspath or ear, a contradiction. So pj cannot be an
Hj-crossing w.r.t. H. Therefore by (2), py is of type By w.r.t. H, and hence (ii) holds.

Case 5: p; is of type p3 w.r.t. H .

Let H'(Ay, A, By, B2) be the short connected diamond obtained by substituting p; into
H. If k > 2, then po is of type pl w.r.t. H' and it is not adjacent to by nor b}, and we obtain
a contradiction as in Case 1. So k = 2. But then by (2), p2 and H' contradict Lemma A.10.
O
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Figure 17: Paths from Lemma A.14.

Lemma A.15 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(A1, Ag, By, By) be a short connected diamond of G. Then no node of G\ H is of type s1
w.r.t. H.

Proof: Assume G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4, 5.5 and 5.6
G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A,-) with a hat, a
bug with an ear, nor a 3PC(A,-) with a type s2 node.

Assume that the lemma does not hold. By symmetry we may assume that there is a node
u that is of type s1 w.r.t. H, adjacent to b,. Then the second neighbor of u in H is either
by or b}. Let S = N[by] \ vp,. Since S is not a star cutset, there exists a direct connection
P=pi,...pr in G\ S from u to H\ S. We may assume w.l.o.g. that H, v and P are chosen
so that | P| is minimized. Note that py has a neighbor in H \ S and the only nodes of H that
may have a neighbor in P\ py are by, b, and b].

So if a node of P\ py has a neighbor in H, then it is either not strongly adjacent to H or
by Lemma A.10 it is of type sl w.r.t. H adjacent to b,. In fact, by the choice of H, u and
P, no node of P\ pj can be of type s1 w.r.t. H. So nodes of P\ p; are not strongly adjacent
to H.

We may assume w.l.o.g. that N(u) N H = {b},b}}.

Claim 1: pg is of type p1, p2, Ay, A, a, s1 (with neighbors in A), t3 (with neighbors in A),
d, Ad, Hi-crossing or Hy-crossing w.r.t. H.

Proof of Claim 1: Since py has a neighbor in H \ S, it cannot be of type sl w.r.t. H with
neighbors in B. Since py is not adjacent to bs, node pp cannot be of type B, B2, t3 (with
neighbors in B), s2, s3 nor s4 w.r.t. H, nor a pseudo-twin of a node of B w.r.t. H.

Suppose that pg is of type p3 w.r.t. H, and let H' be the short connected diamond
obtained by substituting p;, into H. By Lemma A.10 applied to H' and u, & > 1, and hence
H', w and P\ py contradict our choice of H, u and P. So py is not of type p3 w.r.t. H.

Suppose that py is a pseudo-twin of a node of AUy w.r.t. H, and let H' be the short
connected diamond obtained by substituting py into H. By Lemma A.10 applied to H' and
u, k > 1, and hence H', v and P \ p contradict our choice of H, u and P. So pj is not
a pseudo-twin of a node of AUy w.r.t. H. Now by Lemma A.10, the proof of Claim 1 is

69



complete.

We now consider the following two cases.

Case 1: A node of P\ p; has a neighbor in H.

Recall that for i < k, N(p;) N H C {b1,b},b5} and |[N(p;) " H| < 1. Let p; (resp. p;) be
a node of P \ py with lowest (resp. highest) index that has a neighbor in H. Node p; is not
adjacent to by, since otherwise u, p1, ..., p; is a hat of X. So p; is adjacent to b} or b}. If there
are two distinct nodes of {by, b}, ]} that have a neighbor in P \ pg, then a subpath of P\ py
is a hat of ¥ or X'. So either b or b is the only node of H that has a neighbor in P\ py.

Case 1.1: b is the only node of H that has a neighbor in P\ py.

By definition of S and Lemma A.14 applied to H and pj,...,pg, node p, must have a
neighbor in Hy. In particular, p; cannot be of type d nor an Hs-crossing w.r.t. H.

Suppose that py is an Hp-crossing w.r.t. H. If py is adjacent to b} then (P, \ a1) U
P U {u,b),b,} contains a proper wheel with center b}. So pj is adjacent to b;. But then
(P, \ @y) U {b, b1,pj, ..., pi.} contains a 3PC (b}, px). So py is not an Hi-crossing w.r.t. H.

If px is of type A or Ay w.r.t. H, then ¥ u and P contradict Lemma 7.1.

If py is of type a w.r.t. H, then by Lemma 7.1 applied to X, u and P, N(p)NH = {d}, a2},
y = ap and ybf is an edge. But then X1, pi and pj, ..., pr—1 contradict Lemma 7.2.

If py, is of type s1 w.r.t. H, then X, b} and pj, ..., px contradict Lemma, 7.2.

Suppose that py is of type t3 wr.t. H. If N(py) N H = {a1,d},ads} then ¥/ p; and
Pj+1, -, Dk contradict Lemma 7.1. So N(py) N H = {ai,ad},a2}, and hence ¥,u and P
contradict Lemma 7.1. Therefore py is not of type t3 w.r.t. H.

If py, is of type Ad w.r.t. H, then ¥, p; and pj1, ..., pr contradict Lemma 7.1.

So by Claim 1, pi is of type pl or p2 w.r.t. H, and since p, must have a neighbor in
Hy, N(px) " H C Hy. If N(px) " H C P,p,, then ¥,u and P contradict Lemma 7.1. So
N(pk) VH C Py If [Ag| = 2, then Puyp, U Pyryy U P U{u, by} contains a proper wheel with
center bj. So [As| = 1. Let R be the chordless path from p; to @} in P U (FPyy, \ b}). Then
>, u and R contradict Lemma 7.1.

Case 1.2: b}, is the only node of H that has a neighbor in P\ py.

By Lemma A.14 applied to H and pj,...,pi, node p, must have a neighbor in Hy. In
particular, p; is not an Hi-crossing w.r.t. H.

If p is of type t3, A1, A, sl (adjacent to a;) or a (adjacent to a1) w.r.t. H, then
Po.p, UPU{u,bo, b, b} induces a proper wheel with center b},. If py is adjacent to a} and it
is of type a or sl w.r.t. H, then Py p, U Py U {5, pj, ..., pi} induces a 3PC(by, a}). So py is
not of type t3, Ay, A, sl nor a w.r.t. H.

Suppose that py is of type Ad w.r.t. H. If p; is adjacent to Y, and Y, # by, then X, p; and
Pj+1; -, Pk contradict Lemma 7.1. If py, is adjacent to yy, and yy, = b, then Py UPU{by, u}
induces a proper wheel with center b,. So py is adjacent to yp,. Note that by definition of
S, pi is not adjacent to be. But then P, ., U P U {u,bs,b],bs} contains a proper wheel with
center b). So pi is not of type Ad w.r.t. H.

If py is of type d w.r.t. H, then by Lemma 7.1 applied to X,p; and pj41,...,px, either
N(pr) N H = {Y,Yas, Ys, } O pi is adjacent to b5. In the first case P U (Pyyy \ y) U {u, b, b5}
induces a proper wheel with center b5. So py, is adjacent to b5, and hence PU P,, U{u, b}, b2}
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induces a proper wheel with center b,. Similarly, if py is an Ha-crossing w.r.t. H, then either
PU(Pyyy \y) U{u, by, b5} (if [A2| = 1) or PUPy,p, U{u, b, b5} (if [Aa| = 2) contains a proper
wheel with center b),.

So by Claim 1, py is of type pl or p2 w.r.t. H, and since py must have a neighbor in Ho,
N(pk) NH C H,.

By Lemma 7.1 applied to 3, p; and pji1, ..., pk, if |A2| = 2, then N(py) N H C Py, and
if [A2| = 1, then N(py) N H C Py, If [As] = 2, then Pp,p, U Py U P U{b], b2, u} contains a
proper wheel with center b5, and if |As| = 1, then Py,, U Py, UPU {u, )} contains a proper
wheel with center b,.

Case 2: No node of P\ p has a neighbor in H.

Suppose pi is an Hi-crossing w.r.t. H. If p; is adjacent to by, then P is hat of 3. So pi
is adjacent to . But then X, u and P contradict Lemma 7.1. So pj is not an Hj-crossing
w.r.t. H.

If py is of type Ay, t3, A, or Ad w.r.t. H, then P, UP U{u,bs,b|,b,} induces a proper
wheel with center b}, (recall that by definition of S, pj is not adjacent to bs).

If p;, is of type a w.r.t. H, then ¥’, w and P contradict Lemma 7.2. So py is not of type
aw.rt. H.

Suppose that py, is of type s1 w.r.t H. If py is adjacent to a1, then P, UPU{u, by, b, b}
induces a 4-wheel with center b},. So py is adjacent to . By Lemma 7.1 applied to X, u and
P, N(px) N H = {a),d}}. But then ¥’ u and P contradict Lemma 7.2. So pi is not of type
sl w.r.t. H.

Suppose that py, is of type d w.r.t. H. By Lemma 7.2 applied to ¥/, u and P, N(px)NH =
{y,y@,ybé} and Y, # b,. But then X, u and P contradict Lemma 7.1. So py is not of type
d wrt. H.

If py is an Ho-crossing w.r.t. H, then ¥',u and P contradict Lemma 7.2.

So by Claim 1, py is of type pl or p2 w.r.t. H. If N(px) " H C P,p,, then ¥, u and P
contradict Lemma 7.1. If N(py)NH C Py, then 3, uw and R contradict Lemma 7.1, where R
is the chordless path from py to aj in PU(Fyry \b}). So N(pg)NH C Ha. If [As| = 2, then by
Lemma 7.1 applied to ¥, u and P, N(py) N H C Py, , and hence Pyyp, U Py UPU{u, by, b}
contains a proper wheel with center b,. So |A3| = 1. By Lemma 7.1 applied to ¥,u and P,
N(px) N H C Py,,. But then ¥', v and P contradict Lemma 7.2. O

Lemma A.16 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(A1, Ag, By, By) be a short connected diamond of G. Then no node of G\ H is of type s2
w.r.t. H.

Proof: Assume that G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4, 5.5 and
5.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A,-) with a
hat, a bug with an ear nor a 3PC(A,-) with a type s2 node.

Assume that G has a node u of type s2 w.r.t. H. Let v; and vy be the neighbors of u
in P,,,, so that v; is closer to as on Py,,. Let P, (resp. P,y ) be the voy-subpath (resp.
agvi-subpath) of P,,,. We choose H and such a node u so that the length of P,,, is shortest
possible. Note that since u is of type s2 w.r.t. H, |As] =1 and if y = vq, then ybe and yb)
are not edges.
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Let S = N[u] \ v1, and let P = py,...,pr be a direct connection from Hy U P,,,, to Ha '\
(Payu, U{va, b2, b4}) in G\ 'S. So py has a neighbor in H1UP,,,,, pr in Ha\ (Payy, U{v2, b2, 05}),
and the only nodes of H that may have a neighbor in P\ {p1,p} are va, by and b},. Subject
to the previous choice of H and u, we choose H, u and P so that |P| is minimized.

Claim 1: Node py is of type pl, p2, B, A, a, t3 (with neighbors in B), s2 (with neighbors
contained in By U (Pyyy, \ v1)), 88 or s4 w.r.t. H. Node py is of type pl, p2, d or an Hs-
crossing w.r.t. H. Furthermore if py is of type d w.r.t. H, then py is not adjacent to vy. In
particular, N(p1) N H = {vi,v2} or N(p1) N H C Hy U P,,,, UBa, N(px) N H C Hy \ Py,
and k > 1.

Proof of Claim 1: Since |A3| = 1, no node of G is of type t3 (with neighbors in A) w.r.t. H.
Since y # as, no node is of type Ad w.r.t. H. By Lemma A.15 no node is of type sl w.r.t.
H.

Suppose that p; is a pseudo-twin of a node of By, and let H' be the short connected
diamond obtained by substituting p; into H. Then H’',u and P\ p; contradict our choice of
H, v and P. So no node of P is a pseudo-twin of a node of By w.r.t. H. By an analogous
argument no node of P is a pseudo-twin of a node of A7 w.r.t. H.

Suppose that p; is a pseudo-twin of a node of By w.r.t. H, and let H' be the short
connected diamond obtained by substituting p; into H. Recall that if v = y, then yby and
ybl, are not edges, and hence u cannot be of type d w.r.t. H'. So H' and u contradict Lemma
A.10. So no node of P is a pseudo-twin of a node of By w.r.t. H.

Suppose that p;, i € {1,k}, is of type p3 w.r.t. H, and let H' be the short connected
diamond obtained by substituting p; into H. If N(p;) " H C Hy U P,,,,, then i = 1 and
hence H', u and P \ p; contradict our choice of H, u and P. A contradiction is obtained by
analogous argument if N(p;) N H C Py, U Py, U Py,y. So N(p;) N H C Py and p; has a
neighbor in both P,,,, and P,,,. Hence N(p;) N H induces a path of length 2, i.e. p; is a twin
w.r.t. H of a node v € F,,,. Since p; has a neighbor in both P,,,, and P,,,, v € {vi,v2},
and hence H' and u contradict Lemma A.10 (recall that by definition of S, p; is not adjacent
to u). Therefore no node of P is of type p3 w.r.t. H.

