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Abstract

It is well known that the Morison equation has a limited capability in predicting wave forces on
slender cylindrical members of offshore structures. Attempts have been made to improve prediction in
both the time and frequency domains using system identification. In this paper the work to date will
be reviewed. System identification requires samples of time data for force and flow velocity; considered
here are data from a U-tube, the De Voorst wave flume and the Christchurch Bay tower. The results
obtained in the time-domain include an improved classification of wave forces and excellent predictions
of measured forces although the model structures are case specific. A series expansion for the force
spectrum is proposed via the Morison-Duffing equation which promises more accurate modelling of high
frequency components in the force histories for general application. This has implications for fatigue
analysis.

1 Introduction

Since its introduction in 1950 [11], the Morison equation has provided the main means of predicting
wave forces on slender cylinders. In the usual notation,

1
2
where F(t) is the force per unit axial length, u(f) is the instantaneous flow velocity, p is water density and
D is diameter. The dimensionless drag and inertia coefficients Cy and Cy, depend on the characteristics
of the flow. In general the main dependence is taken to be on Re, the Reynolds number, and K C, the
Keulegan-Carpenter number although these parameters do not have generally accepted definitions in
random or directional waves. In place of Re, the Stokes parameter § = Re/R C is often used. The
coefficients Cq4 and Cpn are usually obtained by applying least-squares procedures to measured force and
velocity data.

It is well known that Morison’s equation has deficiencies, particularly in the KC range 8 to 20 when
vortex shedding effects from the cylinder are very significant. This manifests itself l{as an inability to
mode] the high frequency components of the force; this has serious implications for fatigue studies.

The aim of the present work was to determine whether improvements on the Morison equation could
be obtained which would produce better predictions of force time-histories measured in a variety of flow
situations, ranging from sinusoidal flow in a U-tube, to unidirectional random waves in a large wave
flume, to directional seas in Christchurch Bay. Previous work in this area seems to have been restricted
to the addition of velocity-based terms to Morison’s equation in order to improve predictions for U-tube
data [15].

Section two describes how additional terms for the Morison equation have been hypothesised on
physical grounds and it is described how even a single additional term, F|F|, significantly improves
curve fits. This allows an improved classification into drag, inertia and history.

Unfortunately the new equation does not improve prediction due to its stability characteristics. In
section three, NARMAX nonlinear time series techniques are described, which give a model structure
automatically in discrete-time form. The models are shown to satisfy strict validity criteria. The
NARMAX models give good curve-fits and predictions but the equation structures vary from one flow
situation to another.

F = —pDCaulu|+ %‘I’PDszﬁ (1)



In section four it is shown how the NARMAX models may be used to generate higher order frequency
response functions (FRFs). Consistent structure is seen for all the flows in the third order FRF's (Second
order effects are always small). This structure is completely different from that obtained from the
Morison equation. Also, closed form expressions for the nonlinear FRFs are obtained in order to examine
quantitatively the variation in structure from one flow to another. Preliminary results are presented.

Finally, the use of neural network models is briefly discussed and again some preliminary results are
presented.

2 Improved Wave Force Classification

It is well known that the time-history of the wave-force on a cylinder can be due to complicated flow
effects which differ from one situation to another. If the Morison equation is to predict accurately,
all nonlinear effects must be represented by the nonlinear 'drag’ term proportional to u|u|. The linear
inertia component is in part due to the inviscid effect of flow acceleration. Expansion of the drag term
as a polynomial gives

u]u]=a1u+a3u3+asu5... (2)

which shows that even if the flow velocity is a sinusoid u(t) = U sin(27t/T) the force signal will contain
all odd harmonics. One immediately sees that the explanation for the failure of Morison’s equation
to predict the higher frequency behaviour of the force signal is that the relative size of all harmonic
components must be fixed by the one coefficient Ca.

A more detailed discussion of the physics of the situation is given in [16], briefly, the rate at which
vorticity is shed at separation is equal to i-;—uf, where u, is the velocity just outside the boundary layer
at separation. u|u| is thus roughly proportional to the rate of shedding of vorticity and the drag term
in Morison’s equation may be associated with this effect.

