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diffuse optical tomography
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Abstract. This paper proposes a new reconstruction method for diffuse optical tomography using reduced-order
models of light transport in tissue. The models, which directly map optical tissue parameters to optical flux mea-
surements at the detector locations, are derived based on data generated by numerical simulation of a reference
model. The reconstruction algorithm based on the reduced-order models is a few orders of magnitude faster than
the one based on a finite element approximation on a fine mesh incorporating a priori anatomical information
acquired by magnetic resonance imaging. We demonstrate the accuracy and speed of the approach using a
phantom experiment and through numerical simulation of brain activation in a rat’s head. The applicability of the
approach for real-time monitoring of brain hemodynamics is demonstrated through a hypercapnic experiment.
We show that our results agree with the expected physiological changes and with results of a similar exper-
imental study. However, by using our approach, a three-dimensional tomographic reconstruction can be per-
formed in ∼3 s per time point instead of the 1 to 2 h it takes when using the conventional finite element modeling
approach. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in

whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.19.2.026008]
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1 Introduction
Diffuse optical tomography (DOT) is a noninvasive imaging
modality that employs near-infrared light to interrogate optical
properties of biological tissue.1,2 Compared with alternative im-
aging modalities, such as functional magnetic resonance imag-
ing (fMRI), DOT has several advantages, including simplicity,
portability, reduced cost, and faster acquisition speeds. It also
has disadvantages, particularly a lower spatial resolution
than MRI.3

Reconstructing three-dimensional images of optical proper-
ties of tissue using DOT involves solving two distinct problems,
the forward and the inverse problem. The first problem is to pre-
dict the distribution of light at the detectors using a model of
light propagation to tissue. The second problem is to estimate
the optical parameter functions describing the optical properties
of the tissue, which minimize the difference between the exper-
imental and model-predicted measurements.

Due to the highly scattering nature of tissue at near-infrared
wavelengths, DOT requires accurate computational modeling of
light propagation to tissue.1 For this reason, anatomically real-
istic three-dimensional (3-D) tissue models, based on a priori
structural information provided by an alternative imaging
modality such as MRI, are increasingly used to maximize the
quality of the image reconstruction.4,5 On the other hand, as
the approximation improves, the complexity of the forward
and inverse problems increases, and the fact that the estimation
of parameter functions is an infinite-dimensional optimization

problem makes DOT a computationally demanding imaging
problem.6 This approximation-versus-accuracy dichotomy is
one of the computational bottlenecks in DOT, which becomes
highly relevant for the 3-D case. As a consequence, DOT is not
used routinely for bedside monitoring or outside the hospital
environment.

Previous efforts to address the computational bottleneck have
focused on either reducing the complexity of the forward model
while maintaining accuracy (model order reduction) or acceler-
ating the convergence of the numerical reconstruction algo-
rithms. Zhai and Cummer7 used model order reduction
techniques, common in structural dynamics, to decrease the
complexity of the system of equations derived from finite
element method (FEM); an adjustable parameter controls the
level of the approximation. This solution decreased by an
order of magnitude the time that the conventional approach
can take. Kolehmainen et al.8 employed a Bayesian approxima-
tion error model to compensate the loss of accuracy when using
a coarse mesh; however, reconstruction times are still far from
achieving real-time continuous monitoring.

Alternative approximation schemes for the diffusion equa-
tions (DE) using, for example, orthonormal compactly sup-
ported wavelets,9 which produce sparse stiffness matrices,
can reportedly reduce the time required to solve the forward
problem (∼36 times faster for a 3-D geometry). To speed up
parameter estimation, Eames et al.10 proposed a sensitivity-
based Jacobian reduction technique, which delivers a 14-fold
speed increase. Including hard-priors in the reconstruction
helps reduce computation time by reducing the dimension of*Address all correspondence to: Daniel Coca, E-mail: d.coca@sheffield.ac.uk
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the parameter set to be estimated.11,12 However, this choice may
lead to erroneous results if the models are not coregistered.4