Suppose that p; is a pseudo-twin of as w.r.t. H, and let H' be the short connected
diamond obtained by substituting p; into H. Note that since as # y, N(p1) N H = AU vg,.
If v1 # ag, then H', uw and P\ p; contradict our choice of H, u and P. So v; = as, and hence
H' and u contradict Lemma A.10. So no node of P is a pseudo-twin of as w.r.t. H.

Suppose that py is a pseudo-twin of y w.r.t. H. Note that pj is adjacent to y,,. Let H’
be the short connected diamond obtained by substituting py into H. If v; # yg,, then k > 1
and hence H', u and P \ py contradict our choice of H, u and P. So v; = ¥,,, and hence H'
and u contradict Lemma A.10. So no node of P is a pseudo-twin of y w.r.t. H.

Suppose that p; is of type Ay or Hj-crossing w.r.t. H. Let p; be the node of P\ p; with
lowest index adjacent to a node of Hs. Note that N(p;) N H C Hy and N(p;) " H C H,. By
Lemma A.14 applied to H and pq, ..., p;, node p; is of type A; w.r.t. H and p; is either of type
p2 w.r.t. H and N(p;) N H C P,,y, or of type d w.r.t. H such that N(p;)) N H = {y,be,ybIQ}.
In fact, since i # 1, i = k and hence N(pg) N H C Puyy U {Yby, ypy, }- In particular, no node of
H has a neighbor in P\ {p1,pr}. Let H' be the hole induced by P, U Py,p,. Note that u
and P are appendices of H' that contradict Lemma 3.1. So no node of P is of type A; nor
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Hi-crossing w.r.t. H.

So by Lemma A.10, nodes of P are of type pl, p2, A, B, Bs, a, d, t3 (with neighbors
in B), s2, s3, s4 or Ho-crossing w.r.t. H. By definition of P, p; and p; are not of type
By w.r.t. H. Suppose that a node p; of P is of type s2 w.r.t. H. Then by the choice of
u, N(p;) N Payy € Payoy Uwva. Since {u,p;, b, v1} and {u,p;, b2, v2} cannot induce 4-holes,
N(pi) N Payy € Paye, \ v1. In particular, i = 1 and k > 1. Suppose that p; is of type d w.r.t.
H. Then i = k. If p is adjacent to vy, then vy = y and w.l.o.g. N(pr) " H = {Y, Yay, b, }
and hence Py, U {u,ya,,pr} induces a 4-wheel with center y. So py is not adjacent to vy,

and hence k£ > 1. This completes the proof of Claim 1.

Claim 2: Node vo does not have a neighbor in P\ {p1,pr}. In particular, fori=2,...k—1,
N(pl) NHC B,.

Proof of Claim 2: Suppose that vy has neighbor in P\ {pi1,pr}. We first show that no node
of By has a neighbor in P\ {p1,pr}. Assume it does. Then there is a minimal subpath P’
of P\ {p1,px} such that one endnode of P’ is adjacent to vo and the other to a node of Bs.
W.l.o.g. by is adjacent to an endnode of P’. By minimality of P’, by, P/, vy is a chordless
path, and hence Py,, U P,,, U P’ Uu induces a 3PC/(by, v2) (recall that if y = vy, then ybs is
not an edge). So no node of By has a neighbor in P\ {p1, px}-

Let p; be the node of P\ {p1,px} with lowest index adjacent to ve. If N(p1) N H C Hj,
then H and py, ..., p; contradict Lemma A.14. So p; has a neighbor in P,,,,. Let H' be the
hole induced by Pp,p, U Pyyp,- Then (H',u) is a bug. If N(p1) N H = vy, then py,...,p; is a
hat of (H',u). So N(p1) N H # v;.

Suppose that N(p1) N H = {vy,v2}. By Claim 1 and definition of P, w.l.o.g. pj has a
neighbor in (Py,y U Pyyy) \ v2. Let P’ be the chordless path from py to by in ((Pyyy U Poyy) \
v2)Upyg. Note that by Claim 1, py is not adjacent to v, and hence P'UPU{u, vy, v2} induces
a proper wheel with center ve. So N(p1) N H # {v1,v2}.

Therefore p; has a neighbor in Hy U (Pa,, \ v1). W.lo.g. p; has a neighbor in
Py, U (Payw, \ v1) and if py is of type t3 w.r.t. H, then it is adjacent to by. Let H' be
the hole induced by Py p, U Payp,. Then (H',u) is a bug, and by Claim 1, (H',u), p; and
P1,---, Pi—1 contradict Lemma 7.1. This completes the proof of Claim 2.

We now consider the following cases.

Case 1: A node of H has a neighbor in P\ {p1,pi}.
Let p; be such a neighbor with highest index. By Claim 2, N(p;) " H C Bs. W.l.o.g. it
suffices to consider the following two cases.

Case 1.1: p; is of type By w.r.t. H.
Note that by definition of P, py has a neighbor in X\ {bs, b}, b1 }. By Claim 1 and Lemma
7.2 applied to 3, p; and p;y1, ..., pr one of the following holds:

(a) px is of type d wrt. H , N(pk) N H = {y, Yby, Yoy, }» Y, 7 b2 and yy, # b5,

(b) w.lo.g. yby is an edge and N(py) N H = vy, or
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(c) pi is of type p2 w.r.t. H and N(py) N H C P,,,.

If (a) or (c) holds, then (H \ Py, ) U{pi, ..., px} induces a connected diamond whose side-
2-paths have fewer nodes in common than the side-2-paths of H, contradicting our choice of
H. So (b) must hold, and hence yb), and yu are not edges. Let P’ be a chordless path from
p1 to y in HyU Py, Upy, and let H' be the hole induced by P'U P U (Py, \ by). Since H' Uby
cannot induce a 3PC (p;, vy), (H',bl) is a wheel. Since Uy, pi is not an edge, (H',bl) cannot
be a twin wheel, and hence it is a bug. If H’ contains both v; and wvo, then u is a center-
crosspath of (H',b,). So H' does not contain both v; and vy. By Claim 1 and definition of P
it follows that N(p1) N H = {v1,v2}. But then Py U P,y is a center-crosspath of (H', b).

Case 1.2: N(p;) N H = 1,.
As before, py, has a neighbor in X\ {be, b}, b1}. By Claim 1 and Lemma 7.1 applied to 3,
p; and P41, ..., pr. one of the following holds:

(a) N(pk) NVH = vy,
(

)
b) pg is of type p2 w.r.t. H and N(px) N H C Py,
(c) p is of type d w.r.t. H and either N(px) N H = {y, Yb,, Ya, } OF p is adjacent to b5, or
)

(d) pi is an Ho-crossing w.r.t. H and N(py) N H = {b5, vy, , yp, }-

Let P’ be a chordless path from p; to y in Hy U Py,, Upi. Suppose that (a) holds. Let H’
be the hole induced by P'UPU(Py, \by). Since H'Uby cannot induce a 3PC (vy,, p;), (H', b)
is a wheel, and hence it must be a bug. If H’ contains both v; and vy, then u is a center-
crosspath of (H',b}). So H' does not contain both v; and ve. By Claim 1 and definition of P
it follows that N(p1) N H = {v1,v2}. But then Py U Py,y, is a center-crosspath of (H', b).

Suppose that (b) holds. If py is not adjacent to b}, then (H \ vy, ) U {pi,..., P} contains a
short connected diamond H'(A;, Ay, By, B2) and H',u and py, ..., p;—1 contradict our choice
of H',u and P. So py, is adjacent to b5. Let H' be the hole induced by P'U P U (Py, \ by).
Since (H', b)) cannot be a proper wheel, N(b}) N H' = {pi: prs vy, b In particular, bl is not
adjacent to p1, and hence by Claim 1, by is not adjacent to p;. Also H' does not contain by
nor b}. If by has a neighbor in P\ {p1,p}, then a subpath of P\ {p1, px} is a hat of X. So by
has no neighbor in P. Since by and b}, are not adjacent to p1, by Claim 1, p; is of type pl, p2,
A or aw.r.t. H. Since H' does not contain by nor by, N(p;) N H # by nor b}. In particular p;
has a neighbor in w.l.o.g. ¥\ {ba,b},b1}. But then X, p; and p1,...,p;—1 contradict Lemma
7.1.

Suppose that (c) holds. First assume that N(px) N H = {y, Yby, Ya, }- Then (H \ (Pyyy \
b4)) U{pi,...,pr} induces a short connected diamond H'(A1, Ay, By, B2). By Claim 1, u is of
type s2 w.r.t. H', and hence H', v and py, ..., p;_1 contradict our choice of H, u and P. So py,
must be adjacent to b, so yb), is an edge. Suppose that N(px) N H = {y, by, yp,}. Let H' be
the hole induced by P’ U P. Since {y,pg,pi} C N(by) N H', (H',b}) is a twin wheel or a bug,
ie. N(by)NH' = {y,pk,pi}. In particular, b), is not adjacent to p1, and hence by Claim 1, by
is not adjacent to py. Also H' does not contain by nor b}. If by has a neighbor in P\ {p1,pr},
then a subpath of P\ {p1,px} is a hat of ¥. So by has no neighbor in P. Since by and b, are
not adjacent to p1, by Claim 1, p; is of type p1, p2, A or a w.r.t. H. Since H' does not contain

74



by nor by, N(p1) N H # by nor b}. In particular, p; has a neighbor in w.l.o.g. X\ {ba, b}, b1}.
But then X, p; and py, ..., pi—1 contradicts Lemma 7.1. Therefore N(px) N H = {y, b}, Ya, }-
Since ybl, is an edge, yby is not. Suppose that N(p;) N H is not contained in {vy,v2}. Then
by Claim 1, p; is not adjacent to ve and p; has a neighbor in Hy U (P, \ v1). Let P” be
a chordless path from p; to by in Hy U (Paye, \ v1) U {p1,...,pi, b2}, and let H” be the hole
induced by P"U (P, \y)U{u,pit1,...,pr}. Note that b is adjacent to be, u,p; and py, and
hence (H", b)) is a proper wheel, a contradiction. Therefore N(p1) N H C {v1,v3}, and hence
p1 is adjacent to vi. But then Pyrpy U Payo, U {u,p1,...,pi,by} contains a 3PC (b, v1).

So (d) must hold. Then yp, # bz and vy, # y, and hence P'U P U (Py, \ b5) U yp, induces
a 3PC(pk, y)-

Case 2: No node of H has a neighbor in P\ {p1,px}.
By Claim 1 it suffices to consider the following cases.

Case 2.1: p; is of type pl or p2 w.r.t. H.

By Claim 1, N(px) " H C Ho. If N(p1) " H C Hy, then H and P contradict Lemma
A.14. So N(p1) N H C Py, Uve.

First suppose that p; is not strongly adjacent to H, and let v be its neighbor in H. By
definition of P, v € P,,,,. Note that by Claim 1, pj is not adjacent to v;. W.Lo.g. p; has a
neighbor in Py,,U(P,,,\v2). Let P’ be the chordless path from py, to by in PyyyU(Pyyy \v2)Upg.
Then P’ U P U P,,p, U Pa,ey, Uwn induces a 3PC/(be,v). Therefore p; is of type p2 w.r.t. H.

Let H' (resp. H") be the hole induced by Pyp, U Pyp, (vesp. Py U Pyy). If py is
of type p2, d or Hy-crossing w.r.t. H, then either H' U P or H” U P induces a 3PC(A, A)
or a 4-wheel with center vy. So by Claim 1, p is not strongly adjacent to H. Let v be the
neighbor of py in H. W.lo.g. v € (Pyy U Py,y) \ {b2,v2}. Recall that if y = vy then yby
and ybl, are not edges, and hence (H',u) is a bug. If N(p1) N H = {vy, v}, then bug (H', u),
p1 and P\ py contradict Lemma 7.2. So N(p1) N H C P,,,,. By Lemma 3.1 applied to
H', v and P, v = v,. By Lemma 3.1 applied to H”, u and P U (P, \ b2), yb5 is an edge.
Hence v, # y and since {ba, b}, y, Ub’Q} cannot induce a 4-hole, v,y is not an edge. But then
(Pasby U Paypyy U P) \ az contains a 3PC (vp,, y).

Case 2.2: p; is of type B or t3 w.r.t. H.

W.lo.g. p; is adjacent to by. By definition of P, py has a neighbor in 3\ {by, b}, b1}, and
by Claim 1, py is of type pl, p2, d or crosspath (in the case where pj, is an Ha-crossing w.r.t.
H) w.r.t. 3. By Lemma 7.3 applied to X, p; and P\ p1, it follows that py is not strongly
adjacent to Y, and hence it is not strongly adjacent to H. Let v be the neighbor of p; in H.