Since the drag term is associated with vorticity generation and the history of vortex shedding can be
a significant effect, one might expect the additional influence of vortex shedding on force to be modelled
by higher order and time derivative terms in F. As a further rationale, it is common practice in system
identification to include output terms to model history effects in order to produce a parsimonious model.
Initially additional terms proportional to F2, F3, F and F were included which are in fact the terms in
the equation for the Duffing oscillator. After some preliminary tests on U-tube data it became apparent
that the F? term could be discarded as insignificant; the model also showed a degree of improvement
when the F? term was replaced by one with the form F|F|. The form of the extended Morison equation
ot Morison-Duffing equation is thus

- ; 1 1 .
a;F+a;F+ F+a3F|F|= i—pDCJu!uHEwpD’Cmu (3)

The parameter estimation technique which enabled the determination of the coefficients ay, a3, a3,
C4 and C,, which give the best fit to the measured data are described in [16). The relative importance
of the new terms can also be established. We refer to these extra terms as *history’ terms although the
drag and inertia inevitably contain history eflects also. However, the additional terms are specifically
included to model the *gross’ history effect of vortex shedding.

While one aim is to improve force prediction, another is to improve force classification by improving
the fit of the equation to the measured data. With the Morison equation, estimates of C¢ and Cm
are biased by the residual error which has a structure determined by the low mechanisms. The history
terms should improve the fit and therefore give improved estimates of the contribution from drag, inertia
and history.

Having obtained a set of model parameters, it is necessary to check the accuracy of the model. The
simplest means of doing this is to plot and compare the measured force F; at each sampling instant with
the curve-fit value

Fi = —oy F; = a3 F; — aaFi|Fi| + Bruilui| + o 4)

based on the estimated parameters. B and B; have been introduced in order to simplify the notation.
One can also use a numerical measure of the closeness of fit; the measure adopted here is the normalised
mean-square error or M SE defined by

100 &

MSE(F)= mz(ﬂ - R)? (5)
i=1



This M SE has the following useful property; if the mean of the force signal F is used as the model
ie. F, = T for all i, the MSE is 100%.

A more stringent test of the model validity is to predict the wave force from equation (3) using
measured velocities and accelerations only, via some time-stepping procedure. This can then be compared
with the measured force. The fact that one needs to integrate a differential equation is a disadvantage of
using a continuous-time model. A further problem is the fact that samples of F and F data are required
by the parameter estimation procedures; these need to be estimated by numerical differentiation. The
estimated derivatives were found to be extremely senstive to noise on the F data. In order to avoid
these problems, the following discrete-time or NARMAX [9] version of (3) was adopted.

F; =0y Fi1+ 03Fica + aaFica|Fica| + bivioy + byuia + byui—1]ui-1l (6)

The measured data were obtained from three sources. In the first case, forces on a cylinder in the
sinusoidal flow of a U-tube were obtained from the experiments of Obasaju et al. [12]. The data were
¢ btained by digitising plots of force against time for KC = 3.31,6.48,11.88,17.5 and 34.68 available with
p = 417. Forces were also measured on a cylinder oscillating in still water and a uniform current by
Obasaju et.al. [13]. For the latter there is now an additional parameter defining the flow, the ratio of
current velocity to the amplitude of the oscillatory velocity, a. In the situations with a current a single
drag term in the Morison equation is maintained, i.e. an ’oscillatory’ drag and ’current’ drag are not
considered separately.

The second source of data was the velocities and forces due to random waves on a fixed smooth
cylinder measured in the Delta fume of the De Voorst facility of Delft Hydraulics. The waves were
generated to give a JONSWAP surface elevation spectrum. Further details are given in [16].

The final source of data was forces and velocities measured on the Christchurch Bay Tower as
described in [6). The same cylinder was used in the De Voorst tests but the sea states have greater wave
heights (up to 7m against 2m at De Voorst) and are directional with a prominent current.

Table 1 shows the results of fitting Morison’s equation to the U-tube and De Voorst data. In addition
to the fitted coefficients, the percentage contributions of the drag and inertia terms to the overall force
signal are given.