Other strategies employed to reduce the complexity of the
reconstruction algorithms include the use of nonlinear multigrid
optimization13,14 and adaptive mesh techniques.13,14 Solving the
inverse problem using analytic methods can dramatically reduce
the reconstruction time,15 but the application of these methods is
limited because analytic solutions are only available for some
cases, such as the slab or the cylinder.16

This paper proposes an efficient practical alternative to the
analytic approach to solving the 3-D optical tomographic
reconstruction problem for continuous wave (CW) DOT sys-
tems, which takes advantage of a priori anatomical information
extracted from MRI scans and can be used without restrictions
for 3-D domains with complex geometries. The approach over-
comes the computational bottlenecks of existing iterative image
reconstruction methods, making it possible to use DOT in real
time. The proposed method employs forward models of the
propagation of light in tissue, which are constructed as parsimo-
nious radial basis function (RBF) maps,17 which relate directly
the optical parameters of the medium to the outward flux mea-
surements at detector locations. These highly optimized, effi-
ciently computable models dramatically accelerate the image
reconstruction algorithms. In a preliminary study, we evaluated
an approach based on polynomial models using numerical sim-
ulation.18 Here, we demonstrate comprehensively the applicabil-
ity and performance of the superior RBF-based approach using
numerical simulation, a phantom study, and by performing 3-D
reconstruction of hemodynamics in a rat’s brain during a hyper-
capnia experiment using an anatomically correct finite element
model of the rat’s head, derived from MRI scans. We evaluate
both the speed and quality of reconstruction and compare the
results with those obtained by a standard FEM approach.

The approach advocated in this paper makes it possible to
perform fast high-density tomographic reconstruction with
modest computational power, compared to current approaches,
but preserving the high accuracy of a fine anatomically correct
finite element mesh. The algorithms could be run on a handheld
device, thus enabling continuous, real-time monitoring of
patients over extended periods at the bedside, inside as well
as outside the hospital.

2 Methods

2.1 Animal Preparation and Experimental Procedure

Small animals provide excellent models to investigate ische-
mia,19 tissue oxygenation,20 and hemodynamics.21–23 This
experiment focuses on the hemodynamic response under
hypercapnia.

The animal used was a female hooded Lister rat weighing
∼400 g, kept in a 12 h dark/light cycle environment at a constant
temperature of 22°C. Food and water were provided ad libitum.
The rat was anesthetized with urethane (1.25 g∕kg i.p.), and
atropine (0.1 ml) was administered to reduce mucous secretions
throughout the course of surgery. Rectal temperature was main-
tained at 37°C during the surgery and experimental procedures
by means of a homoeothermic blanket (Harvard apparatus). The
animal was tracheotomized to allow artificial ventilation.
Ventilation parameters were adjusted to maintain blood gas
measurements within physiological limits. Measurement of
mean arterial blood pressure (MABP) was performed after
the left and right femoral veins were cannulated; at this

stage, phenylephrine (0.13 to 0.26 mg∕h) was infused to
keep the blood pressure between physiological limits (MABP:
100 to 110 mmHg).

The skin and underlying muscle were removed from the left
side of the rat’s head; the skull was thinned with a drill to
achieve better contact with the optode holder, which later
was fixed with dental cement. Once the surgery was finished,
the animal was placed on a platform in the prone position,
fixed via two ear bars and a bite bar.

The optodes were adjusted in a plastic honeycomb structure
with 12 holes. The centre-to-centre distance between holes
was 4.2 mm.

The rat was ventilated artificially with normal gas mixture
(20% O2, 80% N2). During the hypercapnia experiment, a
step increase of 10% carbon dioxide was used, while the oxygen
and nitrogen ratio was kept constant. The experiment lasted
300 s: 60 s of baseline followed by an induced hypercapnia
period of 120 s and the remaining time the rest period.

