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ABSTRACT: We present a novel methodology for determining the transport of technetium-99m, a
γ-emitting metastable isomer of 99Tc, through quartz sand and porous media relevant to the
disposal of nuclear waste in a geological disposal facility (GDF). Quartz sand is utilized as a model
medium, and the applicability of the methodology to determine radionuclide transport in
engineered backfill cement is explored using the UK GDF candidate backfill cement, Nirex
Reference Vault Backfill (NRVB), in a model system. Two-dimensional distributions in 99mTc
activity were collected at millimeter-resolution using decay-corrected gamma camera images. Pulse-
inputs of ∼20 MBq 99mTc were introduced into short (<10 cm) water-saturated columns at a
constant flow of 0.33 mL min−1. Changes in calibrated mass distribution of 99mTc at 30 s intervals,
over a period of several hours, were quantified by spatial moments analysis. Transport parameters
were fitted to the experimental data using a one-dimensional convection−dispersion equation,
yielding transport properties for this radionuclide in a model GDF environment. These data
demonstrate that 99Tc in the pertechnetate form (Tc(VII)O4

−) does not sorb to cement backfill
during transport under model conditions, resulting in closely conservative transport behavior. This methodology represents a
quantitative development of radiotracer imaging and offers the opportunity to conveniently and rapidly characterize transport of
gamma-emitting isotopes in opaque media, relevant to the geological disposal of nuclear waste and potentially to a wide variety of
other subsurface environments.

■ INTRODUCTION

The waste arising from >60 years of civil and military nuclear
operations around the world contains long-lived radionuclides
that must be contained and isolated from future populations.
Deep geological disposal facilities (GDF) proposed by US and
European waste management organisations1−4 employ an
engineered multibarrier approach (Figure 1) to retard the
release of radioactive species from the waste in quantities that
could be detrimental to life and the environment. The
multibarrier design concept typically combines reducing
conditions with high pH with the purpose of limiting the
solubility and mobility of radionuclide species within GDF if
(or when) primary containment fails.4

A significant obstacle to implementation of GDF is public
and political concern around risks and consequences of failure
against design criteria over the 105 to 106 year required lifespan
of the facility,4 highlighted by several failures to site GDF
repositories, e.g., in the UK5,6 and at Yucca Mountain in the
USA.7 Should GDF performance be compromised, it is possible

that long-lived, mobile radionuclides will be transported
through the engineered backfill into groundwater and pose a
long-term hazard to the biosphere and water resources. Thus, it
is critical to the safety case for the GDF not only to be able to
demonstrate that the design performance is well understood
but to show that conditions arising from design failures are also
accounted for and mitigated as far as possible.
One potentially problematic radionuclide is technetium-99, a

high-yield fission product of 235U, which has a long half-life (2.1
× 105 years) and high solubility in oxic conditions as the
pertechnetate anion [Tc(VII)O4

−]. While the conditions within
the GDF are expected to be reducing, such that insoluble
Tc(IV) should be the dominant oxidation state, the UK nuclear
authority estimates suggest that a significant proportion of the
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UK 99Tc inventory is expected to be present as the Tc(VII)
pertechnetate species.8 Performance assessment analysis of Tc
mobility has shown that the potential risk to future populations
from 99Tc critically depends upon its oxidation state,8 such that
Tc(VII) presents a significantly greater risk than Tc(IV) over
the one million year lifetime of the GDF, even when reducing
conditions are applied. Therefore, a robust design for the
engineered barrier concept should be able to account for the
risk arising from the presence and behavior of the mobile
Tc(VII), separately from the specific probability of oxic
conditions occurring or persisting within any given GDF
scenario. An improved understanding of the behavior of
pertechnetate in proposed barrier materials is also necessary
to evaluate the potential of different design specifications to
mitigate or remove the potential hazard.
Understanding the spatial and temporal dynamics of