Suppose that v € Py, \ b5. If bay is not an edge, then P,y U P,y U (P, \ by) U P Uu
contains a 3PC(be,y). So byy is an edge and hence vg # y. Let H' be the hole contained
in Poypy U (P, \ 05) U P that contains FPyyp, U P. Then (H',b2) is a bug and u is its
center-crosspath. So v ¢ Py, \ bj.

Suppose that v € Py,,\{b2,y}. Let H' be the hole induced by P, 3, UP,,,UP together with
the vy-subpath of Py,,. If bav is not an edge, then H'U Pa/lb/l induces a 3PC(beb1p1, ajajaz).
So bov is an edge, and hence (H', by) is a bug and Py, its center-crosspath, a contradiction.

Therefore v € P,,, \ {v2,y}. But then P, ; UPUu together with the agv-subpath of P,
induces a 3PC (b1bapy, v1uve).
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Case 2.3: p; is of type A or a w.r.t. H.

W.lo.g. pp is adjacent to aj. If py is not adjacent to aq, then by Claim 1, either 3, p;
and P\ p; or X9, p; and P \ p; contradict Lemma 7.2. So p; is adjacent to a;. W.lo.g.
pr has a neighbor in (P, U Pb’Qy) \ {b},v2}. By Claim 1 and Lemma 7.3 applied to Xo, p;
and P\ p1, node py is not strongly adjacent to ¥y. Let v be the unique neighbor of py in
Y. By our assumption v € (Py,y U Pyy) \ {05, v2}. If vby is not an edge, then the hole
induced by Py U Py, and paths u and P contradict Lemma 3.1. So vbl, is an edge. Since
{b2, b5, pr,v} cannot induce a 4-hole, pi is not adjacent to by. If yby is not an edge, then
(P, \ 05) U Payp, U P U {u,ba} induces a 3PC(uviv2, a1azpr) or a 4-wheel with center as.
So yby is an edge, and hence yb, is not. Since {bs,b,,v,y} cannot induce a 4-hole, vy is not
an edge. If follows by Claim 1 that N(px) N H = v, and hence Hy U P induces a 3PC(v,y).

Case 2.4: p; is of type s2, s3 or s4 w.r.t. H.

If py is of type s3 we may assume w.l.o.g. that p; is adjacent to a}. Let H' be the hole
induced by Py U P,y Then (H',p1) is a bug such that b} is the node-attachment of p; to
H'.

Suppose that pg is not strongly adjacent to H, and let v be its neighbor in H. Then
v € (Phyy U Py U Poyy) \ {ba, by, v2}. If v € (Pyy U Pyy) \ {03, 02}, then Py U P,y U P
contains a 3PC(p1,v). So v € Py, \ {b2,y}, and hence the vy-subpath of B, together with
Payy U Py U P contains a 3PC(p1,y). Therefore, pr must be strongly adjacent to H.

Suppose that py, is of type p2 w.r.t. H. If N(py) NH C P,y U (Pb/Qy \ b5), then po, ..., pg is
a center-crosspath of (H',p1). If py, is adjacent to b5, then P,, U PyyUP induces a 4-wheel
with center b5. So py is not adjacent to b5, and hence N(py) N H C P,,. Note that p; is not
adjacent to y, and hence (H \ (Hj Ubs)) U P contains a 3PC(p1,y). So p is not of type p2
w.r.t. H.

Suppose that py is of type d w.r.t. H. First suppose that py is not adjacent to b,,. Then
N(px) N H = {y,ya2,yb/2}, else po,...,px is a center-crosspath of (H',py). If k > 2, then
PU(H\ (Hi U Py,,)) contains a 3PC(p1,px). So k = 2, and hence (H'\ y) U P induces
a a 4-wheel with center p;. Therefore py is adjacent to b}. If py is not adjacent yp,, then
Py, U Pb’Qy U P induces a 4-wheel with center b). So py is adjacent to yp,. Since yb), is an
edge, yby is not an edge, i.e. yp, # ba. S0 Py p, U Pyyp, Up:r induces a bug with center p; and
P\ py is its center-crosspath. Therefore, py is not of type d w.r.t. H.

So by Claim 1, pg is an Hs-crossing w.r.t. H. First suppose that |N(pg) N Pb’gy| = 2.
Then piyp, is an edge and yp, # bo. If either k > 2 or pibl, is not an edge, then P\ p; is either
a center-crosspath or an ear of (H',p1). So k = 2 and pib), is an edge. But then P, U P
contains a 3PC(p1,yp,). Therefore |[N(px) N Py, | = 1, and hence pyyy, is an edge, yy, # b5
and [N (pg) N Pp,y| = 2. But then F,,;, U P contains a 3PC(p1, yy,)- O

Lemma A.17 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(A1, As, By, By) be a short connected diamond of G. Then no node of G\ H is of type s3
or s4 w.r.t. H.

Proof: Assume that G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4, 5.5 and

5.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A,-) with a
hat, a bug with an ear nor a 3PC(A,-) with a type s2 node.
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Assume that G has a node u of type s3 or s4 w.r.t. H. Then |As| = 1, and if u is of type
s4, then agby and asb,, are not edges. Let S = N[u]\ (A1 U By). Since S is not a star cutset,
there exists a direct connection P = py, ..., p from H; to Hs \ {ag,bs,b5} in G\ S. So p; has
a neighbor in Hy, py in Hy \ {ag, ba, by}, and the only nodes of H that may have a neighbor
in P\ {p1,pr} are ag, be and b,. We choose H, u and P so that |P| is minimized.

Claim 1: No node of P is of type Ad w.r.t. H, nor a pseudo-twin w.r.t. H of a node of
Bs Uas. In particular, k > 1.

Proof of Claim 1: By Lemma A.10, k = 1 if and only if p; is of type Ad w.r.t. H, or it is a
pseudo-twin w.r.t. H of a node of By U ay. We now show that none of these types of nodes
can occur.

Suppose that py is of type Ad w.r.t. H. Then as = y and w.l.o.g. P1Yp, is an edge. If wis
adjacent to ay, then Py, U {u,a1,p1} induces a 4-wheel with center as. So wu is not adjacent
to a1, and hence N(u)NH = {b1, b, by, @', az}. But then Py, U{u,a},p1} induces a 4-wheel
with center as.

Suppose that p; is a pseudo-twin of a node of By w.r.t. H. W.l.o.g. p; is a pseudo-twin
of by. Let H' be the short connected diamond obtained by substituting p; into H. Since u
is not adjacent to p;, u cannot be of type s3 or s4 w.r.t. H', so by Remark A.11 (applied to
H' and ), |N(u) N {by,b],b5,p1}| < 1. So wu is of type s4 w.r.t. H, and hence agby and agbl
are not edges. But then H' and u contradict Lemma A.10.

Finally suppose that p; is a pseudo-twin of as w.r.t. H, and let H' be the short connected
diamond obtained by substituting p; into H. Since u is not adjacent to pip, it follows that
H' and u contradict Lemma A.10. This completes the proof of Claim 1.

Claim 2: Node py is of type pl, p2, B, A1, A, a, t3 (with neighbors in B) or Hy-crossing
w.r.t. H, and py is of type p1, p2, d or Ha-crossing w.r.t. H.

Proof of Claim 2: By Lemmas A.15 and A.16 no node is of type sl nor s2 w.r.t. H. Since
{az,be,u,p;} cannot induce a 4-hole, no node of P is of type s3 nor s4 w.r.t. H. Since
|Az| = 1, no node is of type t3 (with neighbors in A) w.r.t. H.

Suppose that p; is a pseudo-twin of y w.r.t. H in the case as # y, and let H' be the
short connected diamond obtained by substituting p, into H. Note that u is of the same
type w.r.t. H' as it is w.r.t. H, and hence H', u and P\ p; contradict our choice of H,u and
P. So no node of P is a pseudo-twin of y w.r.t. H in the case as # y.

By an analogous argument, no node of P is of type p3 w.r.t. H.

Suppose that p; is a pseudo-twin w.r.t. H of a node of Ay U By and let H' be the short
connected diamond obtained by substituting p; into H. By Lemma A.10 u is of the same
type w.r.t. H' as it is w.r.t. H, and hence H',u and P\ p; contradict our choice of H,u and
P. So no node of P is a pseudo-twin w.r.t. H of a node of A; U Bj.

By Claim 1, no node of P is a pseudo-twin w.r.t. H of a node of Bs U ao, nor of type Ad
w.r.t. H. By definition of P, p; and p; cannot be of type By w.r.t. H. By Lemma A.10, the
proof of Claim 2 is complete.

Claim 3: At most one of the node sets By or {as} may have a neighbor in P\ {p1,pr}. So,
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if a node p; € P\ {p1,pr} has a neighbor in H, then either p; is of type By w.r.t. H or it is
not strongly adjacent to H with a neighbor in {ba, by, as}.

Proof of Claim 3: Since b, b, and ag are the only nodes of H that may have a neighbor in
P\ {p1,px}, by Lemma A.10 if p; € P\ {p1,px} has a neighbor in H, then p; is either of
type By w.r.t. H or it is not strongly adjacent to H with a neighbor in {be, b}, as}. Suppose
that both ag and a node of By have a neighbor in P\ {p1,pr}. Then there is a subpath P’
of P\ {p1,pr} of length at least 1, whose one endnode is adjacent to as, the other to a node
of By, w.l.o.g. say to by, and no intermediate node of P’ has a neighbor in H. If asbs is not
an edge, then P, U P’ U P,,;, induces a 3PC(ag,bs). So asgby is an edge, and hence by
definition of type s3 and s4 nodes w.r.t. H, N(u) N H = By U {ag,a),b1}. Then asb is not
an edge.

Suppose that b, has a neighbor in P\ {p1,pr}. Then there exists a minimal subpath
P” of P\ {p1,px} such that one endnode of P” is adjacent to as, the other to b, and no
intermediate node of P” has a neighbor in H \ b2. But then Ppy,p, U Py, U P” induces a
3PC(ag,b,). So by has no neighbor in P\ {p1,px}-

Since asbs is an edge, pi cannot be an Ho-crossing w.r.t. H. So by Claim 2, py, is of type
pl, p2ordw.r.t. H. Note that since ay = y if p is of type d w.r.t. H, N(px)NH = {bs, v, ybé}.
By definition of P, if py is of type pl or p2 w.r.t. H, then N(px) N H C Pa2b/2 and p; has a
neighbor in the interior of P, .

Let p; (resp. pj) be the node of P\ {p1,pr} with highest (resp. lowest) index adjacent
to a node of H. Suppose that py is of type d w.r.t. H, ie. N(pp) N H = {bg,y,ybé}. If pq
is of type B or t3 w.r.t. H, then (Pa2b/2 \ a2) U P U by induces a proper wheel with center bs.
If py is of type A1, A or a wr.t. H, then either Py U Py U P (if py is adjacent to a})
or Pyp, U Py UP (if p1 is not adjacent to a}) induces a proper wheel with center as. So
by Claim 1, p; must be of type pl, p2 or Hj-crossing w.r.t. H. Then pq,...,p; contradicts
Lemma A.14. Therefore p; cannot be of type d w.r.t. H.

So by Claim 2, py, is of type pl or p2 w.r.t. H, and hence by definition of P, N(px)NH C
Py, and py has a neighbor in Py \ {az2,b5}. Let vy (resp. wv2) be the neighbor of py
in P,y that is closer to by (vesp. az). Let Py, (resp. Py,q,) be the byvi-subpath (resp.
vag-subpath) of Poyuy- If p; is adjacent to bo, then X, p; and p;i1, ..., pr contradict Lemma
7.1. So p; is adjacent to as.

Suppose that N(p;)NH C H;. Then by Lemma A.14 applied to H and p, ..., p;, node p;
is of type A1 w.r.t. H and p; is adjacent to as. In particular, as has at least two neighbors
in P\ {p1,pr}. Note that since by has a neighbor in P\ {p1,pxr}, j # i and j # i+ 1. But
then Py U Pb’2v1 U P U ag induces a proper wheel with center as. Therefore N(p;) N H is
not contained in Hj.

Suppose that p; is of type A or a w.r.t. H. If p; is not adjacent to af, then Pyry, U
Pb/gvl U P U {a1, a2} induces a proper wheel with center ag. So p; is adjacent to a}, and
Pty U Pyy UP Uay induces a wheel with center as, and hence as has exactly one neighbor
in P\ {p1,pr} and as does not have a neighbor in Py, Let p; be the neighbor of by
in P\ {p1,pr} with highest index. Then Py U {p1, -, Pk, a2, b2} induces a 3PC(ba,p;).
Therefore, p; is not of type A nor a w.r.t. H.

So by Claim 2, p; is of type B or t3 w.r.t. H. P U Py U bs induces a wheel with center
by, and hence (since this wheel cannot be proper) N(b2) N P = {p1,p}. Let py be the
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neighbor of as in {p;41,...,p;} with lowest index. If ay has no neighbor in {ps,...,p;_1},
then Poypy, U {ba2,p1,...,py} induces a proper wheel with center by. So as has a neighbor in
{p2,...,p—1}, and let pj; be such a neighbor with highest index. Then {p;/,...,pir,a2,b2}
induces a 3PC(p, a2). This completes the proof of Claim 3.

