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‘HOW TO...’ PAPER

Building integral projection models: a user’s guide

Mark Rees1*, Dylan Z. Childs1 and Stephen P. Ellner2

1Department of Animal and Plant Sciences, University of Sheffield, Western Bank Sheffield, S10 2TN, UK; and
2Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-2701, USA

Summary

1. In order to understand how changes in individual performance (growth, survival or repro-

duction) influence population dynamics and evolution, ecologists are increasingly using

parameterized mathematical models.

2. For continuously structured populations, where some continuous measure of individual

state influences growth, survival or reproduction, integral projection models (IPMs) are

commonly used.

3. We provide a detailed description of the steps involved in constructing an IPM, explaining

how to: (i) translate your study system into an IPM; (ii) implement your IPM; and (iii) diag-

nose potential problems with your IPM. We emphasize how the study organism’s life cycle,

and the timing of censuses, together determine the structure of the IPM kernel and important

aspects of the statistical analysis used to parameterize an IPM using data on marked

individuals.

4. An IPM based on population studies of Soay sheep is used to illustrate the complete

process of constructing, implementing and evaluating an IPM fitted to sample data.

5. We then look at very general approaches to parameterizing an IPM, using a wide range of

statistical techniques (e.g. maximum likelihood methods, generalized additive models, non-

parametric kernel density estimators). Methods for selecting models for parameterizing IPMs

are briefly discussed.

6. We conclude with key recommendations and a brief overview of applications that extend

the basic model. The online Supporting Information provides commented R code for all our

analyses.

Key-words: integral projection model, mathematical model, Soay Sheep, structured

population

Introduction

The development of data-driven, study-specific models is

now commonplace in population biology (Ozgul et al.

2010; Bruno et al. 2011; Childs et al. 2011; Wallace, Les-

lie & Coulson 2013). These models are often used to

explore the implications of environmental or experimental

changes in individual-level demography at the population

level, for example how do size-specific harvesting rates

influence population dynamics and trait evolution (Wal-

lace, Leslie & Coulson 2013). The most commonly used

data-driven models are matrix projection models (MPM),

which project discrete population structure (e.g. age or

size class) in discrete time. These models are well under-

stood mathematically and there is a well-developed

toolbox of techniques for their analysis (Caswell 2001). A

major constraint on these models for populations where

individuals are characterized by continuous variation is

the assumption that individuals can be classified by a

small number of discrete states, say for a size-structured

population, small, medium and large individuals.

In some animal populations, an individual’s fate is

often well predicted by their age or life stage (e.g. mature

vs. immature), and matrix projection models yield a good

description of population-level processes. However, in

many populations, a continuous trait such as body mass

is a key determinant of performance: all else being equal,

larger individuals tend to exhibit greater survival and

fecundity, so using a continuous state variable will be

more appropriate and often improve the performance of

the model (Ramula, Rees & Buckley 2009). In other cases,

the whole purpose of developing a model is to understand
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how a continuous trait impacts ecological and evolution-

ary processes (Coulson, Tuljapurkar & Childs 2010; Coul-

son 2012). For example, Ozgul et al. (2010) explored how

changes in body mass associated with environmental

change mediated an historic shift in the population

dynamics of a yellow-bellied marmot (Marmota flaviven-

tris) population. In such settings, a framework for work-

ing with continuous trait variation is needed.

Easterling, Ellner & Dixon (2000) originally proposed

the integral projection model (IPM) as an alternative to

matrix projection models for populations in which demo-

graphic rates are primarily influenced by a continuously

varying measure of individual size or state. Their model

was deterministic and density-independent, analogous to a

matrix projection model with a constant matrix (Caswell

2001). Since then, IPMs have developed considerably and

now there are a wide range of methods available for anal-

ysing populations with complex life cycles, time lags, den-

sity dependence, environmental stochasticity and where

individuals are distributed in space (Childs, et al. 2003,

2004; Ellner, & Rees 2006, 2007; Kuss et al. 2008; Rees &

Ellner 2009; Coulson, Tuljapurkar & Childs 2010; Jonge-

jans et al. 2011; Ellner & Schreiber 2012). An R package

for parameterizing and analysing some types of IPM is

also now available (Metcalf et al. 2013).

These mathematically sophisticated papers assume that

an IPM has been constructed and parameterized, and pro-

vide methods for analysing the resulting model. However,

in the development of IPMs, relatively little has been writ-

ten about: (i) the basic construction of an IPM, and in

particular about how different life cycles and census times

determine the structure of an IPM and (ii) appropriate

statistical analyses for model parametrization, in particu-

lar model diagnostics and alternatives to simple paramet-

ric models. In this paper, we provide a detailed

description of the entire process from data to implementa-

tion of the IPM. Specifically we: (i) briefly describe the

mathematical background to IPMs for those unfamiliar

with the approach; (ii) provide a careful description of

how to map your study system onto an IPM, dealing with

how the life cycle and census times determine the struc-

ture of the IPM and the statistical analysis; and (iii) look

at model diagnostics, for the IPM structure, fitted func-

tions and implementation. Finally, we present methods

for relaxing some of the common statistical assumptions

used for constructing IPMs; we look at more general

regression models, and the use of GAM and kernel esti-

mators which allow very flexible descriptions of the mean

and distribution of residuals about the fitted demographic

models, respectively.

To illustrate the process of building an IPM, we gener-

ate artificial data using an individual-based model of the

Soay sheep (Ovis aries) population on St. Kilda (Clutton-

Brock & Pemberton 2004). Throughput the paper, we

provide R code for each step, so readers can easily imple-

ment an IPM for their study system.

We assume ‘ideal’ data: individuals are reliably marked,

accurately measured and can be refound at each census if

still alive, and otherwise presumed dead. Many plant

studies achieve this ideal, and some animal studies (such

as the Soays) come close. Reviewing the specialized tools

for imperfect recapture, open populations and similar

issues (e.g. www.phidot.org/software/mark) would

greatly lengthen the paper, and capture–recapture analysis

with continuous covariates is still under development

(Langrock & King 2013), so it would be premature to

offer advice. We also limit ourselves to model construc-

tion and implementation, and say nothing about estimat-

ing the uncertainty in estimates or projections. About

that, however, we can offer advice: bootstrap. The meth-

ods for data resampling, standard errors, etc. in matrix

population models (e.g. Kalisz & McPeek 1992; McPeek

& Kalisz 1993; Caswell 2001, Ch. 12) are all directly

applicable to IPMs.

Key assumptions and model structure

Individuals within a population typically vary in many

different ways, but for simplicity, we assume that varia-

tion among individuals is completely summarized by a

single quantity z, which describes an individual’s state

(e.g. size, fat stores), and this determines its fate. We

often refer to z as ‘size’, meaning some continuous mea-

sure of body size such as total mass or the log of

snout-to-vent length. However, z can be unrelated to

size – for example, it could be the individual’s spatial

location in a linear habitat such as a riverbank, or a

bird’s first egg-laying date. However, z must have finite

limits: a minimum possible value L and a maximum

value U. Ideally, z will be the character or set of char-

acters most strongly linked to individual survival,

growth and reproduction, though z cannot be, for exam-

ple, an individual’s realized growth rate or fecundity.

The premise of an IPM is that individuals with the

same current state z have the same odds of different

future fates and states, but what actually happens

involves an element of chance.

The state of the population at time t is described by the

size distribution n(z, t). Technically, for each time t, n(z, t)

is a smooth function of z such that

The number of individuals with trait value z in the interval

[a; b� at time t is ¼
Z b

a

nðz; tÞ dz: eqn1

A more intuitive description is that the number of indi-

viduals in the size interval [z, z+h] is approximately n(z, t)

h, and as h?0 this approximation becomes exact (the rel-

ative error goes to 0). It can be tempting to think of n(z,

t) as the number of size-z individuals at time t, but this is

incorrect and can lead to confusion. It is more like the

relative frequency of size-z individuals, analogous to the
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bell-shaped curve that characterizes the relative frequency

of different possible values in a Gaussian distribution,

and its integral from L to U is the total number of

individuals.