geochemistry within and surrounding a GDF is essential in
this task. The importance of (bio)geochemical gradients on
radionuclide mobility is the focus of substantial current
research, e.g., refs 9−11. Such studies ideally require non-
invasive, nondestructive measurement of the distribution,
migration, and chemical transformation of radionuclides within
a physical model of the barrier material. This should be
considered over time as internal conditions respond to
controlled changes in boundary conditions.
Quantitative imaging techniques offer a means of achieving

this information and have been developed to study reactive
transport in porous media for a range of materials. Imaging
techniques include visible light transmission and fluorescence
imaging,12,13 nuclear magnetic resonance (NMR), and X-ray
computed tomography (see ref 14 for a recent review). Gamma
attenuation techniques with external americium-241 or cesium-
137 sources have been used to determine fluid transported
within a column.15 A key methodological step remains: the
extraction of quantitative geochemical information from image
data, particularly in three dimensions and opaque materials.14

Techniques have been developed to quantify, from image data,
pH and oxygen gradients in two dimensions (2D) within
porous media16 and to extract transport, deposition, and
remobilization rate parameters from time-lapse image sequen-
ces of colloidal particles in translucent quartz sand.13,17 Recent
work demonstrated that gamma-emitting radioisotopes can be
used as an effective imaging tracer within opaque sediment and
mineral systems, both in static batch experiments18,19 and in

flow-through columns.20 These studies utilized ultratrace
concentrations of a gamma-emitting technetium isotope,
technetium-99m (commonly used in medical and industrial
imaging applications), to demonstrate qualitatively the
immobilization of technetium on Fe(II)-bearing sediments
and minerals, via an Fe(II)-mediated reduction of Tc(VII) to
Tc(IV).
In this study, we report the use of 2D gamma-imaging to

quantify 99mTc transport parameters in a simple granular
porous media model. Uniform, saturated one-dimensional flow
through Ottawa quartz sand, as a model test material, is used to
demonstrate the ability of gamma imaging to obtain
reproducible data sets at the mesoscale (millimeters to
decimeters), which can be used to yield transport parameters
by fitting standard convection−dispersion models. Further-
more, we apply this methodology, for the first time, to
investigate the feasibility of direct noninvasive quantification of
radionuclide migration within opaque cementitious GDF
candidate material (crushed Nirex Reference Vault Backfill
(NRVB)21) under circum-neutral and alkaline pH. The
technique represents a base for development of model systems
for noninvasive study of radionuclide migration in complex
physicochemical environments, critical to establishing the
design specifications and safety case for future GDFs, and
also for application to other contaminant transport in the
subsurface.

■ EXPERIMENTAL SECTION
Replicated flow cells enabled aqueous solutions with and
without a 99mTc tracer to be pumped through saturated quartz
sand at a steady flow rate with continuous monitoring using a
gamma camera. 99mTc is a controlled radioactive substance;
therefore, experiments were performed with appropriate risk
assessment in specialist facilities at a hospital which routinely
produces and handles the material for use in clinical nuclear
medicine. All other chemicals used were obtained from Fisher
Scientific (UK) unless otherwise indicated.

Flow Cell Design and Setup. Bench-scale flow cells were
constructed of two Perspex plates separated by Viton seals and
bolted tightly together (Figure 2). The rear plate was solid,

while the front plate had an indent creating a void space to hold
the porous material. When assembled, the internal void was 100
× 50 × 7 mm. An upper port in the rear plate allowed for input
of the aqueous phase to the cell, while a lower port in the same
plate allowed for removal of the aqueous phase for control of
flow rate and sampling. Flow was from top to bottom along a
distance of 70 mm between the ports. 99mTc tracer was injected
through a needle immediately below the inlet port (Figure 2).

Figure 1. General design features of the multibarrier geological
disposal facility (GDF) concept proposed for the long-term (∼106
year) storage of high-level nuclear wastes in the deep subsurface (bgl =
below ground level). Material design should be optimized to resist
groundwater ingress and contaminant migration.