2.2 Instrumentation

The device used to perform the measurements was the dynamic
near-infrared optical tomography (DYNOT) apparatus manufac-
tured by NIRx Medical Technologies, (Los Angeles), which
operates in continuous mode. The device can acquire measure-
ments in parallel at four wavelengths: 725, 760, 810, and
830 nm at a sampling frequency of ∼4 Hz. A more detailed
description of the scanning device can be found in Schmitz
et al.24 The reconstruction algorithms were written in
MATLAB® and image reconstruction was performed in
MATLAB® R2007a running on a standard PC with a single
core 3 GHz Intel Pentium microprocessor and 1 GB RAM.

2.3 Image Reconstruction Algorithm

2.3.1 Forward problem

For a medium Ω ⊂ IR3 with boundary ∂Ω, characterized by
absorption and scattering coefficients μaðrÞ, μsðrÞ, r ∈ Ω, solv-
ing the forward problem involves numerical simulation of pho-
ton fluence rate measurements fyðjÞgj¼1;s from d detectors
yðjÞ ¼ ½y1ðjÞ; : : : ; ydðjÞ� on ∂Ω, for each point source qj of
the array of sources q ¼ ½q1; : : : ; qs� distributed on ∂Ω.

The forward problem for the source qj is described by the
following parameters-to-output mapping:

yðjÞ ¼ PjuðrÞ; j ¼ 1; : : : ; s; (1)

from the space of parameter functions uðrÞ ¼ ½μaðrÞ; μ 0
sðrÞ� to

the space of measurements yðjÞ. The forward mapping is
obtained by combining a light propagation model (the forward
model) with a model of the measurement system.

A model of light propagation through tissue that is com-
monly used in applications involving continuous wave DOT
systems is the diffusion approximation of the equation of radi-
ative transfer.2

−∇ · DðrÞ∇ϕjðrÞ þ μaðrÞϕjðrÞ ¼ qjðrÞ; r ∈ Ω; (2)

where ϕjðrÞ is the spatially varying diffuse photon density at
position r given the source qj, μa is the absorption coefficient,
D ¼ ½3ðμa þ μ 0

sÞ�−1 is the diffusion coefficient, and μ 0
s is the

reduced scattering coefficient. The collimated source incident
at ξj ∈ ∂Ω is usually represented by an isotropic point source
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qjðrÞ ¼ δðr − rjÞ, where rj is located at a depth of one scatter-
ing length inside the medium, along the direction of the normal
vector to the surface at the source location ~nðξjÞ. The boundary
condition usually employed is of the Robin type.

DðξÞ ∂ϕjðξÞ
∂n

þ 1

2A
ϕjðξÞ ¼ 0; ξ ∈ ∂Ω; (3)

where the term A accounts for the refractive index boundary
mismatch between the interior and exterior medium.25

For any given source qj, the variable measured by the detec-
tor located at ξi ∈ ∂Ω is the outward flux γjðξiÞ. The corre-
sponding measurement equations are given by

γjðξÞ ¼ −DðξÞ~nðξÞ · ∇ϕjðξÞ; ξ ∈ Ω; yiðjÞ ¼ γjðξiÞ;
j ¼ 1; : : : ; s; i ¼ 1; : : : ; d: (4)

A numerical solution to the DE [Eq. (2)] can be obtained for
arbitrary tissue geometries using a finite element.25,26 Solving
the forward problem is computationally the most expensive
step of the reconstruction algorithm for 3-D problems.

2.3.2 Generation of the 3-D finite element mesh of the
rat’s head

A 3-D finite element mesh that incorporates high-resolution ana-
tomical prior information was derived from pixel images
obtained by a 7-Tesla high field animal magnet (Bruker
BioSpin, Billerica, Massachusetts). The honeycomb optode
holder was filled with clear liquid to generate contrast in the
images at the optodes location. A sample of the pixel images
is given in Fig. 1(a), where the location of the optodes is clearly
visible.