Between times t and t+1, individuals can grow, shrink

or die, and they can produce offspring that vary in size.

To describe the net result of these processes, we define

two functions P(z′,z), representing survival and growth

or shrinkage, and F(z′,z) representing the production of

new recruits. In both of these, z is size at time t and z′ is

size at time t+1. For an individual of size z at time t,

P(z′,z)h is the probability that the individual is alive at

time t+1, and its size is in the interval [z′,z′+h] (as with

n(z,t) this is an approximation that is valid for small h,

and the exact probability is given by an integral like eqn

1). Similarly, F(z′,z)h is the number of new offspring in

the interval [z′,z′+h] present at time t+1, per size-z

individual at time t.

It is often convenient to break P up into two processes:

size-dependent survival and size transitions from z?z′, for

example

Pðz0; zÞ ¼ sðzÞGðz0; zÞ eqn 2

where s(z) is the survival probability, and G(z′,z) describes

size transitions. Note that G(z′,z) is not the probability

density for the joint distribution of initial and subsequent

sizes; rather, it is a family of univariate probability densi-

ties for subsequent size z′ that depends on initial size z. If

you are not familiar with probability densities and how

they differ from probabilities, see Appendix 1. Examples

of F(z′,z) will be presented in following sections.

The net result of survival and reproduction is summa-

rized by the function

Kðz0; zÞ ¼ Pðz0; zÞ þ Fðz0; zÞ eqn 3

called the kernel – we will refer to P(z′,z) and F(z′,z) as

the survival and reproduction components of the kernel,

or as the survival and reproduction kernels. The popula-

tion at time t+1 is just the sum of the contributions from

each individual alive at time t,

nðz0; tþ 1Þ ¼
Z U

L

Kðz0; zÞnðz; tÞ dz: eqn 4

The kernel K plays the role of the projection matrix in

a matrix projection model (MPM), and eqn (4) is the

analogue for the matrix multiplication that projects the

population forward in time.

P and F have to be smooth functions for these defini-

tions to make sense. We have previously assumed that

they are continuous (Ellner & Rees 2006), but it is

actually sufficient for P and F to be piecewise continuous.

This means that an IPM can include piecewise regression

models, such as fecundity that jumps from zero to a

positive value once individuals reach a critical ‘size at

maturity’.

From life cycle to model: specifying a simple
IPM

The kernels P and F describe all the possible state transi-

tions in the population, and all possible births of new

s(z)

p
r

n(z,t) n( ′z ,t +1)

n(z,t)
s(z)

G( ′z ,z)

G( ′z ,z)
n( ′z ,t +1)

pb(z)b(z) C1( ′z ,z)

pb(z)b(z)C0( ′z ,z)

(a)

(b)

Fig. 1. Life cycle diagram and census points for (a) pre-reproductive and (b) post-reproductive census. The sequence of events in the life

cycle is the same in both cases. However, the diagrams are different because reproduction splits the population into two groups [those

who were present at the last census (large circles), and new recruits who were not present at the last census (small circles)], while at a

census time the two groups merge. Reproduction is described by a two-stage process with pb(z) being the probability of reproduction

and b(z) being the size-specific fecundity. Each new recruit has a probability pr of successful recruitment, and its size at the next census

is given by C1(z′,z). The pre-reproductive census leads to IPM kernel K(z′,z) = s(z)G(z′,z)+pb(z)b(z)prC1(z′,z) where C1(z′,z) is the size dis-

tribution of new recruits at age 1 (when they are first censused). The post-reproductive census leads to IPM kernel K(z′,z) = s(z)G(z′,z)+
s(z)pb(z)b(z)C0(z′,z) where C0(z′,z) is the size distribution of new recruits at age 0 (when they are first censused). The term pr is absent in

the post-reproductive census because new recruits are censused ‘immediately’ after birth, before any mortality occurs.

© 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Journal of
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recruits. But where do these kernels come from? In this

section, we answer that question by showing how to trans-

late population census data into a simple deterministic

IPM for a size-structured population. We will describe

how information on growth, survival and reproduction is

combined to make a kernel. As IPMs are data-driven, our

aim is to show how to arrive at a model which is both

consistent and feasible. By consistent, we mean a model

that accurately reflects the life cycle and census regime. By

feasible, we mean a model that can also be parameterized

from the available data. In the case study below, we will

then take the next step of fitting specific models to data.

The key idea is that the kernel is built up from func-

tions that describe a step in the life cycle of the species,

based on the data about each step. Throughout, we

assume that the data were obtained by marking individu-

als, and following them over their life cycle with evenly

spaced censuses at times t = 0,1,2,⋯.

We strongly recommend that you begin by drawing a

life cycle diagram indicating when demographic processes

and census points occur, see Fig. 1. For this first exam-

ple (Fig. 1a), we assume that at each time step, there is a

single census point immediately prior to the next occur-

rence of reproduction (i.e. there is a pre-reproductive cen-

sus). At that time, you record the size of each individual.

At time t+1, the population will include survivors from

time t and new recruits. We assume, for now, that you

can assign offspring to parents and therefore can record

how many offspring each individual has giving you a

data table like this:

Size t Offspring

3 0

7 5

8 4

Combining this with the size measurements taken at

time t+1, we end up with a table suitable for statistical

analysis:

Size t Offspring Survive Reproduced Size t+1

3 0 0 0 NA

7 5 1 1 8

8 4 1 1 10

where we have added two indicator variables for survival

(did the individual survive to t+1?) and reproduction (did

the individual have any new offspring?).

To define the structure of the IPM, we can begin by

ignoring individual size and constructing a model for the

dynamics of N(t), the total number of individuals at cen-

sus t that reflects the life cycle and data. Each individual

at time t can contribute to N(t+1) in two ways: survival

and reproduction.

1 Survival: Having observed how many individuals sur-

vive from each census to the next, you can estimate an

annual survival probability s. At time t+1, the popula-

tion then includes sN(t) survivors from time t.

2 Reproduction: We could similarly define a per-capita

fecundity b, and let prbN(t) be the number successful

recruits at time t+1, with pr being the probability of

successful recruitment. But the data distinguish

between ‘breeders’ and ‘non-breeders’, so we can be

more mechanistic. Let pb denote the probability that

an individual reproduces, and b the mean clutch size

among individuals that reproduce. Then, the number

of new recruits at time t+1 is pbprbN(t).

Combining survivors and recruits, we have the unstruc-

tured model

Nðtþ 1Þ ¼ sNðtÞ þ pbprbNðtÞ ¼ ðsþ pbprbÞNðtÞ: eqn 5

The ‘kernel’ for this model is K = s+pbprb, which is just a

single number because at this point, the model ignores the

size structure of the population.

The next step is to incorporate how the size at time t

affects these rates: the probability of surviving, the

probability of reproducing and the number of offspring

are all potentially functions of the individual’s current

size z:

s ¼ sðzÞ; pb ¼ pbðzÞ; b ¼ bðzÞ:

Our prediction of N(t) can now take account of the cur-

rent size distribution, n(z,t),

Nðtþ 1Þ ¼
Z U

L

sðzÞ þ pbðzÞprbðzÞð Þnðz; tÞdz: eqn 6

At this next level of detail, the kernel is a function of cur-

rent size z, K(z) = s(z)+pb(z)prb(z).
What is missing from model (6) is the size distribution

at time t+1. To forecast that, we need to specify the size

distributions of survivors and recruits. These are given by

the growth kernel for survivors, G(z′,z), and the size dis-

tribution of recruits, C1(z′,z), as described in Section Key

assumptions and model structure, giving us the complete

kernel

Kðz0; zÞ ¼ sðzÞGðz0; zÞ þ pbðzÞprbðzÞC1ðz0; zÞ: eqn 7

for the general IPM (eqn 4). So the structure of the kernel

is determined by the life cycle and when the population is

censused.