Figure 2. Schematic of the experimental setup showing construction of
the flow cells, the pumping system, and image acquisition geometry.
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The flow cells were filled with 70 g of Ottawa sand (99.5%
SiO2, particle diameter 500−700 μm) or 45 g of crushed Nirex
Reference Vault Backfill (NRVB),21 sieved to 2−4 mm particle
size, ensuring maintenance of appropriate flow rates. Crushing
and experimental setup were conducted in air several hours
prior to experimentation, in which time some carbonation of
the exposed surfaces may have taken place. The possible
chemical changes that might be expected for degraded backfill
are outside the scope of the current study and are thus not
addressed in this model GDF system. The sand was washed
and sonicated in ultrahigh quality water (18 MΩ) five times to
remove any existing impurities and oven-dried for 24 h prior to
use. The NRVB material was prepared by mixing 130.1 g of
Ordinary Portland Cement, 49.12 g of Ca(OH)2, 143.1 g of
CaCO3, and 177.76 mL of water in a Hobart mixer, giving a w/
s ratio of 0.552. It was cured at room temperature for 28 days
and kept sealed prior to use. Duplicate flow cells containing
sand were saturated with 16 mL of pH 5.7, deionized water (18
MΩ) so that the material plus aqueous phase filled the cell
above the inlet port. A 3 mm depth of solution was maintained
above the top of the material to ensure a uniform pressure head
across the flow field. Identical flow cells were prepared using a
pH 10.7 buffer solution (0.05 M NaHCO3, 0.1 M NaOH). A
flow cell containing NRVB was saturated with 25 mL of
deionized water at pH 5.7 (18 MΩ). The pH within these flow
cells quickly equilibrated to pH ∼12. The porosity calculated
from the ratio of solution volume to total saturated pack
volume was 0.37 for sand and approximately 0.77 for the
crushed NRVB, taking into account the internal porosity of the
material itself (estimated as 0.5521). Bulk densities of the
porous materials as packed were 1.68 and 1.57 kg dm−3 for
sand and NRVB, respectively.
Gamma Camera Imaging of Technetium-99m in

Steady Saturated Flow. Fully constructed, prefilled flow
cells were transported to the Nuclear Medicine Department of
the Royal Hallamshire Hospital (Sheffield, UK) for imaging.
Duplicate flow cells were placed <3 cm from the collimator
face. Flow was maintained in the cells at 0.33 mL min−1 using a
multichannel peristaltic pump (Watson Marlow, UK), yielding
a calculated pore velocity equal to 4.29 × 10−5 m s−1 for the
sand and 2.05 × 10−5 m s−1 for the NRVB (due to the greater
porosity). The Darcy flux in both cases was 1.5 × 10−5 m s−1.
Flow cells were flushed with 99mTc-free solution for 20 min to
establish uniform flow conditions prior to injection with 99mTc
and subsequent imaging. Imaging was performed on a dual-
headed GE Medical Systems Infinia gamma camera (GE
Medical, Milwaukee, WI, USA) fitted with a high resolution
collimator. A dynamic acquisition with 30 s frame intervals was
initiated a few seconds prior to injection of the 99mTc into the
flow cells. Images were acquired with a matrix size of 256 × 256
resulting in a pixel size of 2.2 mm. The spatial resolution of the
imaging system was measured at the collimator face using
standard NEMA22 testing techniques and was found to be 4.6
mm FWHM. This equates to a spatial resolution of ∼6 mm at
the location of the flow cells. Due to the low spatial resolution,
measurements were made at the center of the 99mTc tracer
plume.

99mTc Tracer. 99mTc as pertechnetate [Tc(VII)] was
produced on-site via saline-based elution of a GE Medical
Systems Drytec 99mTc generator. Approximately 0.2 mL of
dilute 99mTc was drawn into a syringe. This volume gave an
activity of 15−20 MBq at the time of the experiment. This
corresponds to 99mTc concentrations of <1 mM. The activity in

each syringe was accurately measured in a Capintec CRC-15R
radionuclide calibrator. Following injection of the 99mTc into
the flow cells as instantaneous pulses (<1 s injection), the
residual activity in each syringe was measured and this reading
was subtracted from the “full” reading to determine the exact
activity injected into each cell. In all cases, 99mTc activity
readings were decay-corrected to the time the gamma camera
acquisition was started (eq 1, 2):