By Claim 2, it suffices to consider the following cases.

Case 1: p; is of type pl, p2, A; or Hi-crossing w.r.t. H.

Then N(p;) N H C Hy. Let p; be the node of P with lowest index that has a neighbor
in Hy. By Claim 2 N(p;) N H C Hs and no node of {ps,...,p;—1} has a neighbor in H. By
Lemma A.14 applied to H and pq, ..., p;, and by symmetry w.l.o.g. one of the following holds:

(a) N(p1)NH = A; and p; is either of type p2 w.r.t. H with neighborsin P,,, or N(p;)NH =
{y7 Yvs s yb’2}7

(b) N(p1)NH = A; and N(p;) N H = as,
(c) N(pi) N H = By and p; is of type p2 w.r.t. H with neighbors in P,,,, or
(d) N(p;) N H = By and N(p1) N H =b].

Suppose that (a) holds. W.l.o.g. u is adjacent to aj. Then Py y U (Pyypy \ a2) U P Uu
contains a 3PC(b, a}).

Suppose that (c) holds. Then (H \ b1) U {p1,...,p;} contains a short connected diamond
H'(A1, A, B}, By) where B} = {b},p;}. By Lemma A.10, u is of type s3 or s4 w.r.t. H', and
hence H',u and p;y1, ..., px contradict our choice of H, u and P.

Suppose that (d) holds. By Claim 3, as does not have a neighbor in P\ p;. Let P’ be a
chordless path from py to ag in (Hy\ B2)Upy, and let H' be the hole induced by P’UPOL/N_;,/1 UP.
Since H' U, cannot induce a 3PC(by,p;), (H',by) is a bug. If u is adjacent to a}, then u is
a center-crosspath of (H’,b5). So u is not adjacent to a}, and hence it is adjacent to b}. But
then H' Uwu induces a 3PC(asg,b)).

So (b) must hold. By Claim 3, be and b, do not have neighbors in P\ py. W.lo.g. u is
adjacent to aj. If py and by are connected in G[(Hz\ {az,b5})Upg], then let P’ be a chordless
path from py to by in G[(Hz \ {a2,b,}) Upg]. Then P, p, UP U P Uwu induces a 3PC(aq,ba).
So py and by are not connected in G[(Hz \ {az,b5}) Upsl, i.e. a2 =y and N(px) N H C Pyyy, .
Let P’ be a chordless path from py, to by in G[(Py,p, \ a2) U pr]. Then Py UP U P Uu
induces a 3PC(aq, b}).

Case 2: p; is of type A or a w.r.t. H.

W.lo.g. we may assume that p; is adjacent to a; and as. First we show that by and b
cannot have a neighbor in P\ p;. Assume otherwise, and let p; be the node of P with lowest
index adjacent to a node of Bs. By Claim 3, as does not have a neighbor in P\ {p1,pr}. If p;
is not of type Bs, then ¥ and py, ..., p; contradict Lemma 7.1. So N(p;) N H = By, and hence
by Lemma 7.2 applied to ¥’ and p1, ..., p;, N(p1)NH = A. Let H'(A), Aa, B, B2) where A} =
{p1,a’} and B} = {V], p;}, be the short connected diamond induced by (H\ Py, s, )U{p1, ..., 0i }-
Then H' and u contradict Lemma A.10. Therefore, no node of By has a neighbor in P\ pg.
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First suppose that either as # y, or as = y and py, has a neighbor in P, \ag. Let P’ be the
chordless path from py to by in (Ha\ {b, as})Upy. If u is adjacent to a1, then P, ,, UP'UPUu
induces a 3PC(by,a1). So u is not adjacent to aj, and hence N(u) N H = {by,ba, by, a},az}.
If p; is not adjacent to a}, then P'UP U AUw induces a proper wheel whith center as. So p1
is adjacent to a}. But then P, , UPU P U{ad},u} induces a 3PC(ubyby, ajaip;). Therefore
az =y and p; does not have a neighbor in P,,;, \ a2. So by Claim 2, py is of type pl or p2
w.r.t. H and N(pg) NH C P, . In particular, asby is not an edge. If p; is not adjacent to a}
then X9, p1 and P\ p; contradict Lemma 7.2. So p; is adjacent to a}, and hence (H \ az) U P
contains a short connected diamond H'(A;, A%, By, Bs) where A, = {p;}. But then H" and
u contradict Lemma A.10.

Case 3: p; is of type B or t3 (with neighbors in B) w.r.t. H.

W.l.o.g. we may assume that p; is adjacent to b;. Suppose that ao has a neighbor in
P\ pg, and let p; be such a neighbor with lowest index. By Claim 3, by and b, do not
have neighbors in P\ {p1,pr}. If asbs is not an edge, then P,,p, U {u,p1,...,p;} induces a
3PC(ag,bs). So asbs is an edge, and hence asb), is not. But then Py, U {u,p1,...,p;} induces
a 3PC(ag,b,). Therefore, as does not have a neighbor in P\ pg.

Suppose that a node of By has a neighbor in P\ {p1,px}, and let p; be such a neighbor
with highest index. W.l.o.g. p; is adjacent to bs. Let P’ be the chordless path from pj to as
in (Hs \ B2) U pg and let H' be the hole induced by P’ U P U P,;,. Then (H',b2) is a twin
wheel or a bug. In particular, py is not adjacent to by, asby is not an edge and H' does not
contain vy, , i.e. py has a neighbor in Hs \ (B2 U wy,).

Suppose that p; is of type By w.r.t. H. Then by symmetry, asb, is not an edge, H’
does not contain vy, i.e. py has a neighbor in Hy \ (B2 U {vp,, vy }). So by Claim 3 and
Lemma 7.2 applied to ¥, p; and p;11,..., Pk, node py is either of type p2 w.r.t. H with
neihgbors contained in F,,, or pj is of type d w.r.t. H adjacent to y, Yo Yp,- In both cases
(H\ Puyp,) UA{pi,...,pr} induces a connected diamond whose side-2-paths have fewer nodes
in common than the side-2-paths of H.

Therefore N(p;) N H = by. Since py is not adjacent to by, and it has a neighbor in
Hy\ (B2 Uwy,), by Claim 2 and by Lemma 7.1 applied to X, p; and p;41, ..., pg, it follows that
either py, is of type p2 w.r.t. H and N(py) N H C P,y \ bo, or py is of type d w.r.t. H and
N(pk) N H = {Y, Ya, yp, } (in particular as # y). In both cases (H \ vy,) U{p;, ..., px} contains
a short connected diamond H'(A;, A, By, B2) that contains p;,...,px. But then H' u and
P1, ..., pi—1 contradict our choice of H,u and P.

Therefore no node of H has a neighbor in P\ {p1,px}. Note that by definition of P, pi
has a neighbor in ¥\ {bg, b}, b1}. By Lemma 7.3 applied to X, p; and P\ p1, node py cannot
be of type p2, d nor Hs-crossing w.r.t. H. Hence by Claim 2, pg is not strongly adjacent to
H. Let v be the neighbor of p; in H.

Suppose that p;b] is not an edge. Then by Lemma 7.2 applied to X/, p; and P\ py,
either agby is an edge and v = Vg, OF asxbly is an edge and v = wp,. In the first case
Payb, U Pyyp, U P induces a bug with center bl and Py, is its center-crosspath. In the second
case Py,p, UPoyp, UP induces a bug with center by and P,y is its center-crosspath. Therefore
p1b) is an edge.

W.lo.g. u is adjacent to a1, and hence by definition of type s3 and s4 nodes w.r.t. H it
is not adjacent to by and asbs is not an edge. Let P’ be the chordless path from p; to as in
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(Hy \ Ba) Upg. If v # vp,, then P'U P U Py p, U {u,ba} induces a 3PC(b1bap1, ajuag). So
v = vp,. Let H' be the hole induced by (P,p, \ b2) U Pyyp, UP. Then (H',bs) is a bug and u
its center-crosspath. O

Lemma A.18 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(A;, Ag, By, Ba) be a short connected diamond of G. If a node u is of type a, t3, p3 w.r.t.
H or it is a pseudo-twin of a node of BU A1 w.r.t. H, or a pseudo-twin of y w.r.t. H when
y & {a1,a2}, or it is a pseudo-twin of a node of As w.r.t. H when |As| = 2, then there exists
a short connected diamond H' such that one of the following holds:

(i) Hy C H', we Hy = H'\ Hy, H{|Hs is a 2-join of H' with special sets A}, As, B, B
such that A} N Ay # @ and B] N By # .

(it) Hy C H and v € Hy = H'\ Hy, Hy1|H}, is a 2-join of H' with special sets Ay, A}, B,
Bl such that A, N Ay # @ and BY N By # .

Proof: Assume that G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4, 5.5 and
5.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A,-) with a
hat, a bug with an ear nor a 3PC(A, ) with a type s2 node. We consider the following cases.

Case 1: u is of type p3 w.r.t. H or it is a pseudo-twin w.r.t. H as in the statement of the
lemma.

Let H' be the short connected diamond obtained by substituting « into H. Then clearly
H' satisfies (i) or (ii).

Case 2: Node u is of type a w.r.t. H.

Then |As] =1 and w.lo.g. N(u) N H = {a1,a2}. Let S = (Nfazg] \ (H Uu))U A. Since
S cannot be a star cutset, there exists a direct connection P = pq, ..., pg from u to H \ S in
G\ S. So p; is adjacent to u, pr to a node of H \ S, and a; and a) are the only nodes of H
that may have a neighbor in P \ py.

(1) pg is of type pl, p2, p3, d, B, Bs, t3 (with neighbors in B), Hj-crossing or Ha-crossing
w.r.t. H, or it is a pseudo-twin w.r.t. H of a node of B, or y when y # as. In particular,
pi is adjacent to at most one node of A.

Proof of (1): By Lemmas A.15, A.16 and A.17, no node is of type sl, s2, s3 nor s4 w.r.t. H.
Since |Ag| = 1, p is not adjacent to ag and it has a neighbor in H \ S, py cannot be of type
A1, A, a, t3 (with neighbors in A), Ad nor a pseudo-twin of a node of A w.r.t. H. So the
result follows by Lemma A.10. This proves (1).

(2) aj cannot have a neighbor in P\ pg.

Proof of (2): Suppose it does. Let R be a chordless path from py to ag in (H \ A1) U pg, and
let H' be the hole induced by RU P Uwu. Since (H',ay) cannot be a proper wheel, a; has
exactly one neighbor p; in P and j < k.

Suppose that a] does not have a neighbor in P\ py. By Lemma A.14 applied to H and
Djs .- Dk, DOde py, must have a neighbor in Hy. So by (1), pi, has a neighbor in H;\ A;. Recall
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that by definition of a connected diamond at least one of asba, asbl is not an edge. W.l.o.g.
assume that asb, is not an edge. Let T be a chordless path from py to a} in (Hy\a1)U{pg, b5 }.
Recall that no node of P is adjacent to ay and hence T'U P U {ay,a2,u} induces a proper
wheel with center a;. So a} has a neighbor in P\ py.

If @} is not adjacent to p;, then a subpath of P\ pj is a hat of X1, a contradiction. So a}
is adjacent to p;. If a] does not have a neighbor in pq,...,pj—1, then {p1,...,pj, u,a1,a2,a}}
induces a proper wheel with center a;. So ) has a neighbor in py,...,pj—1. So (H',a;) and
(H',a}) are both bugs. In particular, N(a1) N P = p; and N(a}) NP = {p;,pj—1}.

Suppose that N(py) N H C Hy. Then by Lemma A.14 applied to H and pj, ..., pg, node
pk is either of type p2 w.r.t. H with neighbors in F,,, or of type d w.r.t. H such that
N(pk) NV H = {y, Yb,, Y, }. In both cases Py p, U Poyp, U P Uu induces a bug (H',a1) with a
center-crosspath, a contradiction.

So pi has a neighbor in Hy, and hence by (1), it has a neighbor in Hy \ 4;. By (1) pg
has at most one neighbor in A and hence by Lemma 7.2 applied to X1, p; and pjy1, ..., P,
N(pr) N X1 = {be,b1,b]}. But then P, p, U P, UP Uw induces a bug (H',a1) with center-
crosspath P, \ a1, a contradiction. This proves (2).

We now consider the following two cases.

Case 2.1: a} has a neighbor in P\ py.

Let p; be such a neighbor with highest index. If py is of type d, B, B, Ha-crossing, a
pseudo-twin of y when y # ao, or a pseudo-twin of a node of By Uby w.r.t. H, then ¥y, p;
and pji1, ..., px contradict Lemma 7.1.

Suppose that py is a pseudo-twin of b} w.r.t. H. Then by (2), Ho U P,,p, U P Uu induces
a short connected diamond H'(A}, As, B}, Bs) where A} = {a1,u} and B} = {b1,pr} and H'
satisfies (i). So we may assume that py is not a pseudo-twin of b} w.r.t. H.