Going back to the life cycle diagram, what would hap-

pen to the structure of the kernel if you had conducted a

post-reproductive census (Fig. 1b)? The first thing to

notice is that order of events has changed. Mortality now

occurs before reproduction. This has important implica-

tions for the structure of the kernel and for the statistical

analysis of the data. For a post-reproductive census, the

data file will now look like this:

© 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Journal of

Animal Ecology

4 M. Rees, D. Z. Childs & S. P. Ellner



Size(t) Offspring Survive Reproduced Size(t+1)

3 NA 0 NA NA

7 5 1 1 8

8 4 1 1 10

The main difference to notice here is that for individu-

als that die before the next census, there are now NA’s in

the Offspring and Reproduced column. This has to be so,

because the life cycle in this case has mortality occurring

before reproduction. As a result, the structure of kernel in

this case is

Kðz0; zÞ ¼ sðzÞGðz0; zÞ þ sðzÞpbðzÞbðzÞC0ðz0; zÞ: eqn 8

In order to reproduce individuals now have to survive,

hence s(z) is a factor in both the survival and reproduction

components of the kernel. The absence of the pr term is a

consequence of censusing the population immediately after

reproduction. Newly produced individuals do suffer mortal-

ity before their next census at age 1, but this is included in

the s(z) term because already at age 0 they are part of n(z,t)

(Fig. 1b). The functions pb(z) and b(z) are now the probabil-

ity of reproducing, and mean number of offspring produced,

for individuals that survive the time step. The NA’s in the

data table will make sure that you ‘remember’ this, and only

data on survivors to fit these functions.

When reproduction occurs just before the next census

(as in Fig. 1b), pb and b could be fitted instead as func-

tions of z′, the size at the post-breeding census which is

also the size when reproduction occurs. This seems more

natural, but it leads to a more complicated model. In that

approach, the steps to producing size-z′ offspring are: sur-

vive and grow to some size z*, breed or not (depending

on z*) and if so have b(z*) offspring, some of which are

size z′. The fecundity kernel needs to total this up over all

possible sizes z*, which is:

Fðz0; zÞ ¼ sðzÞ
ZU

L

Gðz*; zÞpbðz*Þbðz*ÞC0ðz0; z*Þdz*: eqn 9

Alternatively, the interval between censuses can be broken

up into survival/growth (t to t+s) and reproduction (t+s
to t+1) phases with separate kernels:

nðz*;tþ sÞ¼
ZU

L

sðzÞGðz*;zÞnðz;tÞdz

nðz0;tþ1Þ¼nðz*;tþ sÞ

þ
ZU

L

pbðz*Þbðz*ÞC0ðz0;z*Þnðz*; tþ sÞdz*

eqn 10

We think that eqn (8) is simpler. When you fit pb and b

as functions of z, you are in effect letting the data do the

integrals with respect to z* for you, because the fitted

models will represent the average breeding probability

and fecundity with respect to the distribution of possible

sizes when reproduction occurs.

The size distribution of new recruits will also vary

depending on the timing of the census. In the post-repro-

ductive census, C0(z′,z) is the size distribution of recruits

at age 0 immediately after their birth (or so we assume).

In the pre-reproductive census, recruits were born imme-

diately after the previous census, so they have already

undergone a period of growth before they are first

observed, and so C1(z′,z) is the distribution of new

recruits aged 1.

In contrast to the fecundity kernel, the survival kernels

in (7) and (8) are the same. Indeed, so long as the demo-

graphic models are all based on z (initial size), it does

not matter where growth falls in the sequence of events,

or if growth is instead a continuous process that overlaps

with mortality and reproduction. If you know each indi-

vidual’s initial size and whether or not it survived

through the next year, those are the data to which s(z) is

fitted. If you know the final size of all survivors, those

(initial size, final size) pairs are the data to which G(z′,z)

is fitted.

If there are multiple censuses per year, the additional

measurements can inform the construction of the kernel,

in particular the order of events in the life cycle diagram

can reflect the additional information. Multiple censuses

also mean that we have to decide when we are going to

project the population’s state. This will typically be one of

the census times but might not, say if we used average or

maximum size over several censuses as our measure of

size. Alternatively, the annual projection could be broken

up in to several census-to-census projections as in eqn

(10), like a seasonal matrix projection model. In Appendix

4, we use the Soay sheep case study to present one

approach to constructing an IPM when there are several

censuses within an annual cycle. In some systems, there

may be additional time delays, say because reproduction is

better predicted by an individual’s state at time t�1. This

leads to a time-lagged IPM, where the state of the popula-

tion at time t+1 depends the survival and growth of indi-

viduals at time t and the recruitment of new individuals,

which depends on the size structure at time t�1 (Kuss

et al. 2008).

In practice, there are often many possible measures of

individual size or state that you could use (the mass or

snout–vent length of a crocodile and so on), many possi-

ble transformations (log, square root, etc). We cannot

emphasize strongly enough the importance of finding the

best models to forecast survival, fecundity and growth.

This step is like any other statistical analysis of demo-

graphic data, so there is no all-purpose recipe, but there

are standard tools readily available. For now, we assume

that you have made the right choices, but we come back

to modelling issues in Section Model diagnostics.

© 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Journal of
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The life cycles considered in this section are just two of

the simplest possibilities, and many organisms could not

be shoehorned comfortably into either of them. In Appen-

dix 4, we use the Soay sheep system to present a general

approach for situations where the sequence of events is

more complicated and different data are taken at various

times in the year. The important message of this section is

that the structure of the IPM is jointly determined by the

timing of the census and the order of events in the life

cycle, and both these also have important consequences

for the statistical analyses to estimate the demographic

functions making up the kernel.

Numerical implementation

The one-variable IPM (4) is easy to implement numerically

with a numerical integration method called midpoint rule

(Ellner & Rees 2006). Define mesh points zi by dividing the

size range [L,U] into m artificial size classes of width

h = (U�L)/m, and let zi be the mid-point of the ith size class:

zi ¼ Lþ ði� 0�5Þh; i ¼ 1; 2; . . .;m: eqn 11

The mid-point rule approximation to eqn (4) is then

nðzj; tþ 1Þ ¼ h
Xm
i¼1

Kðzj; ziÞnðzi; tÞ: eqn 12

In R (see Box 1), we arrange the hK(zj,zi) terms in a

matrix called the iteration matrix. This allows us to iterate

the model by matrix multiplication and use the wide

range of numerical tools available for matrices.

The only drawback to mid-point rule is that it is not

very efficient relative to higher-order integration methods,

so sometimes it takes a very large iteration matrix to get

accurate results. In the section ‘Model diagnostics’ we

give some pointers on choosing the size of the iteration

matrix and the size limits L, U, and mention some alter-

natives to mid-point rule.

Case study

So far we have looked at translating your study system

into an IPM and how to solve the model numerically. In

this section, we will put all this together, to show you that

building a basic IPM is really pretty straightforward:

there is no black magic or black boxes. To do this, we

will develop a case study for an idealized animal system,

based on published empirical studies. We will simulate

data from an individual-based model (IBM) – a simula-

tion that tracks individuals – and analyse the resulting

data to build an IPM.

Our example explores the body mass-structured

dynamics of an ungulate population: the feral Soay

sheep (O. aries) of the island of Hirta in the St. Kilda

archipelago, off the north-west coast of Scotland. We

have chosen to base our example on this population

because it has been a major target of research into the

dynamics and evolution of wild populations (Clutton-

Brock & Pemberton 2004). Although we use simulated

data, the IBM was parameterized using the Soay sheep

data set. The advantage of using simulated data is that

we know the underlying process that generated the data

and so can see how various modelling assumptions influ-

ence our results. Our aim is to outline a general

approach for moving from an individually structured

data set to a fully parameterized IPM. The resulting

workflow can be applied to almost any life history that

can be approximated as a sequence of transitions in dis-

crete time.

summary of the demography

We assume that our simulated population is similar to

the real Soay sheep population, but with a few impor-

tant simplifications. The St. Kilda population has been

studied in detail since 1985. Each year during this

Box 1. Implementing mid-point rule in R
A one-variable IPM can always be summarized by the

functions P(z′,z) and F(z′,z). So we assume that you have

a script that defines functions to calculate their values:

P_z1z<- function(z1,z,m.pars) {

# your code, for example

# return(s(z)* G(z1,z))

# using functions s and g that you have defined

}

F_z1z<- function(z1,z,m.pars) {

# your code

}

Here m.pars is a vector of model parameters. The

next step is to compute the mesh points:

L <- 1; U <- 10 # size range for the model

m <- 100 # m is the size of the iteration matrix

h <- (U-L)/m

meshpts <- L + (1:m)*h - h/2

The R function outer makes it easy to compute the

iteration matrix:

P <- h * (outer(meshpts, meshpts, P_z1z))

F <- h * (outer(meshpts, meshpts, F_z1z))

K <- P + F

We put this code inside a function mk_K which has

four arguments: the number of mesh points, the

parameter vector and the two integration limits, so

mk K (nBigMatrix, m.par.true, min.size,

max.size)

returns P,F,K calculated using the parameters in

m.par.true using nBigMatrix mesh points from size

min.size to max.size.