KC B al| Cy| Cm | Drag | Inertia | MSE

| | w| %l

l

Oscillatory flow data ( KC = %57 )

3.31 417 0.0 | 1.13 | 2.28 2 98 0.17
6.48 417 0.0 | 1.75 | 2.02 19 80 0.42
11.88 417 0.0 | 2.51 | 0.92 82 10 7.3
17.5 417 0.0 | 2.09 | 1.08 89 10 0.68
34.68 417 0.0 | 1.69 | 1.28 93 6 1.1
14.0 929 | 0.0 | 2.31 | 0.56 91 2 7.2
18.0 634 0.0 | 2.07 | 1.41 95 2 3.1
14.0 933 | 0.18 | 1.61 | 1.23 91 1 4.1
10.0 1081 | 0.52 | 1.38 | 1.24 81 15 5.8
14.0 417 | 1.01 | 1.23 | 1.58 74 2 0.38

‘ DeVoorst(KC‘—‘ﬁ%“I—)

[ 503 [~4.10° | 0.0 054 [184] 26 95| 238 |

Table 1: Morison Fit to Data.

The curve-fit for the KC = 11.88 data is shown in Figure 1. The result is clearly inadequate.

When the Morison-Duffing equation was used for the curve fitting, the results showed an enormous
improvement over the Morison equation, an example for KC = 11.88 is given in Figure 2. However,
when the predicted force output was obtained from equation (6) by stepping F; forward in time using
the measured velocities only and using Fy and F; to start the calculation, the M SE values showed
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Figure 1. Comparison between measured U-tube data and Morison
equation prediction. KC = 11.88.
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Figure 2. Comparison between measured data and least squares curve-fit
for the Morison-Duffing equation.



no appreciable improvement over those for the Morison fit. This is a surprising result in view of the
excellent curve fits and has yet to be properly understood.

The analysis indicated that the F|F| term in equation (6) generally made the most significant con-
tribution to the fit and an equation structure including only this extra term was tested:

F + oF|F| = pyulu| + B (M

the results are given in Table 2.

KC B a Cs| Cm a | Drag | Inertia

% %
Oscillatory flow ..ata ( #C = YT )
3.31 417 | 0.0 [ 1.09 | 2.18 | 0.01 1.8 89.6 0.2 0.17
6.48 417 | 0.0 | 1.42 | 1.59 | 0.07 | 124 49.8 4.6 0.18
11.88 217 | 0.0 | 1.25 | 0.64 | 0.22 | 20.5 5.1 26.7 2.2
17.5 417 | 0.0 | 1.85 [ 0.99 | 0.06 | 69.7 8.6 1.3 0.59
34.68 417 | 0.0 [ 1.40 | 1.12 [ 0.12 | 63.5 4.6 3.2 0.75 |
14.0 929 | 0.0 | 1.23 [0.79 | 0.21 | 25.6 0.5 25.7 1.7
18.0 632 | 0.0 | 1.45 [ 1.32 | 0.17 | 46.9 0.9 9.3 2.3
14.0 933 | 0.18 | 0.93 | 1.18 | 0.57 | 30.0 0.7 18.3 2.2
10.0 7081 | 0.52 [ 0.65 | 1.20 | 1.46 | 18.0 1.0 27.5 1.6
14.0 417 | 1.01 | 1.12 [ 1.62 | 0.44 | 61.0 2.0 0.5 0.36
De Voorst ( KC = ¥2uzml )
503 [~ 410" | 0.0 [ 046165007 187] 670] 28 20

Table 2: Morison +aF|F| Fit to Data.

The MSE’s are still significantly below the values for the Morison fits where the M SE was high. In
Table 2 the values of a are only meaningful when F is pormalised in some way. In this case this was
achieved by dividing by § pDU for sinusoidal flow and, equivalently, by pDu?,,, for the De Voorst data. -
Note that the percentage history contribution from the oF|F| term is most significant for KC between
10 and 14 when the M SE for the Morison fit is large. This range of K C has particularly large lift forces
[12] [13] which are caused by vortex shedding, providing qualitative evidence of the link between history
and vortex shedding.

The values of the coefficients Cm, Ca and a vary markedly from one situation to another and so
we are clearly not providing a universal curve-fit equation. However, it is interesting to note that the
sinusoidal case with K C = 6.48 and the De Voorst case with KC = 5.03 have very similar values for
C. and o with different Cy’s, which is the only indication of the difference in g values.