If p is an Hi-crossing w.r.t. H, then by Lemma 7.1 applied to X1, p; and pjy1, ..., P,
node py is adjacent to by and a), and hence Pory, U Py, U PUw induces a proper wheel with
center a.

So by (1), px is of type pl, p2, p3 or t3 (with neighbors in B) w.r.t. H. If N(pp) N H C
Pyry» then by (2), (H \ a})U (P Uu) contains a short connected diamond H'(A}, As, By, B),
where A} = {a1,u}, that satisfies (i). So we may assume that p; has a neighbor in H\ Py .
But then by Lemma 7.1 applied to p;, path p;i1,...,p; and either ¥; or Yo, node p, must be
of type t3 w.r.t. H such that N(pg) N H = {b], ba,b5}. But then by (2), Ho U P, UP Uu
induces a short connected diamond H'( A/, Ay, B, B2), where A| = {a1,u} and B} = {b1,pr},
and hence (i) holds.

Case 2.2: a} does not have a neighbor in P\ py.

So by (2), no node of H has a neighbor in P \ pg. If pp does not have a neighbor in
Y1\ {a1,d],as}, then it has a neighbor in 39 \ {a1,d],a2} and hence (since py is adjacent
to at most one node of {ay,a},az} by (1)) Xg, u and P contradict Lemma 7.2. So py has a
neighbor in 5 \ {a1,a},a2}. By Lemma 7.2 applied to ¥, u and P, and since by (1) py is
adjacent to at most one node of {a1,a},as}, one of the following holds:

(a) N(pk) NE1 = {ba, b} }.

(b) N(pk) N1 = {v1,v2} where v1vs is an edge of Py .
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(C) N(pk) N E1 = {bly b2,vb2}'
(d) agbs is an edge and N (px) N X1 = {vg, }.
(e) agby is an edge, py is of type p3 w.r.t. ¥, and py is adjacent to a;.

By (1) in fact (c¢) cannot happen. Suppose that (b) holds. Then by (1), py is of type p2
w.r.t. H, and hence (H \ a})U P Uu contains a short connected diamond H'(A}, A, By, Bs),
where A} = {u, a1}, that satisfies (i).

Suppose that (a) holds. By Lemma 7.2 applied to Y9, u and P, and since by (1) py is
adjacent to at most one of {a1,a},as}, N(pr)NXe = {by,0)}. So N(px)NH = {b),be,b,} and
hence HoU P,,, UPUu induces a connected diamond H'(A}, As, B, Bs), where A} = {u,a,}
and Bf = {b1,px}, that satisfies (i).

Suppose that (d) holds. Then by (1), N(px) N H = {v,, }. Since agby is an edge, asb), is
not an edge, and hence H; U P U {ag, by, u} induces a 4-wheel with center a;.

Suppose that (e) holds. Then by (1), px is of type p3 w.r.t. H. Since agby is an edge,
asbl, is not an edge, and hence (Hi \ vq,) U P U {asg, b, u} induces a 4-wheel with center a;.

Case 3: Node u is of type t3 w.r.t H.
W.lo.g. we may assume that N(u) N H = {by, by, by}. Assume that the result does not
hold.

(1) Let S = (N[b2] \ (HUuw))UB, and let P = p1,...,pi be a direct connection from u to
H\ Sy in G\ S1. Then k =1 and py is an Hy-crossing w.r.t. H adjacent to by. In
particular, there exists a node that is an Hi-crossing w.r.t. H adjacent to by and u.

Proof of (1): Since G does not have a star cutset, there exists a direct connection P as in
statement of (1), so we just need to show that & = 1 and p; is an Hj-crossing w.r.t. H
adjacent to by. By definition of P, node p; is adjacent to u, py to a node of H \ Sy, and the
only nodes of H that may have a neighbor in P \ py are by, b, and b}.

(1.1) px is of type p1, p2, p3, A1, A, a, d, Ad, t3 (with neighbors in A), Hi-crossing, Ha-
crossing w.r.t. H or a pseudo-twin of a node of AUy w.r.t. H. In particular, pj is
adjacent to at most one node of B.

Proof of (1.1): By Lemmas A.15, A.16 and A.17, p; cannot be of type sl, s2, s3 nor s4 w.r.t.
H. Since py is not adjacent to by, it cannot be of type B, Ba, t3 (with neighbors in B) nor a
pseudo-twin of a node of B w.r.t. H. By Lemma A.10, the proof of (1.1) is complete.

(1.2) No node of H\ {b1,b],b5} has a neighbor in P\ px and at most one node of {by, b, bh}
has a neighbor in P\ py.

Proof of (1.2): We have already established that no node of H \ {b1,b},b5} has a neighbor
in P\ pg. By Lemma A.10 and Lemma A.15, no node of P\ py is adjacent to more than
one node of {by,b],b5}. If at least two nodes of {by, b, b5} have a neighbor in P \ pg, then a
subpath of P\ p is a hat of ¥ or ¥’ a contradiction. This proves (1.2).

If a node of {b1, b}, b5} has a neighbor in P \ p, then let p; (resp. p;) be such a neighbor
with highest (resp. lowest) index.
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(1.3) V) does not have a neighbor in P\ py.

Proof of (1.8): Assume it does. Then by (1.2) HyU{u,p1, ..., p;, b2} induces a bug with center
by, and Pp,p, \ b2 is its center-crosspath, a contradiction. This proves (1.3).

(1.4) by does not have a neighbor in P\ p.

Proof of (1.4): Assume it does. By (1.2) no node of H \ b; has a neighbor in P \ px. By
(1.1) p is adjacent to at most one node of B, and hence if N(py) N H C Hj, then H and
Pjs -, Pk contradict Lemma A.14. So p;, has a neighbor in H;. In particular, py is not of type
d, Ha-crossing nor a pseudo-twin of y when y ¢ {a1,a2} w.r.t H.

Suppose that py, is of type Ay w.r.t. H. By Lemma 7.1 applied to ¥, p; and pjy1, ..., P,
a1by is an edge. But then P, , U Py,p, U P Uu induces a proper wheel with center b;. So py
is not of type A; w.r.t. H.

Suppose py, is of type a w.r.t. H. So |As] =1 and N(pg) N H = {ag,d}} or {a2,a1}. In
the first case ¥, p; and pji1, ..., pr contradict Lemma 7.1, and in the second case ¥/, u and P
contradict Lemma 7.2. So pj is not of type a w.r.t. H.

Suppose that pg is of type A or it is a pseudo-twin of a node of Ay w.r.t. H. If p; has a
neighbor in Py, \ @}, then ¥, u and P contradict Lemma 7.2. So N(p) NH C AU Py,
But then (H \ P,;p,) U P Uu induces a short connected diamond H'(A, As, B, B2) where

L ={d,pr} and By = {b},u}, and H’ satisfies (i), contradicting our assumption. So py is
not of type A nor a pseudo-twin of a node of A7 w.r.t. H.

Suppose that py, is of type t3 w.r.t. H. Then by (1.1) |A2| = 2 and N (px)NH = {a1,d}, a}}
or {ai,a},as}. In the first case X, p; and pjy1, ..., py contradict Lemma 7.1, and in the second
case ¥/, u and P contradict Lemma 7.2. So py is not of type t3 w.r.t. H.

Node py is not of type Ad nor a pseudo-twin of a node of Ay w.r.t. H, since otherwise
2, p; and pjy1, ..., pi contradict Lemma 7.1.

Suppose that py is an Hj-crossing w.r.t. H. If py is adjacent to b}, then (P, \ a1) U
{0}, b5, pj, ..., Pk} contains a 3PC(b1,pk). So py is adjacent to by. But then (Pyy \ aj) UPU
{th,b1,u} contains a proper wheel with center by. So py is not an Hi-crossing w.r.t H.

By (1.1) pg is of type pl, p2 or p3 w.r.t. H. Since py has a neighbor in Hj, it follows
that N(px) N H C Payp, or Pyy . By definition of P, py has a neighbor in Hy \ {b1,0}}. If
N(px)NH C Py, then ¥, p; and pji1, ..., pg contradict Lemma 7.1. So N(pxg) NH C Py,
But then (H \ b1) U P Uu contains a short connected diamond H'(A;, Ag, B, B2) where
B} = {u, b}, and H’ satisfies (i), contradicting our assumption. This proves (1.4).

(1.5) b, does not have a neighbor in P\ py.

Proof of (1.5): Assume it does. By (1.2) no node of H \ b, has a neighbor in P\ p;. If
N(px) NH C Hy, then H and pj, ..., p, contradict Lemma A.14. So pj has a neighbor in Hy.
In particular, pg is not of type Ay nor Hi-crossing w.r.t. H.

Node pg is not of type A nor a pseudo-twin of a node of A; w.r.t. H, since otherwise
¥, p;j and pji1, ..., pi contradict Lemma 7.1.

Suppose that py, is of type a w.r.t. H. Then by Lemma 7.1 applied to X', p; and pj11, ..., Pk,
y = ag and yb) is an edge. But then P,,,, U P U {u,b,} induces a proper wheel with center
by. So py is not of type a w.r.t. H.

84



Suppose that py is of type t3 (with neighbors in A), Ad or a pseudo-twin of a node of As
w.r.t. H. So N(px) N Hy = {a1,a}}. By definition of P, pj is not adjacent to by, and hence
H; UPU{u,by} induces a 3PC(b1bau, a1a)pg). So py is not of type type t3 (with neighbors
in A), Ad nor a pseudo-twin of a node of Ay w.r.t. H.

Suppose that py is of type d or a pseudo-twin of y when y ¢ {ay,a2} w.r.t. H. Let H' be
the hole contained in P,,p, U Py,,, UPUu that contains Py, UP Uu. Note that if H' contains
y, then p; has a neighbor in P, \ y. Since by definition of P, by is not adjacent to any node
of P, it follows that N (b2) NH' = {u,b1}. But then H'U P,y induces a 3PC (bibau, a1a}az).
So pg is not of type d nor a pseudo-twin of y when y ¢ {a1,as2} w.r.t. H.

Suppose that pj is an Ha-crossing w.r.t. H. By Lemma 7.1 applied to ¥',p; and
Pj+1s - Dk, node py is adjacent to by. Let H' be the hole contained in P,,p, U P U u that
contains P U {u,bs}. Then (H’, b)) is a proper wheel. So py is not an Ha-crossing w.r.t. H.

So by (1.1) and since p; has a neighbor in Hs, N(px) N H C Hsy and py is of type pl,
p2 or p3 w.r.t. H. By definition of P, py has a neighbor in Hj \ {bs,b5}. By Lemma
7.1 applied to ¥, p; and pji1, ..., pk, either |Ag] = 2 and N(py) N H C Py, or |Ao| =1
and N(pg) N H C Py, If [As] = 2, then Hy U (Pyyy \ b5) U P U {u, by} contains a
3PC(bibau,a1a}ay). So |Az| = 1. Let H' be the hole contained in Pyp, U (Pagpy \ b5) U P Uu
that contains Py, U P U wu. If yby is not an edge, then H' U Py p, U by induces a
3PC(b1bau, aralaz). So ybe is an edge, and hence (H',by) is a bug. But then Py, is either
a center-crosspath or an ear of (H’,bs). This proves (1.5).

By (1.2), (1.3), (1.4) and (1.5), no node of H has a neighbor in P \ py.

Node pj cannot be of type Ay, A, t3 (with neighbors in A), Ad nor a pseudo-twin of a
node of As w.r.t. H, since otherwise N(pg) N Hy = A; and since pj is not adjacent to bo,
H; U P U{u,by} induces a 3PC(b1bau, ard)py).

Suppose that py is of type a or a pseudo-twin of a node of A; w.r.t. H. If p; is adjacent
to a1 and ag, and it does not have a neighbor in P,,p, \ a1, then P, U P, U P Uu induces
a 3PC(bibau,ajaspy). Otherwise (H \ P,,p,) U P Uw induces a short connected diamond
H'(A), As, B}, By) where A} = {a}, pr} and B} = {u, V) }, and satisfies (i), contradicting our
assumption. So pi is not of type a nor a pseudo-twin of a node of 4y w.r.t. H.

Suppose that py, is of type d w.r.t. H. By Lemma 7.2 applied to ¥/, u and P, N(px)NH =
{y, be,ybIQ}, Yv, 7 bo and yy, # by. But then (H \ P,,p,) U PUwu induces a connected diamond
whose side-2-paths have fewer nodes in common than the side-2-paths of H, a contradiction.
So pg is not of type d w.r.t. H.

Node pj cannot be an Hs-crossing nor a pseudo-twin of y when y ¢ {aj,a2} w.rt. H,
since otherwise ¥/, u and P contradict Lemma 7.2.