© 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Journal of
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period, newborn individuals are caught, weighed and

tagged shortly after birth in the spring, and body mass

measurements are taken from approximately half the

population each summer during the August catch.

Maternity is inferred from detailed field observations and

genetic data, while periodic censuses and mortality

searches ensure that individual mortality status and pop-

ulation density are very well characterized. Since body

mass data on established individuals and new recruits

are only available during the August catch, it makes

sense to choose this date as our census point to project

the dynamics from. Almost all of the mortality in the

system occurs during the winter months when forage

availability is low and climate conditions are harsh (Clut-

ton-Brock & Pemberton 2004).

These features of the life history and census regime

mean that the life cycle diagram for the Soay system cor-

responds to the post-reproductive census case in Fig. 1b,

that is, survival precedes reproduction and individuals are

censused prior to the key mortality period. A potential

problem with assuming this sequence of events is that

only adults that survive from one August catch until the

next contribute new recruits to the population, despite

the fact that lambing occurs several months earlier in the

spring. This is demographically equivalent to assuming

that any reproducing individual that dies between giving

birth in the spring and the August catch will fail to raise

viable offspring. With a handful of exceptions, this is pre-

cisely what is observed in the Soay system, so we consider

this to be a reasonable assumption.

To keep our example tractable, we will make a number

of simplifications: (i) we only consider the dynamics of

females; (ii) we ignore the impact of age structure; (iii) we

assume that the environment does not vary among years,

either as a result of density dependence (e.g. resource limi-

tation) or abiotic factors (e.g. winter weather); and (iv) we

assume that Soay females only bear singletons, though in

reality they produce twins at a rate 10–15% in any given

year. All of these assumptions can be relaxed, although

the resulting model is rather more complicated (Childs

et al. 2011). We work with natural log body mass, based

on the analysis of the real data; in Appendix 2, we discuss

why log-transformed size is often a good choice for IPMs.

The individual-based model is described fully in Appendix

3, and the R code is in Ungulate Simulate IBM.R in the

Supporting information.

demographic analysis

The results of the IBM simulation are stored in an R data

frame (called sim.data), with columns z, z1 containing

the sizes in year t and t+1; indicator variables for survival
(Surv = 1 if survived), reproduction (Repr = 1 if repro-

duced) and recruitment (Recr = 1 if recruited); and a final

column for recruit size (Rcsz). We should check the

data set carefully to make sure it has the structure we are

expecting.

z Surv z1 Repr Recr Rcsz

3.07 0 NA NA NA NA
3.17 1 3.24 1 1 2.47
3.02 1 3.17 0 NA NA
2.92 0 NA NA NA NA
3.14 1 3.25 0 NA NA
3.06 1 3.00 0 NA NA

Inspection suggests this data set is as we expect. For

example, individuals that die (Surv=0) have missing val-

ues (NAs) in all the other columns, and the individuals

that survive (Surv=1) but fail to reproduce (Repr=0) have
a sequence of missing values for the three remaining vari-

ables describing offspring recruitment.

Since we know how the data were generated, we can fit

the ’right’ models to the data; we will deal with methods

for model criticism later. Survival is modelled by a logistic

regression, so we fit it by

mod.Surv <-

glm(Surv ∼ z , family = binomial, data = sim.data)

The same is true for whether or not a female repro-

duced (Repr), and whether or not that lamb survived to

recruit into the population their first summer (Recr),

mod.Repr <-

glm(Repr ∼ z, family = binomial, data = sim.data)

mod.Recr <-

glm(Recr ∼ 1, family = binomial, data = sim.data)

Note that mod.Recr does not have any dependence

on mother’s size z, so it is estimating a single number:

the recruitment probability. The subsequent sizes of new

recruits and of surviving adults are fitted by linear

regression,

mod.Grow <- lm(z1 ∼ z, data = sim.data)

mod.Rcsz <- lm(Rcsz ∼ z, data = sim.data)

All the models were fitted using the sim.data data

frame, which was possible as the NAs ensure that only

appropriate individuals are included in each analysis.

The fitted models are summarized in Fig. 2, and all of

the models look reasonable as expected. Having fitted the

various models, we then store the parameter estimates in

m.par.est, using the same order and names as the

parameter vector from the IBM (m.par.true).

m.par.est <- c(

## survival

surv= coef(mod.surv.glm),

## growth

grow= coef(mod.grow),

grow.sd = summary(mod.grow)$sigma,

## reproduce or not

repr= coef(mod.repr),

## recruit or not

recr = coef(mod.recr),

## recruit size

rcsz = coef(mod.rcsz),

rcsz.sd = summary(mod.rcsz)$sigma)

names(m.par.est) <- names(m.par.true)

© 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Journal of
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implementing the ipm

The next step is to write down the kernel and check

whether its formulation matches our knowledge of the life

cycle and the data collection protocols,

Kðz0; zÞ ¼ sðzÞGðz0; zÞ þ sðzÞpbðzÞprC0ðz0; zÞ=2: eqn 12

In this instance, both the survival and reproduction

kernel components contain the s(z) term, because the

main period of mortality occurs prior to reproduction.

The survival component includes the growth kernel G(z′,

z); as in the example below, G is often specified in terms

of the conditional mean, variance and distribution fam-

ily of subsequent size. The reproduction component is

simply the product of the reproduction function, pb(z),

the probability of survival from spring until summer,

pr, and the conditional offspring size function, C0(z′,z).

The factor of 1/2 appears because we are tracking the

dynamics of females and have assumed an equal sex

ratio.

We are going to use the approach given in Box 1, so

we need to specify the P(z′,z) and F(z′,z) functions:

## Define the survival-growth kernel

P z1z <- function (z1, z, m.par) {

return(s z(z, m.par) * G_z1z(z1, z, m.par))

}

## Define the reproduction kernel

F z1z <- function (z1, z, m.par) {

return( s z(z, m.par) * pb_z(z, m.par) * (1/2) *

pr_z(m.par) * C_0z1(z1, z, m.par) )

}

These are just R translations of the two kernel compo-

nents, and each function is passed a numeric vector,

m.par, that holds the parameter values for the underlying

demographic regressions. In order to complete the imple-

mentation of our model, we next need to define the vari-

ous functions called within P_z1z and F_z1z. These

follow in a very intuitive way from the statistical models

we fitted to data. For example, the function describing

the probability of survival is:

s z <- function(z, m.par) {

linear.p <- m.par["surv.int"] + m.par["surv.z"] * z

# linear predictor

p <- 1/(1+exp(-linear.p))

# inv-logistic trans

return(p)

}

pb z <- function(z, m.par) {

linear.p <- m.par["repr.int"] + m.par["repr.z"] * z

p <- 1/(1+exp(-linear.p))

return(p)

}

These functions extract the appropriate parameters,

calculate the linear predictor at each value of z and then

transform this onto the probability scale. For s_z and
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Fig. 2. The main mass-dependent demo-

graphic processes in the Soay sheep life

cycle, as a function of current size, z in year

t. (a) The probability of survival, (b) female

mass in the next summer census (August

catch), (c) the probability of reproduc-

tion and (d) offspring mass. Source file:

Ungulate Calculations.R in Sup-

porting Information.
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pb_z, the output is a number, the probability of the event

in question, but G(z′,z) needs to evaluate a function, the

probability density function for size at the next census.