Each image was segmented into skin, skull, muscle, and
brain using image processing techniques, and then all slices
were stacked together to build the 3-D model of the rat’s
head displayed in Fig. 1(b), which later was converted into a
tetrahedral mesh consisting of 169,793 elements and 33,944
nodes [Fig. 1(c)]. These steps were accomplished using
ScanIP&ScanFE® (Simpleware, LTD, Exeter, UK). The
element connectivity matrix for each part and the nodes
coordinates were imported into MATLAB®. Each compart-
ment was assigned specific absorption and scattering values:
μa ¼ 0.02 mm−1 for skin, μa ¼ 0.005 mm−1 for skull,

μa ¼ 0.015 mm−1 for brain, and μa ¼ 0.022 mm−1 for muscle;
similarly, μ 0

s ¼ 0.5 mm−1 for skin, μ 0
s ¼ 1.63 mm−1 for skull,

μ 0
s ¼ 1.63 mm−1 for brain, and μ 0

s ¼ 1 mm−1 for muscle.27

Spatial information can also be incorporated to guide the
inverse solver by constraining the solution to lie within the
brain and not in the overlapping tissues (skull, muscle, and
scalp). Boas et al.5 reconstructed absorption changes only for
nodes lying within the brain, and for the remaining nodes, the
absorption change was set to zero. Bluestone et al.19 constrained
the reconstruction algorithm by averaging the gradient at every
node within the scalp, muscle, and skull but varying independ-
ently the absorption values for the brain. The former procedure
was selected given that it can be easily implemented and also
produces smaller Jacobian matrices. The region of interest
(ROI) defined comprised the area of the brain directly under
the location of the optode holder, starting from the cortex up to
7 mm inside the brain. The ROI is displayed in Fig. 1(d) and
consists of 7366 tetrahedral elements and 1882 nodes.

2.3.3 Reduced-order forward model

The approach proposed to speed up the reconstruction process
involves constructing a sparse approximation of the nonlinear
mapping [Eq. (1)] using a data set generated by numerical sim-
ulation of the forward model given in Eqs. (2) to (4), using a
finite element approximation on a fine mesh. The FEM-based
forward model is called the complete model.

The reduced-order model (ROM) of Eq. (1) can be expressed
in its component form as

ŷi;jðtÞ ¼ fi;j½uðtÞ� þ ei;jðtÞ; j ¼ 1; : : : ; s; i

¼ 1; : : : ;Mj; i ≠ j; (5)

where ŷi;jðtÞ is the predicted steady-state measurement at the
i’th optode location at a given time t computed using the for-
ward model [Eqs. (2) to (4)] given the source qj. fi;j is a non-
linear function for source-detector pair i-j, uðtÞ ¼ ½u1ðtÞ; : : : ;
uKðtÞ�, ukðtÞ ¼ μaðrk; tÞ is the absorption value for the k’th
node at a given time t, K is the total number of nodes, and ei;j
is the approximation error. As the focus is on the estimation of
the absorption coefficient, the model [Eq. (5)] assumes that
the reduced scattering coefficient of the medium is spatially
invariant.

Fig. 1 Main steps for generating the three-dimensional (3-D) finite element mesh from magnetic reso-
nance imaging (MRI) slices. (a) MRI slice obtained with a 7T MRI scanner. (b) 3-D geometric model of the
rat’s head and optodes. (c) Finite element mesh used solved the forward problem. (d) Skull, brain, and
region of interest (ROI) used to constrain the inverse solver.
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To generate the data needed to estimate and validate the
reduced forward model, ND ¼ NE þ NV (typically ND ¼
1000, NE ¼ NV ) uniformly distributed random absorption val-
ues are used to compute detector measurements using the FEM
approximation of the forward model in Eqs. (2) to (4). The ran-
dom absorption coefficients were limited to the range −50 to
200% the value of the background absorption coefficient. NE
data points are used to estimate the model, and the remaining
NV data points are used to validate the model. For each input
uðtÞ ¼ ½μaðr1; tÞ; : : : ; μaðrK; tÞ�, the forward model is simulated
to generate the corresponding measurements that are used to
estimate the model.