The force predictions of the model (7) gave little improvement on the Morison prediction due to
bifurcation effects as described in [16].

These procedures worked correspondingly well on wave force and velocity data obtained from the
Christchurch Bay Tower. These data were not so reliable as those measured in idealised situations
but they gave at least a qualitative assessment of the procedures. A suitable sample was chosen for
analysis and turned out to give a very severe test. The Morison fit was poor with the force peaks
grossly underestimated. The history term gave a similar contribution to the drag in the predominat
wave direction. On the basis of analysis in unidirectional flows, this indicates that the poor performance
of Morison’s equation is due to vortex shedding, a result that was not known a priori. The converse of
the argument is that if a poor fit by the Morison equation is not associated with a significant history
term then this is due to something other than vortex shedding.



3 System Identification via NARMAX Modelling

The previous section described an attempt to determine new model structures on heuristic physical
grounds. Although the adoption of these new structures resulted in improved curve fits, predictions of
the fluid forces were disappointing. (The important distinction between curve-fit accuracy and prediction
accuracy as measures of model validity is discussed in more detail in [19].) The approach taken here is to
allow sophisticated system identification techniques based on NARMAX models (8] free rein in deciding
the appropriate terms for an extended model in an attempt to produce good fits and predictions. The
extra terms produced may have no obvious relation to the flow phenomena involved.

The discrete Morison-Duffing equation of the last section is an example of 8 NARMAX model; the
present sampled output F; is expressed as a nonlinear function of past inputs ti—1y. ¢+ Yi-n, and outputs
Fio1y.++y Fion,. The most general polynomial NARMAX mode! (including products of order < n, but
excluding noise modelling) is denoted by

Fi= F("')(F.-_I,...,F.'-n,;ui-n---;“-'-n-"" (8)

It bas been proved [9) [10] under very mild assumptions that any input-output process has a repre-
gentation by a model of the form (8). If the system nonlinearities are polynomial in nature, this model
will represent the system well for all levels of excitation. If the system ponlinearities are not polynomial,
they can be approximated arbitrarily accurately by polynomials over a given range of their arguments.
Alternatively, a non-polynomial NARMAX model can be adopted.

In practice, it is unusual to know which terms should be in the model. This is not too much
of a problem if the system under study is known to be linear; the number of possible terms is a linear
function of the numbers of lags ny, n.. However, if the system is nonlinear, the number of possible terms
increases combinatorially with increasing numbers of lags. In order to reduce the computational load on
the parameter estimation procedure it is clearly desirable to determine which terms should be included.
Also, experience indicates that a final model containing ten to fifteen terms is usually adequate. Because
of this the NARMAX algorthms include a structure detection technique which determines automatically
which terms should be in the model [19].

Having obtained a NARMAX model for a system, the next stage in the identification procedure is to
determine if the structure is correct and the parameter estimates are unbiased. It is important to know
if the mode] has successfully captured the system dynamics so that it will provide good predictions of
the system output for different input excitations, or if it has simply fitted the model to the data; in
which case it will be of little use since it will only be applicable to one data set. Three basic tests of
the validity of a model are applied in the present work; two of the tests, the curve-fit or one-step-ahead
prediction and the model predicted output are described in the previous section. The final and most
stringent tests are the correlation tests [2] [19]). A number of correlation functions are required to vanish
before one can infer model validity.

When the NARMAX routines were applied to the U-tube data described above, the resulting models
were, for KC = 11.88

Fi = 0.18021 x 10F_; — 0.78516Fi_s _ 0.41016 x 10~1Fi_4
— 0.41113u;_aui-3ti-3 + 0.92188u;u;u; — 0.31250F;_qu;u;
o 042653 x 10Fs_aui_s + 0.84966 x 104F;_qui + 0.33159 x 107 Fioy Fiou; (9)
— 0.12659 x 105F;_qui-1

for KC =17.5,
F;, = 0.16842 x 10F;_, — 0.64108F;-2 — 0.26385 x 10~ F,_ Fi_1Fiq)
— 0.80901 x 10~y — 0.94940 x 10~ 'u;—3 + 0.8359Bujuiu; (10)