Suppose that pg is of type pl, p2 or p3 w.r.t. H. Note that by definition of P, p; has a
neighbor in H \ B. If N(px) N H C P,p, then (H \ b;) U P Uu contains a short connected
diamond H'(A1, Ag, By, B2) where By = {u,b}}, that contains Hy U Py, and H' satisfies
(i), contradicting our assumption. So p; has a neighbor in X'\ B. By Lemma 7.2 applied
to X';u and P w.lo.g. one of the following holds: (a) |A3| = 1, byy is an edge, and either
N(pk) N H = {vy} or py is of type p3 w.r.t. H adjacent to b, (b) p is of type p2 w.r.t.
H and its neighbors are contained in Py, or (c) |A2| = 1, pg is of type p2 w.r.t. H, and
N(pk) N H C Ppyy. If (a) holds, then Pyyp, U Py, U P Uwu contains a bug with center by,
and Py is its center-crosspath or an ear. If (b) holds, then Hy U P U {u,by} induces a
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3PC(bibou, A). So (c) holds. But then ¥,u and P contradict Lemma 7.3. So p is not of
type pl, p2 or p3 w.r.t. H.

Therefore, by (1.1) py is an Hj-crossing w.r.t. H. By Lemma 7.3 applied to X, u and P,
node pg must be adjacent to by. If £ > 1, then Hy U P U {u, by} induces a bug with center py
with an ear. So k = 1. This proves (1).

Let Sy = (N[b1] \ (H Uu)) U {by,ba,bs}. Since Sy cannot be a star cutset, there exists a
direct connection P = pq,...,p; from u to H \ Se in G \ S2. So p; is adjacent to u, p to a
node of H \ Sy, and the only nodes of H that may have a neighbor in P\ py are by and b).
By (1) there exists a node v adjacent to u that is an Hj-crossing w.r.t. H adjacent to b;.

(2) pr has a neighbor in H \ B.

Proof of (2): Suppose that N(py) N H C B. By definition of P, p; must be adjacent to b}.
By Lemma A.15, pj cannot be of type s1 w.r.t. H. N(pg) N H # {b}} nor {V),be, b}, since
otherwise H; U P U {u,v} induces a proper wheel with center v. Since py is not adjacent to
by and it is adjacent to b}, it follows that p; cannot be of type By nor B w.r.t. H, and if it
is of type t3 w.r.t. H then its neighbors in H are contained in A. Hence, p; has a neighbor
in H \ B. This proves (2).

(3) px is either not strongly adjacent to H or it is of type p1, p2, p3, A1, A, a, d, Ad, t3
(with neighbors in A), Hy-crossing (adjacent to V), Ha-crossing or a pseudo-twin of a
node of AU By Uy w.r.t. H.

Proof of (3): By Lemmas A.15, A.16 and A.17, p; cannot be of type sl, s2, s3 nor s4 w.r.t
H. By (2) px cannot be of type By nor B w.r.t H, and if it is of type t3 w.r.t. H, then its
neighbors in H are contained in A. Since py is not adjacent to b1, it cannot be a pseudo-twin
of a node of By w.r.t. H, and if it is an Hj-crossing w.r.t. H, then it is adjacent to b}. The
result follows from Lemma A.10. This proves (3).

(4) If by does not have a neighbor in P\ pg, then py is adjacent to by and it is of type p2,
p3, d, Ad, Hso-crossing, a pseudo-twin of a node of By U Ay or a pseudo-twin of y when
y ¢ {a1,a2} wrt. H.

Proof of (4): Assume that by does not have a neighbor in P\ p;. By (2) px has a neighbor in
H \ B. If py is not adjacent to be, then P is a direct connection from u to H \ S7 in G \ Sy,
and hence by (1) py is adjacent to by, a contradiction. So py is adjacent to by. In particular,
pr. cannot be of type Aj, A, a, t3 (with neighbors in A), Hj-crossing nor a pseudo-twin of a
node of A; w.r.t. H. Also since py, is adjacent to by and it has a neighbor in H \ So, py, must
be strongly adjacent to H. The result now follows from (3). This proves (4).

(5) b2 does not have a neighbor in P\ pg.

Proof of (5): Assume it does. Let p; be the node of P\ p; with highest index adjacent
to a node of H. By (2), px has a neighbor in H \ B and hence in the graph induced by
(H \ B)U{b1,pi} there is a chordless path from by to pg, and this path together with P Uw
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induces a hole H'. Since be has at least three neighbors in H', (H',be) must be a twin wheel
or a bug, i.e. by has a unique neighbor in P and this neighbor is contained in P \ pj. Since
(H',b,) cannot be a proper wheel, b, has at most one neighbor in P. If p; is not adjacent to
by, then a subpath of P\ py is a hat of X. So p; is adjacent to by. Also N(b5) NP C {p;,pi}
else a subpath of P\ py is a hat of X.

Next we show that v does not have a neighbor in P. Assume it does. Then (H’,v)
is a wheel, and hence it must be a twin wheel or a bug. In particular, v has exactly one
neighbor p; in P. Let H” be the hole induced by the p;p;-subpath of P together with by, by
and v. If i = 1 or j = 1 then (H”,u) is a proper wheel. So i # 1 and j # 1. But then
(H"\b1) U{u,p1,...,p; } induces a 3PC(u,p;) if i < j and a 3PC(u, p;) otherwise. Therefore,
v does not have a neighbor in P.

Next we show that p; does not have a neighbor in H;. Assume it does. Suppose that
N(pr)NHy = vp,. Then by (3), N(pr)N(H1Ubz) = v, and hence H1 U{ba,pj, ..., pr} induces
a 3PC(b2,vp,). So pi has a neighbor in H; \ vp,, and hence by (2) and (3) and since py, is
not adjacent to by, px has a neighbor in Hy \ {vp,,b1,b}}. Let P’ be a chordless path from py
tovin (Hy \ {b1,b0), v, }) U{v,pr}. If j # 1, then P U P' U {u,bs} induces a 3PC(u,p;). So
j = 1. But then PU P’ U{u,b1,bs} induces a proper wheel with center u. Therefore py does
not have a neighbor in Hj.

If N(px) N H = wy,, then P, p, U Py, U P Uw induces a proper wheel with center ba.
So pi has a neighbor in H \ vp,. It follows, by (2) and since py does not have a neighbor in
H,Ubsg, that py has a neighbor in Hs \ {vp,, ba, b3 }. Let P’ be a chordless path from py to v in
(Ha \ {vpy, b2, b5 }) U (Pyr gy \U})U{v,pr}. If j # 1, then P'UPU{u, bz} induces a 3PC(u, p)).
So j = 1. But then P"U P U {by,bs} induces a 4-wheel with center u. This proves (5).

(6) by does not have a neighbor in P\ pg.

Proof of (6): Assume it does. Let p; be the node of P \ p; with highest index adjacent to
by. By (5) no node of H \ b, has a neighbor in P\ pg. By (4) px is adjacent to by. Since
P U {u,by,bs} cannot induce a proper wheel with center by, N(b5) N P = p;.

Next we show that v does not have a neighbor in P. Assume it does. By (2) py has a
neighbor in H \ B and hence in (H \ B) U {b1, px} there is a chordless path from b; to py,
and this path together with P Uw induces a hole H’. Since (H’,v) cannot be a proper wheel,
N(v) NP = p; for some i € {1,...,k}. Let H” be the hole induced by the p;p;-subpath of
P together with b1, b, and v. Since (H”,u) cannot be a 4-wheel, i # 1 and j # 1. But then
(H"\ b1) U{u,p1,...,pi} induces a 3PC(u,p;) if i < j or 3PC(u, p;) otherwise. Therefore v
does not have a neighbor in P.

Suppose that py has a neighbor in H \ (B Uw,). Let P’ be a chordless path from py
to v in (H \ (BUwy,)) U{pk,v}. Then P'U P U {u,by} induces a 3PC(py,u). Therefore
N(px) N H C B Uuwy,, and hence by (2) py is adjacent to vp,. But then P, p, U Pyp, UP Uu
induces a 4-wheel with center by. This proves (6).

By (5) and (6) no node of H has a neighbor in P\ pg. By (4) px is adjacent to bs.

Suppose pi. is of type p2, d, Ad, Ho-crossing or a pseudo-twin of a node of A, or y when
y ¢ {a1,a2} w.r.t. H. Since py is adjacent to by, it follows that X', u and P contradict Lemma
7.2. Therefore py cannot be any of these types, and hence by (4) py is either of type p3 w.r.t.
H or it is a pseudo-twin of a node of By w.r.t. H.
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Suppose that py is of type p3 w.r.t. H. Since py is adjacent to bo, by Lemma 7.2 applied
to ¥, u and P, it follows that |As] = 1 and bly is an edge. Let w be the neighbor of py in
P,y that is closest to y. Let P’ be the wy-subpath of P, and let H' be the hole induced
by PUP"U Payy U Poyp, Uu. Then (H',b5) is a bug and P,y its center-crosspath or ear, a
contradiction.

So pi is a pseudo-twin of a node of By w.r.t. H. Suppose that p is not adjacent to a
node of By. If k # 1, then Hy U P U {u,b,} induces a bug with center py with an ear (where
the ear is the path induced by (P \ px) Uu). So k = 1. Since {p1,v,b1,b2} cannot induce a
4-hole, pyv is not an edge. Note that both p; and v have a neighbor in Hj \ {b1, ], vp, }. Let
P’ be a chordless path from p; to v in (Hy \ {b1,b],vp, }) U {p1,v}. Then P U {u,v,b1,bs}
induces a 4-wheel with center u. So pr must be adjacent to a node of Bj.

By definition of P, py is not adjacent to by, and hence it is adjacent to b}. Therefore,
Pk is a pseudo-twin of b} w.r.t. H. Suppose that v does not have a neighbor in P. Let P’
be the path from py to v in (Pyy \ b)) U {py,v}. If & > 1, then P'U P U {u,b5} induces
a 3PC(pk,u). So k = 1, and hence P’ U P U {u,by,b,} induces a 4-wheel with center wu.
Therefore v has a neighbor in P. Let P’ be the chordless path from py to by in (H; \ b)) Upy.
Since P’ U P U {by,u,v} cannot induce a proper wheel with center v, N(v) N (P'UP) = p;
for some i € {1,...,k}. But then P' U {p;,...,p, bz, v} induces 3PC (b1, py). O

Proof of Theorem 1.6: Assume G does not have a star cutset. Then by Theorems 4.3, 5.3, 5.4,
5.5 and 5.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A,-)
with a hat, a bug with an ear nor a 3PC(A,-) with a type s2 node. We prove that for some
connected diamond H of G, the 2-join Hi|Hs of H extends to a 2-join of G. Assume not.
Then by Theorem A.5 every connected diamond H of G has a blocking sequence for Hi|Hs.
Consider all short connected diamonds H, and amongst them choose an H with a shortest
blocking sequence S = z1, ..., x, for H1|H,.
By Lemmas A.10, A.15, A.16 and A.17 the following holds:

(1) If anode of G\ H has a neighbor in H, then it is of type pl, p2, p3, 41, A, B, By, a, t3,
d, Ad, H;-crossing, Hs-crossing w.r.t. H or it is a pseudo-twin of a node of AU BUy
w.r.t. H.

By (1), Lemma A.18, Theorem A.9 and our choice of H and S, the following holds:

(2) If a node of S has a neighbor in H, then it is of type pl, p2, A1, A, B, By, d, Ad,
Hi-crossing or Ho-crossing w.r.t. H, or |[As| = 1 and it is a pseudo-twin of ay w.r.t. H.

So by Remark A.2 and since neither Hy|Hs Uz nor Hy Uz, |Hj is a 2-join, N (z1) N H; #
@, A1, B; and N(x,) N Hy # &, Ag, By and hence by (2) the following hold:

(3) n>1.
(4) x1 has a neighbor in Hy, and it is of type pl, p2 or Hi-crossing w.r.t. H.

(5) =, has a neighbor in Hs, and it is of type pl, p2, d, Ad, He-crossing w.r.t. H, or it is
a pseudo-twin of ay w.r.t. H when |Ag| = 1.
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Let x; be the node of S with lowest index adjacent to a node of Hy. By (4), N(z1)NH C H;
and hence [ > 1. By Lemma A.8, x1,...,2; is a chordless path. Let z; be the node of S'\ 24
with lowest index that has a neighbor in H. Clearly j <[ and hence x1,...,x; is a chordless
path. Note that nodes xs,...,x;_; have no neighbors in H. Furthermore by (2), (5) and
Lemma A.3, the following holds:

(6) Either j = n and z; is one of the types in (5), or j < n and z; is of type A1, A, B or
By wrt. H.

Let C (resp. C') be the hole induced by Pyyp, U Pyryy Uba (resp. Pyp, U Pyryy U b).
Claim 1: z; is not an Hi-crossing w.r.t. H.

Proof of Claim 1: Assume it is. W.Lo.g. 7 is adjacent to b;. Then (C,x1) and (C’,z1) are
both bugs. If z; is of type A1, A, Ad or a pseudo-twin of as when |As| =1 w.r.t. H, then z;
is not adjacent to at least one of b, b5 and hence 2, ..., z; is a center-crosspath of (C,z1) or
(C',x1), a contradiction. If x; is of type By w.r.t. H, then (C'\ A1) U{xz,...,z;} contains a
3PC(b2, 1‘1).