To do this, we use the regression of z′ on z to calculate a

sheep’s expected size at the next census given its current

size. The standard deviation of z′ is determined by the

scatter about the regression line in Fig. 2b, which we also

estimate from the fitted regression. Finally, because the

deviations about the fitted line are assumed to follow a

Gaussian distribution, we calculate the probability density

of observing a sheep of size z′ given its current size using

dnorm.

G z1z <- function(z1, z, m.par) {

mu <- m.par["grow.int"] + m.par["grow.z"] * z

# mean size next year (z1)

sig <- m.par["grow.sd"]

# sd about mean

p.den.grow <- dnorm(z1, mean = mu, sd = sig)

# pdf for size z1

return(p.den.grow)

}

Finally, we calculate the probability density function

for recruit size at the next census, given parental size in

the current census, which uses the same approach.

C 0z1z <- function(z1, z, m.par) {

mu <- m.par["rcsz.int"] + m.par["rcsz.z"] * z

# mean size of recruits next year

sig <- m.par["rcsz.sd"]

# sd about mean

p.den.rcsz <- dnorm(z1, mean = mu, sd = sig)

# pdf for offspring size z1

return(p.den.rcsz)

}

The final step in implementation is choosing the size

range and number of mesh points. Because large individ-

uals tend to shrink and their offspring are much smaller

than themselves (Fig. 2b,d), the upper limit just needs to

be slightly larger than the largest observed size, and we

set U = 3�55. The smallest individuals tend to grow, but

they have a small chance of breeding and having off-

spring who are even smaller than themselves. To make

sure that the IPM includes those individuals, we can

compute the mean offspring size for the smallest

observed size (z�2) and subtract off two standard devia-

tions of offspring size:

m.par.est["rcsz.int"] + m.par.est["rcsz.z"]*2 �
2* m.par.est["rcsz.sd"]

1.523043

So we take L = 1�5. The total size range is U�L� 2

units on log scale. We will use 100 mesh points so that

the increment between mesh points is �0�02 units on log

scale, which is about a 2% difference in body mass, see

Section Model diagnostics.

basic analysis

There is no density dependence in the Soay IBM, so we

expect the population to grow or shrink exponentially

and this is indeed what we find, Fig. 3a. The finite growth

rate of the population (k) estimated from the simulation
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Fig. 3. Simulation of the Soay IBM show-

ing (a) log population size, (b) mean sheep

size and (c) mean size at reproduction

plotted against time. In (d), we have plot-

ted the density estimates for size at the

end of the simulation. The red lines are

calculated quantities from the estimated

IPM, the blue line in (a) is the fitted

regression model. Source file: Ungulate
Calculations.R in Supporting Infor-

mation.

© 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Journal of

Animal Ecology

From life cycle to IPM kernel 9



by regressing log population size against time is ∼ 1�022,
so the population is growing by about 2% each year in

the IBM. We can estimate the growth rate using the IPM

as follows: (i) use the mk_K function with the estimated

model parameters m.par.est to make an iteration

matrix; (ii) use the eigen function to compute the domi-

nant eigenvalue of this matrix, which is our estimate of

the population growth rate (Easterling, Ellner & Dixon

2000). When we do this, we find that the fitted IPM pre-

dicts a k of 1�022, the observed population growth rate in

the IBM. Ellner & Rees (2006) review stable population

growth theory, which covers the existence of a unique sta-

ble population distribution and asymptotic growth rate,

which a density-independent population converges to

from any initial composition.

The fitted IPM can be used to calculate a wide range of

statistical summaries of the population (Rees & Rose

2002). For example, in the IBM, both the mean size and

mean reproductive size appear to approach a stable value,

Fig. 3b,c. Both these expectations are straightforward to

calculate from the stable size distribution, w(z), which can

be calculated using the eigen function. This is just a mat-

ter of extracting the dominant eigenvector w of the itera-

tion matrix and normalizing it to a discrete probability

density function, stable.z.dist.est <- w/sum(w). The

vector stable.z.dist.est can be thought of as the fre-

quency distribution for a set of narrow size classes centred

at the values in the meshpts vector defined in Box 1. The

mean of the stable size distribution is then mean.z.est <-

sum(stable.z.dist.est*meshpts).

To calculate the stable size distribution of reproduc-

tives, we compute w*s_z(meshpts)*p_bz(meshpts),

which is the discrete approximation w(z)s(z)pb(z), and then

normalize this so that it sums to one and can be used as a

probability distribution. Note the details of this calcula-

tion depend on the life cycle and census times. In both

cases, the IPM calculation provides an excellent descrip-

tion of the individual-based simulation, red lines in Fig.

3b,c.

What if we want to calculate other moments of the sta-

ble size distribution, such as the variance, r2
z? The same

logic applies, and with w(z) and the mean size, z, already

calculated this is straightforward. For example, the vari-

ance can be written as

r2
z ¼ Eðz2Þ � z2 eqn 14

where E(z2) is the expected value of z2 with respect to the

normalized stable size distribution. Using the vectors

defined above, the R code for this calculation is

var.z.est <- sum(stable.z.dist.est * meshpts^2) �
mean.z.est^2

var.z.est

[1] 0.07855819

That is, we calculate E(z2) by multiplying each squared

mesh point z2i by the proportion of individuals in the size

range [zi�h/2, zi+h/2] and summing these. We then

subtract the square of the mean, �z2, to arrive at the vari-

ance. Not surprisingly, this is very close to the size vari-

ance estimated directly from the IBM data (=0�078).
More generally, the expected value of any smooth

function of size with respect to the stable size distribu-

tion can be approximated in this way: first, evaluate the

function at the mesh points, multiply each of these by

the corresponding value of the normalized stable size dis-

tribution and sum. For example, if you want to know

the mean size of female sheep on the untransformed size

scale – remember, the Soay model works with log body

mass – you just need to apply the exponential function

to the mesh points first:

mean.z.ari.est <- sum(stable.z.dist.est*

exp(meshpts))

mean.z.ari.est

[1] 20.57083

This again is very close to the value calculated from the

IBM, 20�55. Give the close agreement between the calcu-

lations from the IPM and IBM, it is not surprising that

the predicted stable size distribution from the IPM closely

matches that seen in the simulation, Fig. 3d.

Model diagnostics

Each population is a unique situation, so developing a

good model is an iterative process of probing a candidate

model for faults and then trying to resolve them. It is

important to double-check a model at all steps, from

diagramming the life cycle through its computer

implementation.

model structure

The Soay kernel

Kðz0; zÞ ¼ sðzÞGðz0; zÞ þ sðzÞpbðzÞprC0ðz0; zÞ=2 eqn 15

is a sentence that you can ‘read out loud’ to see whether

it matches what you believe about the population.

The term s(z)G(z′,z) says:

An individual of size z at time t can be size z′ at time

t+1 if it survives, and grows (or shrinks) to size z′.

The next term s(z)pb(z)prC0(z′,z)/2 says:

Production of new offspring is a multistep process.

Starting from the current census, an individual has to

survive with probability s(z) in order to reproduce.

Those that survive have a size-dependent probability

of breeding, pb(z). If it breeds, then it produces a single

female offspring with probability 1/2, and the offspring

has a probability of surviving to the next census of pr.

The size distribution of new recruits that survive, C0(z′,

z), is dependent on parent size at time t.

When you read your kernel aloud in this way, it should

match your understanding of the species’ life cycle.

© 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Journal of
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demographic rate models

The functions that make up the kernel are statistical mod-

els whose assumptions about the data can be assessed

using standard model diagnostics. Statistical modelling

choices are often based on tradition, such as logistic

regression for survival. But tradition is often a reflection

of what was computationally feasible many decades ago.