=A A ekt
0 t (1)

=k
t
ln 2

1/2 (2)

where A0 is the corrected activity (MBq), At is the uncorrected
activity (MBq), k is the decay constant (s−1), t is the time
elapsed (s), and t1/2 is the half-life of

99mTc (21 636 s). For each
flow cell, a sensitivity value (counts per MBq) was determined
so that image counts could be related directly to 99mTc activity.
This sensitivity value was calculated by using region of interest
(ROI) analysis to determine the image counts per frame within
the region of the cell, averaged over the first 4 frames following
injection of the radioisotope. During this early period, all the
activity remained in the cell near the inlet. This averaged count
value was then divided by the known activity injected into the
cell to yield a sensitivity factor (eq 3):

= ̅x
A

Sf ci

0 (3)

where Sf is the sensitivity factor, xc̅i is the mean of the counts
from the first four frames of image acquisition (counts pixel−1),
and A0 is the initial activity (MBq). This sensitivity factor was
applied to all decay-corrected gamma counts throughout the
experiments to yield the concentration C (MBq pixel−1,
normalized by the volume of pores in each pixel to give MBq
mL−1) of 99mTc at any location in each time step.

Data Processing and Analysis. Raw image data were
calibrated using the sensitivity factor (eq 3) to give 2-D planar
spatial arrays of tracer concentration data at 30 s intervals for up
to 3 h during and after transit of the main mass of 99mTc
through the flow cell. Spatial moments in the direction of travel
were calculated at the center of mass of the plume using ImageJ
software.23 Calibrated concentration maps showing contours of
99mTc mass within the flow cells were produced by
interpolation of the 2-D data arrays using Surfer 9.0 software
(Golden software, CA). The transport of the 99mTc through the
uniform saturated flow field was modeled using a one-
dimensional (1-D) convection−dispersion equation for reactive
solute transport (eq 4):

μ∂
∂

= ∂
∂

− ∂
∂

−R
C
t

D
C

x
V

C
x

C
2

2 p (4)

where, subject to specified initial and boundary conditions, C is
the aqueous concentration of a tracer at a given distance along
the center of mass from inlet x (m) and elapsed time t (s), μ
(s−1) is a first-order decay coefficient describing irreversible
removal from the mobile aqueous phase, R is a retardation
factor describing equilibrium interaction with the solid phase,
and D is a dispersion coefficient equal to the product of the
longitudinal dispersivity λ (m) and mean pore flow velocity, Vp
(m s−1). A numerical solution to eq 4 was implemented in
inverse (parameter-fitting) mode in Excel-CXTFIT software24
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to yield transferable parameters describing the transport of the
radionuclide in the Ottawa quartz sand and NRVB.

■ RESULTS AND DISCUSSION
99mTc Transport within Ottawa Quartz Sand. Figure

3a−d shows the calibrated concentration distribution data for
99mTc transport through the Ottawa sand at pH 5.7, at 8 (0.29),
16 (0.58), 24 (0.87), and 32 (1.16) minutes after injection.
Values in parentheses and all time data thereafter are expressed
in pore volumes (PV), where time is normalized by the transit
time of a volume of solution equal to the volume of void spaces
in the sand. Under the conditions of these experiments, 1 PV
was equivalent to 1650 s (27.5 min) of travel time. The 99mTc
tracer passed through the saturated sand as well-defined plumes
with peak concentrations in the center approximately 10 ± 2
MBq mL−1. Figure 4 shows the total 99mTc activity measured in
the sand as a function of time for experiments at pH 5.7 and
10.7. Total activity decreased rapidly around 1 PV, as expected
for conservative transport. This behavior was highly reprodu-
cible for experimental runs at both pH 5.7 and 10.7. Residual
activities measured after 2 PV (not shown) were less than 1% of
the total activity injected and were not significantly different
from zero, taking into account the assumed measurement error

quantified by the standard deviation (±1%) for total activity
measurements made between 0.25 and 0.5 PV.