Suppose that x; is of type B w.r.t. H. If j = 2, then bug (C,z;) and 2 contradict
Lemma 5.1. So j > 2 and hence (C'\ A1) U{z1,...,x;} contains a 3PC(x1,z;). So by (6),
x; has a neighbor in Hs and it is of type pl, p2, d or Hy-crossing w.r.t. H. In particular,
N(z1) N H C Hy and N(z;) N H C Hy, and hence H and x1, ..., z; contradict Lemma A.14.
This completes the proof of Claim 1.

Claim 2: z1 is not of type p2 w.r.t. H.

Proof of Claim 2: Assume it is. W.l.o.g. the neighbors of z; in H are contained in P,,,.
If z; is of type Aj, A, Ad or a pseudo-twin of ay when |As| = 1 w.r.t. H, then z; is not
adjacent to at least one of by, b5, and hence either C'U {z1,...,z;} or C' U{x,...,x;} induces
a 3PC(A,A) or a 4-wheel with center ay.

Node z; cannot be of type B, p2, d nor Hs-crossing w.r.t. H, since otherwise either
Payoy U Payyy, or Pyypy U Poyp, induces a 3PC(A,A) or a 4-wheel with center b;.

Suppose that x; is of type By w.r.t. H. Let P be the chordless path from z; to a1 in
G[Payby U{r1,...,z;}]. Let H' be the short connected diamond induced by P U Py U Ha.
Then by Theorem A.9 applied to H' and S, our choice of H is contradicted.

So by (6), N(zj)NH =1 and r € Hy. But then H and 1, ..., z; contradict Lemma A.14.
This completes the proof of Claim 2.

Claim 3: If N(x1) N H = by, then there exists a chordless path P = pq,...,px in G\ H such
that p1 is adjacent to x1, no node of P\ p1 is adjacent to x1, no node of P\ py has a neighbor
in H and one of the following holds:

(i) N(px) N H = vy, or

(ii) pr is of type p2 w.r.t. H and its neighbors in H are contained in oy, -

Proof of Claim 3: Let S = N[b1] \ {x1,vp, }. Since S cannot be a star cutset, there exists a
direct connection P = py,...,px from z; to H in G\ S. So p; is adjacent to z1, no node of
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P\ py is adjacent to x1, pr has a neighbor in H \ {b1, b2, b5} and it is not adjacent to by, and
the only nodes of H that may have a neighbor in P \ py are be and bj,.

Case 1: by and b, do not have neighbors in P\ pg.

Case 1.1: pj has a neighbor in X\ {b2, b5}.

By Lemma 7.1 applied to ¥, z; and P, and since no node of P is adjacent to by, one of
the following holds: (a) N(py) VX = vy, (b) py is of type p2 w.r.t. 3 with neighbors in P, ,
path of ¥; or (c) py is of type d w.r.t. ¥ and it has no neighbor in Py, \ y.

Suppose that (a) holds. By (1) either N(py) N H = v, and hence (i) holds, or a;b; is an
edge and N(px) N H = {a1,a)}. The second case cannot hold, since then P, U Py,p, UP U
{z1,d|} induces a 4-wheel with center a;.

Suppose that (b) holds. First suppose that N(py) VX C P,p,- Then by (1), py is of type
p2 or Hy-crossing w.r.t. H. If py is an Hy-crossing w.r.t. H, then (P,,p, \a1)UPU{x1, b2, b} }
contains a 3PC(by, pg). So p is of type p2 w.r.t. H. Note that p is not adjacent to by, and
hence (H \ vy, ) UPUx; contains a short connected diamond H'(A1, As, By, B2) that contains
x1, and hence by Theorem A.9 our choice of H and S is contradicted. Therefore N(pg) N3
is not contained in P,p,, and hence |As| = 1. Suppose that N(py) N3 C P,,,. So by (1), p
is of type p2 w.r.t. H. But then (H \ (P, \ b1)) U P Uz contains a connected diamond
whose side-2-paths have fewer nodes in common than the side-2-paths of H, contradicting our
choice of H. Therefore N(px) VX = {a1,a2}. By (1) py is of type a, A or it is a pseudo-twin
of @) wr.t. H. By Lemma 7.2 applied to ¥', by and path x1, P, node py must in fact be of
type A w.r.t. H. But then (H \ (Payp, \ b1)) U P U x; induces a short connected diamond
H'(A}, As, By, By) where A} = {a},px} that contains x;. But then by Theorem A.9 our
choice of H and S is contradicted.

So we may now assume that (c¢) holds. Suppose that |As] = 2. Then N(pp) N ¥ =
{a1,a2,aL} and so by (1) pg is of type A or it is a pseudo-twin of a} w.ar.t. H. If p; is a
pseudo-twin of a} w.r.t. H, then Py p, U(Pyy \a})UPU{x1,bh} contains a 3PC (b, py). So
N(pk)NH = A. Let H' be the short connected diamond induced by Py UPUHyU{x1,b1}.
Then by Theorem A.9 applied to H' and S, our choice of H is contradicted. So [As| = 1, and
hence N(pr) N2 = {y, Yn,, vpy - By (1), N(pk) N H = {y,Yb,, Ypy, }- Suppose that pj, is not
adjacent to a node of By. Let H' be the connected diamond induced by (H\(Py,p, \b1))UPUz1.
Then the two side-2-paths of H’ have fewer nodes in common than the two side-2-paths of H,
contradicting our choice of H. So pg is adjacent to a node of By, w.l.o.g. say it is adjacent to
ba. Then byy is an edge, and hence bly is not an edge. But then PU Pa’lb’l U Payy U{z1, ba, by}
induces a proper wheel with center bs.

2b2

Case 1.2: pj has no neighbor in X\ {ba, b, }.

Then N(pg) NH C Pyry UBs. So by (1) either N(py)NH C Py, or py is of type t3 w.r.t.
H (adjacent to b)) or py is a pseudo-twin of b} w.r.t. H. If py is a pseudo-twin of b w.r.t.
H, then Pyyp, U (Pyrp, \ b1) U PU{x1,b2} contains a 3PC (b1, pk). If py is of type t3 wrt. H,
then Hy U P U{x1,bs} induces a bug with center by, and P, \ b is its center-crosspath. So
N(pk) WH C Pyy,. If N(px) N H = b}, then CU P Uy, induces a 3PC(by,b}). So py, has a
neighbor in X'\ {ba, 5,0, }. Note that b; is of type t2 w.r.t. ¥’. By Lemma 7.2 applied to
¥/, by and P, (ii) holds.
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Case 2: by or b, has a neighbor in P\ py.

Let p; be the node of P\ p; with highest index that has a neighbor in {bs,b5}. W.l.o.g.
we may assume that p; is adjacent to bs.

Suppose that pi does not have a neighbor in X\ {b2, b, }. Then py has a neighbor in Py -
Let C' be the hole contained in H; U P Uz; that contains P, UP Ux;. Since C'Ubs cannot
induce a 3PC (b1, p;), (C,ba) is a wheel and hence it must be a bug. But then P,,;, \ bo is its
center-crosspath. Therefore py has a neighbor in ¥\ {b2,05}. We now consider the following
cases.

Case 2.1: N(p;) N H = bs.

Since py is not adjacent to by and it has a neighbor in ¥\ {be, b}}, it cannot be of type
B, Bj nor a pseudo-twin of a node of Bo Ub}y w.r.t. H. If py is of type Ay, A, a, Hi-crossing,
a pseudo-twin of a node of Ay w.r.t. H or a pseudo-twin of a), when |A2| = 2 w.r.t. H, then
Y, p; and pjy1, ..., pr contradict Lemma 7.1.

Suppose that py is of type d or it is a pseudo-twin of y when y ¢ {a1,a2} w.r.t. H. Note
that |A2| = 1. By Lemma 7.1 applied to X, p; and p;11, ..., pg, node py, is either adjacent to bo
or N(pr) N H = {y, Yy, Ya, }. Let P’ be the chordless path from py, to az in G[Py,y Upy| and
let C' be the hole induced by P’ U P U P,,, Ux;. Since C' U by cannot induce a 3PC (b1, p;),
(C,by) is a wheel, and hence it is a bug. But then Py, is a center-crosspath of bug (C, b).

Suppose that py is of type t3, Ad or it is a pseudo-twin of ay w.r.t. H. Note that if py is
of type t3 w.r.t. H, then since py has a neighbor in ¥\ {be, b5}, N(px) N H C A. So in all
three cases, N(pr) N Hy = Aj. Let C be the hole induced by P, U P U z;. Since C' U by
cannot induce a 3PC (b1, p;), (C,by) is a wheel, and hence it is a bug. But then Pyy is a
center-crosspath of bug (C, bs).

Suppose that py is an Ha-crossing w.r.t. H. First suppose that |Ay| = 2. If py is
adjacent to ay (resp. ab), then let C' be the hole induced by P, U P U {a2,21} (resp.
Py, UPU{dh,z1}). Since C' U by cannot induce a 3PC(p;, b1), (C,bse) is a wheel and hence
it must be a bug. But then Py is its center-crosspath. So |As| = 1. Let P’ be the chordless
path from py to ag in G[(Pa,p, \ b2) Upk], and let C be the hole induced by P'UPUxz;. Then
again (C,bs) is a bug and Py is its center-crosspath.

Suppose that py is a pseudo-twin of by w.r.t. H. Since py, is not adjacent to by, N(px)NH =
{bg, by, v1,v9} where v1vg is an edge of P, p, \ b1. Let P’ be the chordless path from py to by
in G[P,,p, Upgl, and let C be the hole induced by P’ U P Ux;. Then (C,b2) must be a bug,
and hence H; U P U {by, z1} induces a bug (C,bs) and its center-crosspath.

Therefore by (1), pg is of type pl, p2 or p3 w.r.t. H. By Lemma 7.1 applied to ¥, p; and
Dit1s -, Pks N(px)NVH C P, p,. Let P be the chordless path from py, to az in G[(Paysp, \b2)Upk],
and let C' be the hole induced by P’ U P U ;. Since C' U by cannot be a 3PC(b1,p;), (C,b2)
must be a bug, and hence P is its center-crosspath.

Case 2.2: N(p;) N H = {by,b,}.

Since pg is not adjacent to by and it has a neighbor in X\ {be, b}}, it cannot be of type
B, By nor a pseudo-twin of a node of By U b}. If py is of type A;, Ad, Hs-crossing or a
pseudo-twin of a node of As U{ay,y} w.r.t. H, then ¥, p; and p;11, ..., pr contradict Lemma
7.2.
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Suppose that py, is of type A w.r.t. H. Let C be the hole induced by Py, UPUx;. Since
C' Ub; cannot induce a 3PC(b1,p;), (C,b2) is a wheel, and hence it is a bug. But then P
is its center-crosspath.

If py is of type a w.r.t. H, then by Lemma 7.2 applied to X, p; and p;1, ..., pg, N(px) NH =
{a1,as}. But then Hy U {p;, ..., pk, b2} induces a 3PC(ay,bs).

Suppose that py is of type t3 w.r.t. H. Since p; is not adjacent to b; and it has a neighbor
in ¥\ {ba, b5}, N(px) N H C A. But then X, p; and p;41, ..., pr contradict Lemma 7.2.

Suppose that pg if of type d w.r.t. H. By Lemma 7.2 applied to X, p; and p;11, ..., Dk,
N(pk)NVH = {y, Ys,, Yy, } and py, is not adjacent to by and by. But then (H\ Py,p, ) U{pi; - P}
induces a connected diamond whose side-2-paths have fewer nodes in common than the side-
2-paths of H, contradicting our choice of H.

If py is an Hj-crossing w.r.t. H, then it must be adjacent to b}, and hence (Py,p, \ a1) U
{pi,...pk, b}, b2} contains a 3PC(be, p).

If py is a pseudo-twin of @} w.r.t. H, then (Hy\a})U{p;, ..., pk, ba} contains a 3PC (ba, pi.).

Suppose that py is of type pl w.r.t. H. By Lemma 7.2 applied to X, p; and p;i1, ..., Dk,
|A2| = 1 and either yby is an edge and py is adjacent to Uy, OF ybl, is an edge and py is
adjacent to vy,. In the first case (H \ (Pyy Ub5)) U P Uz induces a proper wheel with center
ba. In the second case, Py p, U Pyup, U P U1 induces a proper wheel with center bs.

Suppose that py is a pseudo-twin of by w.r.t. H. Since py, is not adjacent to by, N(px)NH =
{bo, by, v1,v9} where v1vg is an edge of P, p, \ b1. Let P’ be the chordless path from py to by
in G[P,,p, Upgl, and let C be the hole induced by P’ U P Ux;. Then (C,b2) must be a bug,
and hence H; U P U {by, z1} induces a bug (C,bs) and its center-crosspath.