Modern computers (and the advent of R) give us much

more flexibility to let the data dictate the form of demo-

graphic models and to carefully test the adequacy of sim-

ple models. Figure 4 shows a few simple diagnostics for

the Soay growth model G(z′,z), again using the IBM artifi-

cial data in the data frame sim.data. The growth model

is a linear regression, mod.grow < lm(z1 ∼ z, data =

sim.data), here using a subset of the data so that

growth is estimated from observations on about 190 indi-

viduals. We also calculated the fitted values, residuals and

standardized residuals, which will be used later:

zhat <- fitted(mod.grow)

resid <- residuals(mod.grow)

sresid <- rstandard(mod.grow)

The first three panels in Fig. 4 are similar to what you

would get from R’s built-in diagnostics for a linear regres-

sion using plot(mod.grow). But we prefer to do it our-

selves, so that we can use features from other packages

(mgcv, car).

1 Residuals should have constant variance and no

trend in mean; plotting residuals vs. fitted values

(panel a) provides a visual check on these properties.

The plotted curve is a fitted nonparametric spline

curve, using the gam function in the mgcv package

(Wood 2011). It hints at the possibility of a small

nonlinear trend, but this may be driven by a few

points at the left (and since the data come from the

IBM, we know that the underlying growth model

really is linear).

2 Residuals should be Gaussian. A quantile–quantile

plot (panel b), using the qqPlot function in the car

library, supports this. Perfectly Gaussian residuals

would fall on the 1 : 1 line (solid). The dashed lines

are a 95% pointwise confidence envelope, so we

should worry if more than 5% of points fall outside

the envelope or if any points lie far outside it. In this

case, the assumption that the residuals follow a Gauss-

ian distribution seems reasonable. As a further check,

we can test for statistically significant departures from

Gaussian distribution:

shapiro.test(resid)

Shapiro–Wilk normality test

data: resid

W = 0.9904, p-value = 0.2438

This confirms what we know: the distribution of residu-

als about the fitted growth curve is Gaussian.

3 A better check for constant error variance is a scale-

location plot (panel c). The plotted points are the

square root magnitude of the standardized residuals,
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Fig. 4. Diagnostic plots for the fitted

Soay growth function. (a) Residuals vs.

fitted values from the growth model. (b)

Residual normal Q-Q plot. (c) Scale-loca-
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linear model (continuous line) and spline

model (dashed line). See text for details.

Source file: Ungulate Calcula-
tions.R in Supporting Information.
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and the curve is again a fitted spline. The spline hints

at a possible weak trend, so we test for correlation

(using Kendall’s tau) but find none: cor.test(zhat,

sqrt(abs(sresid)), method="k") gives P=0�40.
4 To follow-up on the hint of nonlinearity in panel (a),

we can compare the linear model with a spline fit to

the same data (panel d, solid and dashed lines).

The spline in panel (d) suggests that growth is a weakly

nonlinear function of size. We know this is not true in

this case – it is an accident of random sampling from a

linear relationship – but with real data, we would have to

decide between the linear and nonlinear models. The sta-

tistical evidence is equivocal: a significance test using ano-

va(mod.grow,gam.grow) is marginally non-significant

(P = 0�089), while AIC slightly favours the nonlinear

model (AIC = �411�6) over the linear model

(AIC = �410�7).
The AIC difference is small enough that most users

would probably select the simpler model. However, its

lower AIC means that the nonlinear model is expected to

make more accurate predictions (recall that in the frequ-

entist framework AIC is a large-sample approximation to

the out-of-sample prediction error, which is why frequen-

tists and agnostics guiltlessly use both AIC and signifi-

cance tests). Moreover, Dahlgren, Garcia & Ehrlen (2011)

have shown that even weak nonlinearities can sometimes

have substantial effects on model predictions, so the non-

linear model should be taken seriously. When the statisti-

cal evidence for one model over another is equivocal,

unless one of the models is strongly favoured based on

some underlying biological hypothesis, we believe that the

best approach is to try both models and attach most con-

fidence to conclusions that the models agree on. Model

averaging is another possibility, but current model averag-

ing approaches are not always effective (Richards,

Whittingham & Stephens 2011) and we think that it is

often more informative to show the degree of uncertainty

by presenting the different results for the range of plausi-

ble models.

In an IPM growth model, the residuals are just as

important as the mean. In a typical regression analysis,

the goal is to estimate the trend represented by the regres-

sion line, and inference based on the model will be robust

providing the residuals are ‘close enough’ to Gaussian,

and the variance is ‘close enough’ to constant. But in an

IPM, the scatter around the regression line for growth is

also an important part of the model. A smaller growth

variance in large individuals might be important for pre-

dicting longevity because it keeps big individuals from

shrinking, even if it is inconsequential for estimating the

effect of size on mean growth rate.

Residual plots are less informative for the survival or

probability of reproduction models, because all observed

values are either 0 or 1, and there is no expectation of

Gaussian residuals. One visual check is to compare model

predictions with survival rates within size classes (Fig. 5a).

And we can again compare the linear model with a non-

linear model using gam (Fig. 5b). In this case, the linear

model is supported: it has lower AIC, and the difference

between the linear and nonlinear models is minuscule.

Further checks are to test for overdispersion and to test

whether the fit is significantly improved by adding predic-

tors other than size (e.g. age).

implementation: s ize range and mesh points

It seems natural that a model’s size range should corre-

spond to the range of observed sizes, perhaps extended a

bit at both ends. Many published studies have used this

approach. In our Soay example, we presented a ‘data’
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Fig. 5. Diagnostic plots for the fitted Soay survival function. (a) Survival as a function of size. The solid curve is the prediction of the

fitted GLM (logistic regression); the red circles are the predictions of the fitted nonlinear GAM (nonparametric logistic regression); the

open circles are observed survival fraction as a function of mean size for a series of size classes defined by percentiles of the size distribu-

tion. (b) The result of plotting the fitted GAM using plot(gam.surv), which shows the fitted spline regression (solid curve) on the

scale of the regression model’s ‘linear predictor’. If this curve is a straight line (with 1 degree of freedom specifying the slope), the GAM

is equivalent to the GLM. In this case, the fitted GAM has 1�0 ‘effective degrees of freedom’, and the linear model is well within the con-

fidence bands on the GAM estimate. Source file: Ungulate Calculations.R in Supporting Information.
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analysis based on a sample of 3000 observations. The min-

imum and maximum observed sizes in this sample were

1�8 and 3�5, respectively. Because size is on a natural log

scale, setting [L,U] = [1�6,3�7] allows the IPM to include

individuals ∼ 20% smaller or larger than any in the sam-

ple. However, it is important to check whether a size range

chosen in this sort of way is really big enough that individ-

uals are not getting ‘evicted’ from the model. Eviction

refers to situations where the distribution of subsequent

size z’ extends beyond [L,U], so that individuals in the tails

of the growth distribution are not accounted for when the

model is iterated (Williams, Miller & Ellner 2012).

An effective way to evaluate whether significant evic-

tion is occurring via recruitment or survival-growth is to

calculate the probability of eviction as a function of initial

size. For example, in the Soay model, the probability that

an established size z individual gets evicted is the integral

of s(z)G(z′,z) from z′ = U to z′ = ∞. Ideally, this number

should be at most a fraction of a per cent for all z. What

should you do if it is not? Or if you are worried that evic-

tion might still affect evolutionary analyses, because it

causes reproductive value to be underestimated? Unfortu-

nately, there is no universally appropriate cure for evic-

tion. A good starting point is to re-examine your growth

model, as noted above. If eviction is happening because

your growth model has an upper tail that extends beyond

what is actually possible, a distribution with tighter limits

on growth might fit the data better (e.g. a beta or trun-

cated Gaussian distribution). If your growth model does

not have an upper tail beyond z′ = U but eviction is still

occurring, there are several solutions you can try. These

are discussed by Williams, Miller & Ellner (2012) so we

will not review them here. As always, it is important to

consider alternative assumptions and how those affect

your conclusions.