The model [Eq. (5)] is assumed to be of the form

ŷi;jðtÞ ¼
XNi;j

l¼1

θi;jl pi;j
l ½uðtÞ� þ ei;j; (6)

where pi;j
k ðxÞ is an RBF. The RBF chosen in this study is the

thin-plate spline.

pi;j
k ðuÞ ¼ φðu; ckÞ ¼ r2k logðrkÞ; (7)

where ck denotes the center of the RBF and rk ¼ ku − ckk2 is
the Euclidian norm. Thin-plate splines are conditionally positive
kernels that are invariant under scaling,28 provide approximation
rates nearly as good as the best-in-class multiquadric methods,29

and have the advantage of not requiring the optimization of an
additional shape parameter.30

Given the input-output data set DE
i;j ¼ fuðtÞ; yi;jðtÞgt¼1;NE

,
the mapping in Eq. (5) is derived such that it provides a sparse
approximation of the underlying nonlinear function using Nij
terms (Ni;j ≪ ND). Moreover, for every source-detector combi-
nation, only the absorption values corresponding to a small
number of nodes in the mesh will affect the measurements.
Therefore, in practice, the number of inputs in Eq. (5) will
be much smaller than the number of nodes, ni;jK ≪ K.

As a result, the overall combination of source-detector mod-
els provides a reduced-order representation compared to the full
finite element approximation. In simulation studies we have per-
formed, we found that finite-dimensional models derived from
data in this manner are as accurate as the standard finite element
approximation but requires far less parameters.

2.3.4 Model estimation

For every source-detector pair i; j, we solve the nonparametric
regression problem involving two steps.

1. Determine a minimal set of relevant input nodes (the
RBF input layer) ui;j ¼ fui;jl gl∈Ii;j , where Ii;j is a sub-
set of the full set of nodes f1; : : : ; Kg, with dimen-
sion ni;jK ≪ K.

2. Given a dictionary of candidate RBF basis functions,
determine a minimal subset of regressors fpkgk¼1;Ni;j

,
Ni;j ≪ ND and the associated parameter vector
fθkgk¼1;Ni;j

, which minimize the prediction error
over the data set Di;j.

Step 1. The input layer of the RBF network was selected using a
priori information derived from photon measurement density

functions (PMDF),31 which characterize the sensitivity of mea-
surements to changes of the optical parameters inside the
medium. For each source-detector pair, the PMDF function
was computed based on the FEM approximation over a fine
mesh,32 and only the nodes within a region where values of
PMDF are above a given threshold (1 to 5%.) are used to
form the input layer of the RBF approximation. For polyno-
mial approximations,18,33 it can be shown that all the terms
selected in the model by alternative algorithms correspond
to nodes within the high-sensitivity area.10 The union of
nodes selected for all source-detector combinations IROI ¼
∪
i;j
Ii;j defines a region where changes of optical properties

can be reconstructed for the given source-detector positions.
In most applications, prior information from a secondary im-
aging modality or human anatomy can be used to specify an
ROI and the placement of optodes.5

Step 2. Given the selected input vector, a set of candidate RBF
functions was constructed by considering each data point as
the center of an RBF function, i.e., ck ¼ ui;jðkÞ, k ¼ 1; : : : ;
NE. The minimal set of basis functions in Eq. (6) is determined
using a greedy orthogonal regression algorithm34 from an ini-
tial set of candidate RBF functions. The algorithm is based on
the forward regression principle, which involves adding RBF
functions to the model one at the time. At each step, each can-
didate basis function that is not already in the model is evalu-
ated for inclusion in the model. The candidate regressors are
ranked according to their contribution to reducing the variance
of the error as measured by the error reduction ratio (ERR)
index.34 The selection process is stopped when

100 −
Xn
i¼1

erri ≤ Cd;

where erri is the % contribution of the i’th selected term and
Cd is a predefined threshold that can be used to control the
trade-off between precision and computational speed. In
order to avoid overfitting, a standard cross-validation method
was implemented to fine tune the number of terms (basis func-
tions) in the models, based on a separate validation data set.