— 0.58117F,;_au;-3uj-3 -+ 0.14757F; 2 Fi—4ui-3
and for KC = 34.68,

F; = 0.16968 x 10F;—; — 0.92220F;.; + 0.62466 x 10~ Fi_yFi-1Fioy
— 0.58983u;-3ui-3ui-3 + 0.15208 x 10u;uiu; - 0.80145F;_1u,u; (11)
+ 0.46783 x 10-2F;_4Fi-q4 + 0.22397F;_3 — 0.33093 x 10~ y;_3

In each case, a substantial improvement over Morison’s equation is obtained. To illustrate this, the
model predicted output for the KC = 11.88 case is given in Figure 3. Note that the correlation functions
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Figure 3. NARMAX fit to KC = 11.88 U-tube data. (a) Model predicted

output. (b) Correlation tests.



shown in Figure 3b are all within the 95% confidence limits (the dashed lines) for a null result. (The first
of the correlation functions should actually be equal to 1 at the origin). In contrast, Morison’s equation
does not pass the correlation tests [19].

The number and type of the nonlinear terms changes for each data set. This is not particularly
surprising if one assumes that no simple extension of the Morison equation exists; the cubic terms are
always present because they are a part of the drag component, the source of the remaining nonlinearity
is largely the vortex shedding as indicated in the previous section and it is well known that the pattern
or mode of shedding can change dramatically as KC changes.

A NARMAX analysis of the De Voorst data yielded the following model.

F, = 0.85124F;» — 0.29028F;_a — 0.25433 x 10%u,_4
+ 0.73679 x 10%y; — 0.71581 x 10%u;_; + 0.47754 x 10%u;_qui—qti-4
+ 0.10364 x 10-2F, 1 Fi—1ui-4
(12)
For the Christchurch Bay data, a complex model was obtained which included 29 terms most of
which had no clear physical interpretation [19]. The fact that such a model was required can be offered
in further support of the conclusion that the inadequacy of Morison’s equation is due to the gross vortex
shedding effects which were also observed in the U-tube experiments.
The results here seem to indicate that there is no simple extension to Morison's equation which
allows a direct physical interpretation of the additional terms. The Christchurch Bay data shows a
strong resemblance to the U-tube data in this respect.

4 Higher Order Frequency Response Functions

In the previous section, NARMAX methods were applied to force and velocity data for various flows
around a cylinder. Although the resulting predictions gave substantial improvements over Morison’s
equation, the structures of the models differed for each flow. One reason why this situation might occur
is that the discrete-time representation of a continuous-time system is not unique. In order to draw any
conclusions from the NARMAX results in the time-domain, it is necessary to recover the underlying
continuous-time model or use some other means which can reveal any common underlying physical
structure in the NARMAX models. This can be done by passing to the frequency-domain where the
system has a representation by a number of higher order frequency response functions (FRF’s) which
can be determined directly from the NARMAX representation [5)-

The primary problem of system identification is to obtain a mathematical model of a given physical
system from consideration of measured input and output data. In general mathematical terms, a system
S can be regarded as a functional which maps given input functions e.g. z(t), to associated output
functions y(1).

y(t) = Sl(?)] | (13)

This is far too general to be very illuminating. However, it is well known that the input-output
functional for a linear system can always be written in the form

i) = j drh(r — )z(r) (14)

a relationship which is sometimes referred to as Duhamel’s integral. Within this framework, the system
is specified uniquely by its Green’s function or impulse response function h(t). The Fourier transform
F of equation (4.2) yields the familiar frequency domain expression

Y(w) = H(w)X(w) (15)

where X (w) and Y (w) are the Fourier transforms of z(t) and y(t) respectively and H(w) = F [h(t)] is the
system Frequency Response Function or FRF. All information about the system is encoded in either of
the functions h(t) and H(w). Which representation is used in a given problem will usually be dictated
by the form of the answer required.