Choosing the number of mesh points is a matter of bal-

ancing accuracy against computation speed. The number

of mesh points m required for accurate results depends on

the kernel. An integral computed by mid-point rule will

be accurate if the function being integrated is close to lin-

ear on intervals of length h = (U�L)/m. For IPMs, this

means that h needs to be small compared to the standard

deviation of offspring size and to the standard deviation

of growth increments z′�z. If neither of these is too small,

then a simple but effective approach is to start with a rea-

sonable value of m, say 50, and increase it until numerical

results stabilize to the accuracy you need. But if either the

standard deviation of offspring size or the growth incre-

ments z′�z is small, direct application of mid-point rule

might lead to a very large matrix and to calculations that

run slowly or crash when memory runs out.

Small variance in growth increments is particularly

problematic. In practice, it arises for long-lived, slow-

growing species. One option then is to use computational

methods that can deal with large matrices. For example,

the dominant eigenvalue and corresponding eigenvectors

can be found without also calculating all the others as

eigen does. Ellner & Rees (2006) explain how to do this

by iteration, and Dawsons (2013) explains how to do this

by calling ARPACK routines from within R. A second

option is to use more accurate numerical integration

methods (Dawson 2013). The third, and likely best,

option is to use methods for sparse matrices. Linear alge-

bra functions for sparse matrices (such as those in R’s

spam and Matrix libraries) only store and work with the

nonzero entries in a matrix. When growth is slow and

nearly deterministic, the IPM kernel will be structured like

a Leslie matrix, with zero or tiny values except in a small

strip near the top (fecundity) and just below the diagonal

(survival). Zeroing out transitions that do not really occur

(e.g. if h*K[j,i]<10�9) will result in a very sparse

matrix, and using sparse matrix methods will speed up

the computations enormously. Sparse matrix methods

can also be useful in more complex models where individ-

uals are cross-classified by multiple traits (Ellner & Rees

2006).

Fitting more flexible demographic models

In the Soay example, we have assumed that all demo-

graphic processes can be described by simple parametric

models, indeed all the models fitted were linear or general-

ized linear models with constant variance. Many empirical

applications of IPMs have found these models to be ade-

quate, but some cases need more flexibility. In this section,

we briefly tour some useful approaches, going from simple

(variable transformation) to complex (nonparametric esti-

mates of growth variability) but without the need for com-

plex coding by the user. To be concrete, we will think

about parameterizing a growth kernel G(z′,z) depending

only on individual size, by specifying the conditional mean

m(z) = E[z′|z] and the pattern of individual variation

around the mean. In a sense, this is just regression analy-

sis, but as we noted above, it is also important to carefully

model the between-individual variation in growth.

transforming variables

One long-standing approach is to seek a variable transfor-

mation such that the transformed data are fitted by a sim-

ple linear model. Log transformation is one example, and

it has been sufficient in many IPMs to date. When that

fails, a power transformation is sometimes effective,

z = xk where x is the raw size measurement (e.g. Bruno

et al. 2011). Maximum likelihood can be used to find a

good value of k. For the linear model yk� a + bxk + Nor-

mal(0,r2) with x,y,k>0, the profile negative log-likelihood

of k is (Box & Cox 1964, p. 215)

bcNLL=function(lambda,x,y) {

xl <- x^lambda; yl <- y^lambda;

fit <- lm(yl�xl); s2hat <- mean(fit$residuals^2);

return(0.5*length(x)*log(s2hat/lambda^2) �
(lambda-1)*sum(log(y)));

}
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In the following test case, artificial data are created for

which z ¼ ffiffiffi
x

p
follows a standard linear regression model:

z <- runif(N,1,10); z1 <- 1 + 0.5*z + 0.2*rnorm(N);

x <- z^2; x1 <- z1^2;

To estimate k, we minimize bcNLL with x=size in year t,

y=size in year t+1,
lambdaHat <- optimize(bcNLL,c(0.01,3),x=x,y=x1)

$minimum

This gives k close to 0�5, as it should (mean = 0�495 and

90% of values between 0�37 and 0�62 with N=100 data

points). The code is BoxCoxExample.R. Note, this is not

equivalent to the boxcox function in R’s MASS library,

which transforms only the dependent variable. In an IPM

growth kernel, the independent variable is also size.

If a transformed variable is used in the growth kernel,

it is simplest to use that transformation for the entire

model. However, other demographic models can still be

fitted on other scales. For example, let x be measured size,

and suppose that a growth kernel is fitted for z = log x

but survival is fitted well by logistic regression on untrans-

formed size, logit(s(x)) = a+bx. The survival function on

log scale is then logit(s(z)) = a+bez. Transforming growth

and offspring size models to different scales is also possi-

ble but a bit more complicated, see Appendix 1.

non-constant variance

In many cases, a linear model has been adequate for the

conditional mean (expected size next year), but the vari-

ance in growth is not constant. This variability needs to

be modelled so that the IPM produces realistic individual

growth trajectories and size distributions.

Linear regression with several different size-dependent

variance functions can be done in R using gls (e.g. Ellner

& Rees 2006). However, any variance function can be fit-

ted by maximum likelihood. For example, if the mean

and standard deviation of z0 are both linear functions of

z, the negative log-likelihood is

-sum(dnorm(z1,mean=a+b*z,sd=c+d*z,log=TRUE))

and the parameter values can be estimated by mle in

stats4. Even if your preferred model is available in gls

or elsewhere, maximum likelihood has advantages. You

can assume a non-Gaussian distribution for growth by

substituting a different probability density for dnorm,

such as a t distribution to accommodate fatter tails. And

it is then easy to compare models of varying complexity

using AIC, BIC or likelihood ratio tests (e.g. constant vs.

linear vs. quadratic dependence on individual size).

nonlinear growth: modell ing the mean

If your data cannot be transformed so that mean size at

the next census is a linear function of present size, a non-

linear mean function (such as a polynomial) can also be

fitted by maximum likelihood. But unless you have some

biological basis for specifying a particular nonlinear mean

function, it is probably preferable to instead fit a flexible

nonlinear model whose shape is dictated by the data. This

is a strength of R, and many options are available. If the

variance appears to be constant, the gam function in mgcv

can fit a spline whose degree of nonlinearity is automati-

cally chosen based on the data. For the Soay data, all this

takes are

require(mgcv); gamGrow <- gam(z1 ∼ s(z),

data=sim.data)

Note that s(z) in the line above is how the mean is spec-

ified to be a spline function of z, not the survival func-

tion. Figure 6 illustrates that this works surprisingly well

with a moderate amount of data despite high variance

about the mean.

The residuals from the fitted mean curve provide an

estimate of the growth distribution’s standard deviation,

sse <- sum(resid(gamGrow)̂2);

sdhat <- sqrt(sse/df.resid(gamGrow));

In 1000 replicate simulated data sets with the same

structure as in Fig. 6 and r = 5, the mean estimate of r
was 4�98 and 90% of estimates were between 4�5 and 5�5.
There is no formula for the fitted mean function, but it

still can be used in an IPM by using the predict method

for gam models, as follows.

Gz1 z <- function(z1,z) {

Gdata <- data.frame(z=z);

z1bar <- predict(gamGrow,newdata=Gdata,

type=response")

return(dnorm(z1,mean=z1bar,sd=sdhat))

}
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Fig. 6. Example of fitting a nonlinear mean growth function with

gam. The solid curve (black) is the true mean function 40z/

(15+z), and the circles are one typical simulated data set (Gauss-

ian with standard deviation r = 5, 150 data points). The dashed

curve (red) is the estimate of the mean function from the one

simulated data set plotted here. The shaded region (blue) shows

the pointwise 5th to 95th percentiles of the fitted mean function

over 1000 replicate simulated data sets. Source file: gamExam-
ple.R in Supporting Information.
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nonlinear growth: parametric variance
models

Unfortunately, one data set can have several different

complications. In the growth model just above, the mean

function can be any smooth function, but the residuals

are Gaussian with constant variance. It is still essential to

check whether growth variability really fits that assump-

tion and to improve the model when it does not.