99mTc Transport within NRVB. Figure 3e−h shows
calibrated concentration distributions for 99mTc transport in
NRVB at 0.3, 0.6, 0.9, and 1.2 PV. Due to the lower pore

Figure 3. Calibrated concentration distribution from gamma camera images of 99mTc activity in Ottawa quartz sand in a pH 5.7 solution at (a) 0.29
PV (8 min), (b) 0.58 PV (16 min), (c) 0.87 PV (24 min), and (d) 1.16 PV (32 min) and in Nirex Reference Vault Backfill at (e) 0.3 PV (20 min),
(f) 0.6PV (40 min), (g) 0.9 PV (60 min), and (h) 1.2 PV (80 min).

Figure 4. Total measured activity of 99mTc (normalized to input
activity) as a function of time (expressed as PV, normalized to flow
rate) during transport through Ottawa quartz sand S1 and S2 at pH
5.7 and S3 at pH 10.7 and NRVB.
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velocities in NRVB than in sand, 1 PV was equivalent to 4300 s
(71.5 min) of travel time. 99mTc was transported through the
NRVB in an elongate but still coherent plume. The peak
concentration at 0.3 PV was 12 MBq mL−1, measured at ∼3 cm
from the injection point. After 0.6, 0.9, and 1.2 PV, the peak
concentrations were measured as 10, 9, and 8 MBq mL−1,
respectively, at ∼4, 5.5, and 6 cm from the tracer injection point
(Figure 3).
The total 99mTc activity measured in the NRVB as a function

of time is shown in Figure 4. As in sand, total activity decreased
broadly symmetrically around 1 PV, indicating conservative
transport with longitudinal dispersion. Residual activity at the
end of the measurement period was less than 2% of the initial
activity and not significantly different from zero, taking into
account variability in the image data quantified as noted above.
Numerical Modeling of 99mTc Transport Parameters.

99mTc activity was summed across horizontal pixel rows
(normal to the vertical direction of transport through the
cells) to yield concentration profiles which could be expressed
as a function of distance from inlet or time since tracer
injection. These data were fitted with the 1-D convection−
dispersion model (eq 4). In individual experiment runs S1−S3
and N1−N2 (Table 1), the model was regressed to
concentration profiles measured at five distances from the
inlet simultaneously, using the linear least squared error
method.24 The best fit model parameters for each experiment
condition are shown in Table 1; irreversible sorption parameter
μ was never larger than zero and is therefore not tabulated.
Figure 5a compares data from an individual experiment run in
sand with the output from the model run in forward mode for
the same distance intervals, using averages of the parameter
values shown in Table 1. The correlation between the model
and data is very strong (r2 = 0.98). Figure 5b shows equivalent
data and model output (r2 = 0.99) for NRVB.
The parameters obtained from numerical modeling of 99mTc

transport in sand (Table 1) strongly indicate conservative
transport (R = 1) of the 99mTc through the Ottawa quartz sand.
This conclusion is supported by independent spatial moments
analysis of the calibrated image data (Figure 6), which yields a
mean velocity for the center of mass of the 99mTc plumes in
sand of 4.32 × 10−5 m s−1. The transport velocity for the 99mTc
was therefore not significantly different from the pore velocity
in the quartz sand (4.29 × 10−5 m s−1) calculated a priori. In
contrast, both spatial moments and numerical modeling yielded
the same mean transport velocity for 99mTc transport through
NRVB, 1.64 × 10−5 m s−1, which was slower than the calculated
pore velocity based on the internal and boundary conditions of
the experiment (2.05 × 10−5 m s−1). This may be due to errors
in estimation of the internal pore structure of the NRVB which
may be discontinuous, creating regions of low flow or immobile
pore water. While R remained close to 1 indicating conservative

transport, the longitudinal dispersivity, λ, for NRVB was 0.0033
m, more than three times that modeled in sand.