Equations (14) and (15) are manifestly linear and therefore cannot hold for arbitrary nonlinear
systems. However, both admit a generalisation. The extended form of equation (15) was obtained in
the early part of this century by Volterra [17]. It takes the form of an infinite series

y(t) = ;1) + va(t) + wa(t) + - (16)



where

+00
yi(t) = drhy(r)z(t—T1) : 1
400 + oo
yz(t) — j j dTld‘J‘zhg(TI . Tg)t(f o T;)I(t - Tz) (18)
oo o ptoo
ya(t) = [f jj » dridradrsha(my, T2, 3)z(t — 1) z(t = m3)z(t — T3) 19)

The form of the general term is obvious from the above. The functions hy(7), ha(m1, 72), ha(71, 72, 73),
veehp(T1y. 0y Tn), .- - BTE generalisations of the linear impulse response function and are usually referred
to as Volterra kernels.

There exists a dual frequency-domain representation for nonlinear systems. The hizher order FRF's
or Volterra kernel transforms Hu(w1,...,wa), n=1,...,00 are defined as the multi-diraensional Fourier
transforms of the kernels, i.e.

+o0 + o0 .
Hp(wyy-eywn) =j d'rl...d'r.,h,.(rl,...,T,.)e"(“""""""“’"') (20)
-0 J=00
1 + 00 <4000 .
ha(T150--y70) = W.[ dul...dw..H.,(wl,...,w.,)e+'(”"'+"'+“"‘) (21)
-80 -0

The frequency-domain dual of the expression (17) is

Y(w) = Yi(w) + Ya(w) + Ya(@) + .. (22)
where
Y;(w) = Hy(w)X(w) (23)
1 [t
’g(w) = -2—17 du;ﬂ'g(wl,w -Ul)A'(Ul)X(U.- U]) (24)
i 1 400 pdoo
3(&’) = -(2—“’)3/_& - iu,dwgﬂg(wl,wg,w — W) - wg)X(wl)X(uz)X(w =ty - Ug) (25)

As for a linear system, the choice of time or frequency-domain representation is largely dictated by
the problem. In this case, the frequency-domain is indicated for the following reason. The objects under
study are the NARMAX models shown in the previous section. It was observed there that time-domain
models for two similar flows might contain different model terms. Because the NARMAYX representation
of a system is not unique, one cannot be sure if differences in the model structures for different flows are
due to differences in the underlying physics or simply a reflection of the non-uniqueness. However, the
pon-uniqueness is not a problem in the frequency-domain. No matter what the form of the model, if it
represents the measured data accurately it must reflect the correct frequency content, both from linear
and nonlinear parts of the system.

If one knows the equation of motion of a system (differential or discrete), the method of harmonic

probing can be used to obtain exact expressions for the higher order FRF’s. The method was introduced
in [1] for systems with continuous-time equations of motion and extended to discrete-time systems in
[5).
The validation and interpretation of the higher order FRF’s is discussed in detail in [19]. Briefly,
just as the graph of Hj(w) as a function of w gives a curve which characterises a given linear system. A
ponlinear system would also have a Ha(w),w3) surface defined over the (w;,w;) plane which characterises-
the second order nonlinear behaviour. In much the same way as peaks in H; (w) indicate the frequencies at
which elevated levels of output or resonances would be expected, ridges in the H; surface give information
about which combinations of frequencies will boost the second order component of the output y3(t). The
same is true for Ha which gives information about combinations of three frequencies. A problem arises
in the display of the FRF’s of above second order, the surfaces exist in four dimensions or more; the
solution to the problem adopted here is to plot the restriction H. a(wy, w3, w3) over the (wy,w3) plane.

Having reviewed the appropriate machinery for generating and interpreting higher order FRF, it
can now be applied to Morison’s equation. One slight complication arises; for technical reasons [19] it is
neccessary to expand the drag term u(t)|u(t)| as a polynomial. To third order, Morison’s equation is



F(t) = EQu+ Eu® + Ent (26)
in a convenient shorthand. Application of the harmonic probing algorithm yields the FRF’s

Hy(w) = K{ + iKmw (27)

: g
Hi(wy,wz,w3) = Ehf) (28)

The second order FRF vanishes as a consequence of the fact that nonlinearity is an odd power. This
is ot due to the approximation procedure; ulu| is an odd function so any least-squares polynomial
approximation will also be odd.

The third order FRF for the approximate Morison system is simply a constant, all components in the
third order output ys(t) appear with the same amplitude independently of input frequencies; therefore
there are no third order ‘resonances’.