Size-dependent variance and many non-Gaussian distri-

butions can be fitted using the gamlss package. The

mean, variance and up to two additional shape parame-

ters can be fitted as either parametric or nonparametric

functions of the independent variables. We cannot review

all the options here, but we give one example to illustrate

the possibilities. Suppose the growth variability in the last

example is instead a t distribution with d.f. = 5 and non-

constant variance. R’s rt function generates a standard t

distribution with variance r2
d:f: ¼ d.f.=ðd.f.� 2Þ, so below

we use a z-dependent factor scale to create artificial size

data with size-dependent variance in growth:

z <- runif(250,1,50)

# uniform distribution on [1,50]

z1bar <- 40*z/(15+z); scale <- 4*exp(-0.5+z/50);

z1 <- z1bar + scale*rt(250,df=5)>

Figure 7 shows results from fitting these ‘data’, estimat-

ing d.f. (assumed to be size-independent), a nonparametric

mean function (cubic splines) and either a nonparametric

r(z) (cubic splines) or the true r(z) function (loglinear). The

key point is that nonparametric fitting of r(z) was almost as

good as (somehow) knowing the true functional form. The

only cost is a slightly higher risk of missing the fat tails in

the growth distribution (i.e. estimating d.f.≫5, Fig. 7c).

nonparametric variance models

As a final level of generality, it is not even necessary to

specify a distribution for the growth variability. This may

be essential if no standard distribution can capture all the

features evident in the growth data, or it may let you

avoid a difficult choice between several candidates for the

‘right’ distribution.

Kernel density estimates are convenient for this because

they are easy to use in an IPM growth kernel. The fitted den-

sity function is just the average of a set of probability densi-

ties (typically Gaussian) centred at the residuals. The one

subtle point is that replacing each residual by a probability

density increases the growth variance, so the residuals

should be shrunk to offset this. This sounds complicated,

but the code is simple.

For simplicity, we go back to constant variance, using

gam to estimate the mean function. The first step is using

the residuals to estimate the growth variance:

Resids <- resid(gamGrow); # extract residuals

sse <- sum(Resids^2); # sum of squared errors

sdhat <- sqrt(sse/gamGrow$df.residual)

# estimated Std Dev

The only thing we need from the kernel density estimate is

its bandwidth h, the standard deviation of the probability

densities centred at each residual: h <- bw.SJ(Resids);
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Fig. 7. Simultaneously fitting the mean,

variance and shape parameter of a t distri-

bution. (a) The solid black curve is the

true mean function 40z/(15+z), and the

circles are a typical data set. The dashed

curves (red) are the pointwise 5th and

95th percentile estimates of the mean

function across 250 simulated ‘data’ sets,

using nonparametric splines (function pb
in gamlss) for the mean and standard

deviation functions. The nearly identical

dotted curves (blue) are the same, but

result from using the correct parametric

form of the standard deviation. (b) The solid

black curve is the true standard deviation;

the dashed and dotted curves are pointwise

5th and 95th percentiles, as in panel (a). (c)

Estimates of the shape parameter d.f. in the

t distribution, with values >20 not shown.

Source file: gamlssExample.R in

Supporting Information.
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The estimated probability density for growth is then the

average of Gaussian densities centred at the scaled residu-

als, dfun in the code below:

alpha <- sdhat/sqrt(sdhat^2 + h^2);

# shrinkage factor

hResids <- alpha*Resids

# shrinking the residuals

dfun <- function(z) mean(dnorm(z,hResids,h))

dfun <- Vectorize(dfun)>

Figure 8 shows an example. The ‘data’ follow the model

of Fig. 6 except that the growth variance was a t distribu-

tion with d.f. = 3. Taking the pragmatic approach that the

non-Gaussian error distribution will not throw off the esti-

mate of the mean by much, we fitted the mean using gam.

The resulting dfun was (correctly) markedly more peaked

and fat-tailed than a Gaussian with the same standard

deviation. But even with a decent amount of data (here,

150 data points), the estimate for an individual data set

can be erratic, especially in the tails. So unless your data

set is quite large, a nonparametric estimate of growth vari-

ation is probably best used as an exploratory step to iden-

tify the qualitative shape of the distribution. The final

model can then use a parametric distribution (t, beta, log-

normal, etc.) that has the right shape.

Kernels can still be used if the variance is size depen-

dent. First, estimate the standard deviation function sdG

and scale the residuals by their estimated standard

deviation, Resids <- resid(gamGrow)/sgG(z). Then

compute h and hResids as above. The estimate of the

growth distribution is then

dfun <- function(z) (1/sdG(z))*mean(dnorm(z/sdG

(z),mean=hResids,sd=h));

Again, this will only be reliable with a very large data set,

because the scaled residuals depend on the estimated

mean and standard deviation functions.

Recommendations and extensions

For the beginner just starting out building IPMs, we have

two key recommendations:

Recommendation 1: Always draw a life cycle diagram

like our Fig. 1, which summarizes the biology of the

system, when the censuses occur, and has the demo-

graphic functions indicated. Failing to do this can

result in a model that does not represent your study

system making any conclusions drawn difficult to jus-

tify. We believe this is likely to be the commonest and

most easily made mistake when starting out building

IPMs and so recommend all publications using IPMs

include a life cycle diagram like our Fig. 1 either in the

main text or online.

Recommendation 2: Explore your model thoroughly

using model diagnostics to test the model structure,

whether the demographic models (s(z) etc) are appro-

priate, and whether your conclusions are robust to the

details of how the model is implemented (e.g. the size

range and number of mesh points). We are great

believers in ‘suck it and see’, so, for example, if your

data does not unequivocally distinguish between two

possible growth models then use both and compare the

results. If you have used the code suggested in Section

Implementing the IPM, exploring alternative growth

models only involves changing the definition of G_z1z

and rerunning your analysis. This approach to under-

standing how the various assumptions influence your

results will allow you to understand your system better

and also determine which conclusions are robust and

which need to be interpreted with caution.

The simple IPM we have described is appropriate for

some systems (e.g. Wallace, Leslie & Coulson 2013), but

it will often be the case that the biology of the system will

be more complicated. Since the introduction of IPMs

(Easterling, Ellner & Dixon 2000), numerous extensions

have been developed (Table 1). These extensions can be

divided into two categories, those dealing with aspects of

the environment in which the population occurs, dealing

with say spatial or temporal variation in the quality envi-

ronment, and those dealing with more complex life histo-

ries, for example dormant states or stage structure where

individuals are cross-classified by stage (e.g. juveniles and

adults) and a continuous state (e.g. size). When building

complex IPMs, our advice would be to start simple and

add complexity when you are happy with your simpler
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as Fig. 6 but t-distributed variation of growth around the mean

with d.f.=3. The solid black curve is the true probability density,

and for comparison, the dotted curve is a Gaussian with the same

variance. The dashed curve (red) is a typical estimate of the den-

sity from one set of simulated data on growth of 150 individuals,

obtained as described in the text from the residuals of fitting the

mean growth function with gam. The shaded area (blue) are the

pointwise 5th and 95th percentiles of the density estimates in 500

replicate simulated data sets on growth of 150 individuals. Source

file: kernelExample.R in Supporting Information.
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analysis. For example, when building a stochastic environ-

ment IPM for Soay sheep, we would recommend building

a constant environment model first, as we have done, and

then extending this so the kernel varies from year to year

(Childs et al. 2004; Rees & Ellner 2009).

Having constructed and parameterized your IPM, many

different types of analyses are possible. For a discussion

of the general mathematical properties of IPMs, see Ellner

& Rees (2006, 2007); sensitivity and elasticity analyses are

presented in Easterling, Ellner & Dixon (2000), Ellner &

Rees (2006) and Rees & Ellner (2009); life table response

experiments in Williams & Crone (2006) and Rees & Ell-

ner (2009); evolutionary demography, the calculation of

ESSs and selection gradients, in Rees & Rose (2002),

Childs et al. (2003, 2004), Rees et al. (2006), Metcalf et al.

(2008), Childs et al. (2011); and the calculation of quanti-

tative genetics quantities in Coulson, Tuljapurkar &

Childs (2010). But really there is no limit to what you can

do. A carefully constructed and critically evaluated IPM

is a virtual population that you can manipulate at will

(metapopulation structure? restrictions on harvesting? less

rain or more floods? why not?), then enumerate and mea-

sure completely for as long as you like, without writing a

grant proposal or recruiting new students.
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