Estimation of Sorption Coefficients from Tc Transport
Data. The sorption of solutes to a solid phase is often
described by an equilibrium linear sorption coefficient Kd (m

3

kg−1) estimated from batch experiments, which contain a
known volume of solution, concentration of solute, and mass of
solid phase, yielding (eq 5):

=K
C
C

V
md

s

0 (5)

where C0 and Cs are, respectively, the initial solute
concentration in solution and final equivalent concentration
on the solid phase, m (kg) is the mass of solid phase, and V
(m3) is the volume of the fluid. We approximated these
parameters by normalizing the known input activity and the

Table 1. Modelled Transport Parameters for 99mTc under Uniform Flow through Saturated Quartz Sand and NRVB

solution pH
sorption coefficient, Kd, ×10

−5

(m3 kg−1)

media run start end injected activity (MBq) velocity ×10−5 (m s−1) dispersivity, λ, ×10−5 (m) retardation, R M1 M2 M3

sand S1 5.7 5.8 15.02 4.24 ± 0.43 0.96 ± 0.07 1.00 ± 0.01 1.19 0.29 ± 0.08 0.13
S2 5.7 5.8 11.29 4.23 ± 0.43 1.05 ± 0.08 1.02 ± 0.01
S3 10.7 10.7 16.62 4.24 ± 0.17 0.90 ± 0.01 1.02 ± 0.00

NRVB N1 12 12 13.32 1.64 ± 0.50 3.30 ± 1.10 1.08 ± 0.38 1.27 6.90 ± 25.50 4.85
N2 12 12 24.80 1.65 ± 0.43 3.49 ± 0.85 1.05 ± 0.28

Figure 5. Best fit numerical regression of a convection−dispersion
model (lines) to measured 99mTc concentrations (data points) in (a)
Ottawa quartz sand and (b) NRVB material at several distances from
the inlet during uniform saturated flow.
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observed retained activity by the volume and mass of porous
media in the flow chamber, to obtain an estimate for Kd (we
denote this method M1). For reactive transport through porous
media and assuming that surface reactions occur sufficiently
rapidly relative to transport that equilibrium can be achieved,
Kd can also be related both to the retardation factor R in the
convection−dispersion equation (denoted method M2) and to
the ratio of mean transport velocities obtained from spatial
moments analysis (method M3) by eq 6:25

ρ
ε

= + =R
K V

V
1 b d p

Tc (6)

where ε is the porosity, ρb is the bulk density (kg m−3) of the
porous media, and VTc is the mean velocity of mass flux (m
s−1). We estimated Kd by all three methods M1−M3 (Table 1).
Estimated sorption coefficients for both sand and NRVB

were small, of the order 10−5 m3 kg−1, which is consistent with
the transport parameters obtained from the convection−
dispersion modeling and the observed low retention of 99mTc
in the sand after 2 PV. Although the model-derived errors
associated with NRVB were relatively large, Kd as estimated by
all three methods was consistently greater in NRVB
(approximately an order of magnitude) than in sand (Table
1). We reiterate that Kd as calculated assumes equilibrium in
the underlying sorption reactions; however, we cannot confirm
this with the data reported here and, as such, our values may be
biased toward underestimation. We do note, however, the
empirical observation that after a relatively short period of
flushing of the mobile 99mTc plume from the flow chamber, less
than 1−2% remained suggesting that the sorption that does
occur within the transit time of the plume may be readily and
rapidly reversible when solute concentrations return to zero, for
both materials under these experimental conditions. We are
also aware of the possibility that some irreversible sorption (1−
2%) may occur as it is hard to rule out this condition without
sorption capacity measurements.
Applicability of Quantitative γ-Imaging Transport of

Radionuclides and Other Contaminants in Opaque
Media. In the interpretations that follow, we recognize that
several assumptions and simplifications have been made in the
model GDF systems investigated. These have been made in
order to demonstrate the applicability of the gamma imaging

technique to radionuclide transport in a GDF and, as such,
provide the basis for future detailed experimentation.
The limited retardation (R ≈ 1) interpreted using the model,

very low estimated Kd obtained with the different methods, and
the minimal retention of 99mTc in the sand at the end of the
experiments imply closely conservative transport of 99mTc
through Ottawa sand. Although this is the first time that this
has been confirmed directly, it is not an unexpected result. The
point of zero charge (PZC) of Ottawa sand is between pH 2
and 5,26 so at the pH of these experiments (>5.7), the sand
surface is negatively charged. Since the pertechnetate anion
(TcO4