Having obtained the higher order FRF’s, one can substitute into equations (23) and (25) and thence
into (22) to obtain the nonlinear spectral representation of the force in terms of the velocity spectrum
U(w)

.(3)

F) = (K + iKmo)U(w) + 35U » U+ U () (29)

where * denotes a convolution product.

This type of equation was introduced in [18]; a study of the efficacy of this equation based on
experimental data obtained in the De Voorst wave flume is presented in [7].

It is only a little more difficult to determine the higher order FRFs for the Morison-Duffing equation
(6) which was examined above as a possible extension to Morison’s equation. On approximating the
ul|u| and F|F| texms by cubics one obtains

Fi=aFioy+aFia+ a3F2, + byui—y + bauica+ baul_, (30)

where a;,a3,b; and by are now functions of the approximating intervals. Harmonic probing of this
system yields the higher order FRF’s

ble—iuAl + bge_Zi”A‘ (31
g e- Wbl — gae-3iwat )

Hl(h}) o=} 1

1 e=i(wr+wates)dl (s B,y (wy) By (wa) Hr(wa) + bs)
H3(W1,U2,W3) - E 1 = ule—i(u;+u:+ua)Ai + azc-—?l'(uxi-w:w:)ﬁ* ‘ (32)

This equation has much more complex third order dynamics. H; for the KC = 17.5 U-tube data
is given in Figure 4. Note the prominent ridges in the magnitude plot, these correspond to nonlinear
resonance conditions for combinations of three input frequencies. The form of the Hj differs greatly
from that for Morison’s equation which is simply a flat plane.

As the basic NARMAX models for the flows examined had different structures, the algebraic forms
for the higher order kernels also differ. For example the KC = 17.5 U-tube model (10) produced the
forms

by + bye- 2wt
g e WAl — gpe-Bwbt (33)

Hi(w) = 3
and

6Hz(w), w2, wa){1 - e~ ilwrtwatus)at nge'z"(“"*"""""")“} =

3¢ e~ f(Wi1twates)AH () ) Hy(w3) Hi(ws) + e2 + Cac'a'-(“""'”’“')m(-ﬁl (w1) + Hai(ws) + Hy(wa))+

c‘{c-i(m-u+4uz+3u.)A:Hl(wl)Hl(w2)+c—i(&ua+h:+ug)mﬂ-l (“h)Hl(wa)_'_c—i(wﬁau,+2u,)A1_Hl(u1)HI(wa)}

(34)
while the De Voorst model (12) gave



Q=h G=f

D.708E+01 B.1B0E +03

i

=301E402 ~1B0E403

® (a)

L 0.500£ 150 ~SO0E+00

Figure 4. H3(w,ws,w;) from Morison-Duffing fit to U-tube data with
KC =17.5. (a) Magnitude. (b) Phase.
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Figure 5. H3(w;,w;,w;) from NARMAX fit to U-tube data with
KC = 17.5. (2) Magnitude. (b) Phase.
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Figure 6. Ha(w;,w;,w;) from NARMAX fit to De Voorst data with
KC = 17.5. (a) Magnitude. (b) Phase.
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Figure 7. H3(w;,wq,w;) from NARMAX fit to Christchurch Bay data
with KC = 17.5. (a) Magnitude. (b) Phase.

Figure 8. Neural network for force prediction.



bo+ b e—iuAt +b c—ﬁuAl

(35)

— aye- WAl — gye=diwat

and

6H3(wy,ws,wa){l - a1‘5--'(..::+m+m;)::n - asC—Si(u;+w;+w;)At} = €l¢-4.‘(..;,+..,,+..,,)m+

Caemierbeats) At (=3B B () ) H) (w;) + €™ 3200 By (w1) By (w2) + €38 By (1) Ba(wa)} - (36)

where the a and b coefficients correspond to the linear terms and the ¢ coefficients to the nonlinear
terms. Although the structures for the Ha’s are quite different they both produce the same features in
the frequency domain (Figures 5 and 6). Both contain the characteristic ridges which were also present
in the Hj for the Morison-Duffing equation. In fact these ridges occur in all the U-tube H3’s and also
in the Hj derived by NARMAX analysis of the Christchurch Bay data (Figure 7) [19]. The similarity
between all the measured H3’s and that of the Morison-Duffing equation suggests that the Morison-
Duffing form could be curve-fitted to the experimental data yielding, via equations (22), (23) and (25),
an expression for the nonlinear force spectrum which generalises (29). The fact that a model equation
cannot predict accurately in the time-domain should not matter as long as the algebraic structure which
results for Hj is sufficiently flexible to represent the various cases; the Morison-Duffing structure shows
promise in this respect. It is significant that all the data so far examined shows a definite third order
structure which is not predicted by Morison’s equation.