2.3.5 Reduced-order forward model of the rat’s head

For each node within the ROI, 1000 uniform distributed random
absorption values within the range μa ∈ ½0.0075; 0.0045� mm−1

were generated. The synthetic measurements due to these
changes were obtained by solving the DE for each sample.

For each of the 132 source-detector pairs, a reduced-order
RBF (thin-plate spline) model was estimated using the first
500 samples; the remaining data were used for validation.
The root mean squared error (RMSE), calculated for each
source-detector pair i − j as

RMSEij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
t¼1 ½yi;jðtÞ − ŷi;jðtÞ�2

N

s

was used to evaluate the performance of each model. In order to
investigate the trade-off between accuracy and speed on the cal-
culation of outward flux in comparison to the measurements
computed using the DE, four sets of models were estimated
for different Cd values. The thin-plane-spline (TPS)-RBF
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models used in reconstruction (estimated for Cd ¼ 0.3) had
between 8 and 399 inputs and between 11 and 92 RBFs.

2.3.6 Image reconstruction

The absorption coefficients were obtained using the modified
version19 of the normalized difference method,35 which involves
solving the following optimization problem:

u�ROI ¼ arg min
uROI

Xs

j¼1

XMj

j¼1

2
64
yi;jðtÞ
y0i;j

ŷi;jð0Þ − fi;jðuROIÞ
yi;jðtÞ
y0i;j

ŷi;jð0Þ

3
75
2

; (8)

where yi;jðtÞ is a measurement taken at time t, y0i;j is the pre-
defined reference state, ŷi;jð0Þ ¼ fi;jðu0ROIÞ is the predicted
measurement corresponding to the reference medium, and
u0ROI is the initial vector of the optical parameters specified
in Sec. 2.3.2. The optimization problem was solved using an
iterative, conjugate-gradient algorithm36 using spatial
constraints.5

2.4 Calculation of Hemoglobin Concentration

The absorption coefficient of the tissue is wavelength depen-
dent. The DYNOT instrument allows the parallel acquisition
of absorption changes at four wavelengths. In this study, the
reconstruction of hemodynamic changes was performed using
only two near-infrared wavelengths of 760 and 830 nm. At
these wavelengths, the absorption coefficient at a given location
is assumed to be a linear combination of local oxyhemoglobin
and deoxyhemoglobin concentrations (Δ½HbO2� and Δ½HbR�).19

ΔμaðλÞ ¼ εHbO2
ðλÞΔ½HbO2� þ εHbRðλÞΔ½HbR�; (9)

where εHbO2
ðλÞ and εHbRðλÞ are the extinction coefficients for

oxyhemoglobin and deoxyhemoglobin, respectively, and λ is
the photon wavelength.5

The concentration changes in oxyhemoglobin (HbO2) and
deoxyhemoglobin (HbR) were calculated by solving a linear
system of equations, using absorption coefficients estimated
from measurements at λ1 ¼ 760 and λ2 ¼ 830 nm, as follows:19

Δ½HbR� ¼ εHbO2
ðλ1ÞΔμaðλ2Þ − εHbO2

ðλ2ÞΔμaðλ1Þ
εHbO2

ðλ1ÞεHbRðλ2Þ − εHbO2
ðλ2ÞεHbRðλ1Þ

Δ½HbO2� ¼
εHbRðλ2ÞΔμaðλ1Þ − εHbRðλ1ÞΔμaðλ2Þ
εHbO2

ðλ1ÞεHbRðλ2Þ − εHbO2
ðλ2ÞεHbRðλ1Þ

: (10)