−) is also negatively charged, chemical sorption is
therefore impeded by repulsive electrostatic interactions
between the Tc and sand. This indicates that Tc(VII) may
be transported freely in environments where the substrate has
only negatively charged surfaces. Such pure-phase interactions
are a simplification of natural environments, especially where
significant quantities of Fe(II) or other minerals capable of
reducing Tc(VII) to the less mobile and less soluble Tc(IV) are
present or in environments where microbially mediated
reactions may take place to alter the oxidation state of
technetium. Nevertheless, these results highlight the utility of
quantitative measurements of transport parameters for Tc(VII)
in opaque porous media, that may be applied to substrate
related to GDF concepts (e.g., clay, host rock).
We have shown that it is possible to obtain quantitative

transport data using the gamma imaging technique in opaque
engineered backfill material. Pertechnetate transport in NRVB
in our GDF-proxy experiments was closely conservative, i.e.,
our data pertaining to 99mTc transport in this material showed
no significant retardation and very low sorption coefficients.
Previous studies have suggested low sorption coefficients for
Tc(VII) in batch experiments using aged, crushed NRVB,27,28

and our study indicates, for the first time using quantitative
imaging, that such observations may translate into a significant
potential for transport of 99Tc(VII) through a backfill candidate
material in a model flowing groundwater system. Despite the
low spatial resolution of the gamma images, 99mTc transported
through NRVB exhibited a greater dispersivity and slower
transport velocity than in sand. This is likely due to the very
high internal porosity. Discontinuities in the internal structure
may create significant immobile (very low flow) zones within
the pore space. Further work on NRVB will explore the use of a
mobile-immobile (MIM) transport model (e.g., Tang et al.24),
to better elucidate the dynamics of solute transport through this
material.
The quantitative gamma imaging technique described in this

paper represents a rapid and convenient method for obtaining
transport data for 99mTc. The main advantage of this technique
is that quantitative images can be obtained in opaque media; it
is possible to see the retained mass as a function of time and
space, allowing for a direct visual quantification of transport
parameters. Furthermore, in experiments where the sorption
can be controlled for, it may be possible to visualize and
quantify sorption. This multitude of information is such that
transport models, such as CXTFIT used here to test and
validate the methodology, may not be required to derive
transport parameters. High spatial resolution is important to
gain an accurate measurement of dispersivity. The spatial
resolution presented in this methodology was relatively low (6
mm), largely as an artifact of the spatial constraints placed upon
using a working hospital camera. However, higher spatial
resolution, and thus accurate dispersivity measurements, should

Figure 6. Tracer plume center of mass (CoM, first spatial moment in
the direction of flow) plotted as a function of calculated water
movement for 99mTc transport through Ottawa quartz sand and
NRVB. Dashed line indicates direct y = x correlation. Data are
averages of experimental replicates.
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be possible, depending upon the quality of the instrument and
proximity to the collimator.
Quantitative gamma imaging has several potential applica-

tions to contaminant transport in opaque media. In the context
of geological disposal of nuclear waste, the transport of 129I
from the waste and through the engineered barrier is a key
concern due to its long half-life (15.7 × 106 years), high
solubility, and poor sorption.27−29 Gamma imaging coupled
with the γ-emitting 123I radiotracer could be used to develop an
understanding of iodine transport behavior and thus support
engineered barrier material design. Because the gamma camera
can detect ultratrace concentrations of radionuclides, several
gamma-emitting isotopes could also be used to nondestruc-
tively quantify the transport of environmental contaminants in
soil, such as chromium (51Cr) or mercury (203Hg). This
highlights the potential versatility of the technique, applicable
to a wide range of scenarios as a novel tool to understand the
spatial and temporal dynamics of the geochemistry of a variety
of radiotracers in opaque media.
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