5 Neural Networks

A recent development in system identification is the use of neural networks to model dynamical systems
[3). A very brief description of one form of neural network, the multi-layer perceptron (MCP), is given
here; many other network paradigms exist [14].

The MCP is simply a collection of connected processing elements called nodes arranged together in
layers (Figure 8). A set of signal values pass into the input layer nodes, progress forward through the
network hidden layers and the result finally emerges through the output layer. Each node i is connected
to each node j in the preceding and following layers through a connection of weight w;. Signals pass
through the node as follows: a weighted sum is performed at i of all the signals z, from the preceding
layer, giving the excitation z; of the node, this is then passed through a nonlinear activation function f
to emerge as the output of the node z; to the next layer i.e. '

2= f(ZW-';'Ii) (37)
J

Various choices for the function f are possible, the one adopted here is the hyperbolic tangent function
f(z) = tanh(z). One node of the network, the bias node is special in that it is connected to all other
nodes in the hidden and output layers, the output of the bias node is held constant throughout in order
to allow constant components in the excitations z; of each node.

The first stage of using a network to model an input-output system is to establish the appropriate
values for the connection weights w;j. This is the training or learning phase. Training makes use of
a set of network inputs for which the desired network output is known; at each training step, a set of
inputs are passed forward through the network yielding a trial output, this is compared with the desired
output. If the comparison error is considered small enough, the weights are not adjusted. If however
a significant error is obtained, the error is passed backwards through the net and a training algorithm
is used to adjust the connection weights as the error signal propagates back through the hidden layers.
The algorithm used in this work is the backpropagation algorithm. A detailed mathematical description
can be found in [14). Once the comparison error is reduced to an acceptable level over the whole training
set, the training phase ends and the network is established. The networks used in the following were
designed and trained using the NeuralWorks Professional II package produced by NeuralWare Ltd.

The neural network presented here was trained to predict the force time-history for sampled data
from the U-tube experiments described above with KC = 6.48. A Morison equation fit to this data
yielded a prediction M SE of 0.42 (Figure 9). A neural network was chosen with an input layer containing
8 nodes, a single hidden layer containing 4 nodes and an output layer consisting of a single node. The
values presented to the input layer at each sampling instant were the past 4 values of velocity and force
i.6. Wi1y.eyUi—ds Fic1yeee,Fiza; the desired output being the present value of the force Fi. After
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training, with the weight values established, the network furnished a representation of the velocity-force
system

F, = Fliiagysonytli=ay B iy y Fai) - (38)

and this is little more than a highly non-polynomial NARMAX model. After training on the U-tube
data, the network was used to predict the force, the result is shown in Figure 10. The MSE for the
prediction was 0.042, which is a factor of ten reduced from the Morison prediction. The neural petwork
offers hope of accurate force predictions, the non-polynomial nature of the system is not a disadvantage
as there is little reason to suppose that the underlying physics of the vortex shedding mechanism should
be expressible in polynomial terms. Work is currently in progress on obtaining prediction networks for
a range of flows, the ultimate aim being to model a directional sea.

Conclusions

A number of contempory signal processing techniques have been applied to the problem of modelling
wave forces. Results include an improved classification of wave forces and accurate prediction models
based on NARMAX analysis and neural networks. However, the models which predict accurately are
case specific and this limits the usefulness of the time-domain approach.

Through the Duffing-Morison equation an algebraic structure is proposed for the higher order FRF’s
which appears flexible enough to cover all cases of interest to a degree of approximation; further work is
required. On substituting into a series expansion for the force spectrum this would allow a more accurate
model of high frequency components in the signal. This clearly has implications for fatigue analysis.
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