Suppose that pg is of type p3 w.r.t. H. By Lemma 7.2 applied to X, p; and p;y1,. .., Dk,
|As| = 1 and py, is adjacent to by or by, w.l.o.g. say to ba. Let P’ be the chordless path from
pr to y in G[(Poy \ b2) U pi), and let C be the hole induced by P’ U P U P,y U Py, U 2.
Then (C,bz) must be a bug and P,y is its center-crosspath.

Therefore by (1), pg is of type p2 w.r.t. H. By Lemma 7.2 applied to X, p; and p; 1, ..., Pk,
either N (px)NH C Py p,, or |As| = 1 and N(py)NH C P,,y,. Let P’ be the chordless path from
Pk 10 by in G[ Py, p, U(Payb, \b2)Upk], and let C be the hole induced by P'UPUz;. Since C'Ubs
cannot induce a 3PC(b1,p;), (C,b2) is a wheel, and hence it is a bug. If N(py) N H C Py,y,
then Py is a center-crosspath of (C,bs). So N(px) N H C Pyyp, - But then Hy UPU{ba, 71}
induces a bug (C,b9) and its center-crosspath. This completes the proof of Claim 3.

Claim 4: If N(z1) N H = a1, then there exists a chordless path P = py,...,pr in G\ H such
that p1 is adjacent to x1, no node of P\ p1 is adjacent to x1, no node of P\ py has a neighbor
in H and N(pr) N H = vg,.

Proof of Claim 4: Let S = Nla1] \ {1, vaq, }. Since S cannot be a star cutset, there exists a
direct connection P = py,...,px from z; to H in G\ S. So p; is adjacent to z1, no node of
P\ p; is adjacent to z1, px has a neighbor in H \ A and it is not adjacent to a;, and the only
nodes of H that may have a neighbor in P\ py are az, a) and af.

Since py, is not adjacent to a; and it has a neighbor in H \ A, p; cannot be of type Ay,
A, a, Ad, t3 (with neighbors in A), nor a pseudo-twin of a node of A2 Ua} w.r.t. H. So by
(1) the following holds.

(4.1) pg is not adjacent to aq, and it is of type pl, p2, p3, B, Be, t3 (with neighbors in B),
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d, Hy-crossing, Ha-crossing or a pseudo-twin of BUaj or y when y ¢ {aj,a2} w.r.t. H.

Case 1: ag and a} do not have a neighbor in P\ pg.

Then a is the only node of H that may have a neighbor in P\ pi. If a}, has a neighbor
in P\ pg, then (P \ px) Uz contains a hat of ¥, a contradiction. So no node of H has a
neighbor in P\ py.

If pg is of type Bs, B, d, Hi-crossing, Ho-crossing or it is a pseudo-twin of a node of BUay
or y when y ¢ {aj,a2} w.r.t. H, then since py is not adjacent to a;, Lemma 7.1 applied to
1,21 and P is contradicted.

Suppose that py is an Ha-crossing w.r.t. H. If [As| = 1 or py is adjacent to afy, then X, zq
and P contradict Lemma 7.1. So |As| = 2 and py is adjacent to as. But then x1, P is a hat
of 21.

Suppose that py is of type t3 (with neighbors in B) w.r.t. H. By Lemma 7.1 applied
to Xy, x1 and P, N(pg) N H = {by,b,,b1}. But then H \ (Pap, \ @1) U P Uz induces a
short connected diamond H'(Ay, Ag, Bj, B2) where B} = {p, |}, which by Theorem A.9
contradicts our choice of H.

So by (4.1), px is of type pl, p2 or p3 wot. H. W.log N(pry) NH C ¥;. By
Lemma 7.1 applied to ¥, 1 and P, N(px) N H = vg,, or pg is of type p2 w.r.t. H and
N(px) NH C Py,p,. Suppose that py is of type p2 w.r.t. H. Then, since pj, is not adjacent to
ai, (H \ vg,) U P Uz contains a short connected diamond H'(A1, A, By, By) that contains
x1, and hence by Theorem A.9 our choice of H is contradicted. So N(py) N H = v,, and the
result holds.

Case 2: ay or @} has a neighbor in P\ py.

Let p; (resp. p;) be the node of P\ py with lowest (resp. highest) index adjacent to a
node of {az,a}}. Since x1,p1, ..., p; cannot be a hat of 31, p; is adjacent to both as and af.
Then by (1), p; is of type a w.r.t. H. In particular, |As] = 1. W.lo.g. p has a neighbor in
¥\ A

First suppose that p; is adjacent to ag but not aj. Then [ > i. By Lemma 7.1 applied
to X1, p; and pyi1, ..., Pk, node pg has a neighbor in (P,,p, U Py, ) \ {a1,a2}. Let P’ be a
chordless path from py to a1 in G[Pya,p, U (Payb, \ a2) Upgl, and let C be the hole induced by
P'"UPUzy. Then (C,az) is a wheel, and hence it must be a bug, i.e. [ =i+ 1. So pi is not
adjacent to as. If py is adjacent to af, then by (4.1), pi is an Hy-crossing w.r.t. H adjacent
to by or a pseudo-twin of b} w.r.t. H. But then ¥y, p; and p;11, ..., px contradict Lemma 7.1.
So py is not adjacent to af, and hence C' U a} induces 3PC(aq, p;).

Now suppose that p; is adjacent to a}, but not ag. Then | > i. By Lemma 7.1 applied
to 1, pr and pi41, ..., pk, node py has a neighbor in ((Payp, U Paypy) \ {a1,a1}) Uba. Let P/
be a chordless path from py, to a1 in G[Pyp, U (Pap, \ @1) U {pk, b2}], and let C be the hole
induced by P’ U P U zy. Then (C,a}) is a wheel, and hence it must be a bug, i.e. [ =i+ 1.
So pg is not adjacent to a). If py is adjacent to ag, then by (4.1), pg is of type d w.r.t. H
or it is a pseudo-twin of a node of By or y when y ¢ {a;,as} w.r.t. H. But then ¥q, p; and
Dit1, .-+ P contradict Lemma 7.1. So py is not adjacent to agz, and hence C' U a2 induces a
3PC(G1 s pi)-

Therefore, p; must be adjacent to both ag and a}, and hence p; is of type t2 w.r.t. X. If
i is of type Bs, B, d, Hi-crossing, Hs-crossing or a pseudo-twin of a node of Bs U by or y
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when y ¢ {a1,as} w.r.t. H, then ¥, p; and p;41, ..., pr contradict Lemma 7.2.

Suppose that py is of type p3 w.r.t. H. By Lemma 7.2 applied to X1, p; and pi41, - .., Dk,
asby is an edge and py, is adjacent to a). Then agbl, is not an edge. Let P’ be the chordless
path from py, to b} in G[(Pyy \ a}) U pg], and let C be the hole induced by P’'U Py,p, U
{bl,as,py,...,px}. Then (C,d}) is a 4-wheel.

If pi is of type t3 w.r.t. H with neighbors in B, then by Lemma 7.1 applied to X1, p;
and pyi1, ..., Pk, N(pr) N H = {bo,by,b1}. If pg is of type p2 w.r.t. H, then by Lemma 7.2
applied to X1, p; and pi11,...,pk, N(px) N H C P, p,. In both cases let P’ be the chordless
path from pg to a; in G[Py,p, U pk], and let C be the hole induced by P’ U P U xy. Since
C'Ud) cannot induce a 3PC(ay,p;), (C,a}) is a wheel and hence it must be a bug. But then
H; U PU{x1,bs} induces a bug (C,a}) with its center-crosspath. Therefore pj cannot be of
type p2 nor t3 (with neighbors in B) w.r.t. H.

Suppose that py is a pseudo-twin of b} w.r.t. H. By Lemma 7.2 applied to X1, p; and
Dit1, - Pk, Dode py is adjacent to a). Let C be the hole induced by P,,,, UPU{x1,ba}. Then
(C,d!) must be a bug, and hence i = and k = [+ 1. But then C'Uas induces a 3PC(a1,p;),
or a proper wheel with center ag (in the case when agby is an edge).

Suppose pi is a pseudo-twin of a; w.r.t. H. Note that since py is not adjacent to ap,
N(pr) N H = {ay,a},vi, vy} where vivy is an edge of P, \ a1. Let C be the hole contained
in (Pyp, \ b1) UP Uz, Then (C,a)) must be a bug, and hence Hy U P U {b2, 21} induces a
bug (C,a}) and its center-crosspath.

Therefore by (4.1), pg is of type pl w.r.t. H. By Lemma 7.2 applied to ¥, p; and
Pl41; -+ Pks G2ba is an edge and N(py) N H = v,. But then Hy U P U {b2,z1} induces a
proper wheel with center a)j. This completes the proof of Claim 4.

By (4) and Claims 1 and 2, N(x1) N H = r where r € H;. W.lo.g. r € P,3,. By (6) it
suffices to consider the following cases.

Case 1: z; is of type pl, p2, d or Hy-crossing w.r.t. H.
Then N(x;) N H C Hy, and H and 1, ...,x; contradict Lemma A.14.

Case 2: z; is of type Ad or a pseudo-twin of ap when [As| =1 w.r.t. H.

Suppose that r # a;. If 2; has a neighbor in P,,, \ ag, then (Pp,p, \a2)UP,p, U{x1, ..., 2;}
contains a 3PC(r, x;). Otherwise (Pyyy \ a5) U Py U {21, ..., 2} contains a 3PC(r, z;). So
T =aj.

Let P be the path from Claim 4. If no node of P is adjacent to or coincident with a node
of {x2,...,x;}, then P, U FPyy UPU {x1,...,x;} together with either by or b, induces a
4-wheel with center a;. So a node of P is adjacent to or coincident with a node of {z2, ..., x;}.
Let p; be the node of P with highest index that has a neighbor in {za,...,z;}, and let z; be
the node of {zs,...,x;} with highest index adjacent to p;. If z; has a neighbor in Py, \ a2,
then P,y U (Pagp, \ a2) U {pi, ..., Pk, 21, ..., x;} contains a 3PC(vg,, ;). So x; does not have
a neighbor in P,,, \ a2, and hence z; is of type Ad wr.t. H, |42 = 1, y = a and
N(zj) N H = {a}, a1, a2, yp, - But then Pyyp, U (Pogpy \ a2) U {pis - P, T, .., 5} contains a
3PC (vq,, ).

Case 3: z; is of type Ay w.r.t. H.
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If » # a1, then ¥y, 2; and x1,...,2;_1 contradict Lemma 7.2. So r = a;. Let P be the
path from Claim 4. Then P, U Payp, U P U{x1,...,x;} contains a proper wheel with center
aj.

Case 4: z; is of type A w.r.t. H.

First suppose that r # a;. Let P be the chordless path from x; to by in G[(Pyap, \ a1) U
{z1,..;2;}]. Then Hy U PU Py induces a short connected diamond H' which by Theorem
A.9 contradicts our choice of H. So r = a;. Let P be the path from Claim 4. Let P’ be the
chordless path from x; to by in G[(Pyp, \a1) UPU{x1,...,z;}]. Then HoUP'U P,y induces
a short connected diamond H’ which by Theorem A.9 contradicts our choice of H.

Case 5: x; is of type By w.r.t. H.

By Lemma A.14 applied to H and x1,...,x;, r = by. Let P be the path from Claim 3.

Suppose that P satisfies (i) of Claim 3. Let P’ be a chordless path from z; to a; in
G[(Payp, \b1) U PU{1,...,z;}]. Then HyUP'U P,y induces a short connected diamond H'
which by Theorem A.9 contradicts our choice of H.

So P satisfies (ii) of Claim 3. If no node of P is adjacent to or coincident with a node
of {x2,...,z;}, then (Pyry \ ay) U P U {b1,b5,21,...;x;} contains a 3PC (b, x1). Otherwise,
there exists a chordless path P’ from x; to aj in G[(Pyy \ b1) U PU{x2,...,z;}], and hence
Hy U P"U P,,, induces a short connected diamond H’ which by Theorem A.9 contradicts
our choice of H.

Case 6: x; is of type B w.r.t. H.

If v # by, then Pyyp, U Pyryy U {1, ...z} induces a 3PC(r,z;). Sor = by. Let P be the
path from Claim 3. Suppose that P satisfies (i) of Claim 3. If no node of P is adjacent to or
coincident with a node of {x9,...,x;}, then P,y U Ppp, U P U{x1,...,2;} induces a 4-wheel
with center by. Otherwise, Py,p, U Py, UPU{x2, ..., x;} contains a 3PC (x5, vp, ). So P must
satisfy (ii) of Claim 3.

If a node of P is adjacent to or coincident with a node of {2, ..., 2}, then Py p, U (Pyry; \
b)) U Pyyp, U P U{xo,...,z;} contains a 3PC(x;b1bz, a1a}az). So no node of P is adjacent to
or coincident with a node of {zg,...,x;}. If j = 2, then (Pyy, \ a}) U P U {b1,ba, 71,..., 25}
contains a 4-wheel with center ;. So j > 2. But then (Pyy \aj)UPU{b1, 21, ..., x;} contains
a 3PC(z1,z;). O
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