3 Results

3.1 Algorithm Evaluation Using a Phantom

3.1.1 Experiment setup

To validate the reconstruction approach, a phantom study was
carried out. We used a cylindrical container made of antireflec-
tive plastic (diameter 80 mm, height 300 mm, wall thickness
0.10 mm) full of skimmed milk (0.1% fat). A perturbation
was added [Fig. 2(a)] to the media in the form of another
inner plastic cylinder (diameter 20 mm, height 300 mm) full
of milk at a different fat concentration (0.81%). The optical
properties of the background media37 at 810 nm are

μa ¼ 0.0024 mm−1 and μ 0
s ¼ 0.5 mm−1. Similarly, for the per-

turbation, μa ¼ 0.024 mm−1 and μ 0
s ¼ 0.4 mm−1.

Previously, milk has been used experimentally as strong scat-
tering media38–41 because its optical absorption and scattering
parameters are close to those of most living tissue,42 where
0.001 < μa < 0.01 mm−1 and 0.5 < μ 0

s < 10 mm−1.
The experiment consisted of reconstructing the size and

location of the perturbation using differential measurements,
that is, measurements taken before and after the inner cylinder
was introduced into the container. Sixteen colocated sources
and detectors were equally distributed around the cylinder at
a height of 150 mm [Fig. 2(a)] providing 240 source∕
detector channels.

3.1.2 Estimation and validation of reduced-order model

The geometry was discretized using 1344 triangular elements
and 715 nodes. An ROI was defined to provide a priori infor-
mation to the reconstruction algorithm; this area is indicated
with the dotted line in Fig. 2(a). To generate the data needed
for model estimation and validation, 1000 uniformly distributed
random absorption values for each node were used to compute
detector measurements using the FEM approximation of the DE.
The data spanned from μa ¼ 0.0020 to 0.03 mm−1. The first
500 records were used as estimation data and the remaining
records as validation data.

ATPS-RBF was used for model representation. The first step
is the determination of the input layer; for this purpose, the
Jacobian was calculated for each source-detector pair, and
those nodes lying within a 5% threshold of the Jacobian and
also located inside the ROI were selected as the input nodes
of the network [Fig. 2(b)].

The minimal set of basis functions was selected using the
orthogonal regression algorithm described in Sec. 2.3.4. The
evolution of the ERR and the RMSE relative to the number
of model terms are shown in Figs. 3(a) and 3(b), respectively.
To show the performance of the ROM approach in the calcula-
tion of outward flux for source-detector pair 3-7, measurement
predictions calculated using both the DE and the ROM are dis-
played in the upper panel of Fig. 4(a).

Fig. 2 Phantom study specifications. (a) Phantom geometry, dimen-
sions, and optode locations. The dotted line indicates the ROI used.
(b) Input nodes for the thin-plane-spline radial basis function (TPS-
RBF) model corresponding to the source-detector pair 3-7. The
selected inputs represent all the nodes inside the ROI for which
the Jacobian exceeds the 5% boundary.
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3.1.3 Performance on the reduced-order model in the
reconstruction of absorption changes in highly
scattering media

Four different TPS-RBF models with Cd ¼ 0.05, 0.1, 0.2, and
0.3 were tested. Based on the image correlation coefficient
(ICC), no significant variations of image quality were found,
and therefore, the model with Cd ¼ 0.3 was selected for achiev-
ing faster image reconstructions than the other models (less
terms are evaluated). Considering that the location of the pertur-
bation for this experiment is known, it is possible to assess the
qualitative spatial accuracy of reconstructed images. The ICC is
given by35

ICCðA; BÞ ¼ 1

N − 1

P
iðxiA − x̄iAÞðxiB − x̄iBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðxiA − x̄iAÞ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
ðxiB − x̄iBÞ2

r ;

(11)

where xiA and xiB denote the intensities of the i’th pixel in images
A and B, respectively, and xiA and xiB denote the mean intensities
of the images. Image A corresponds to the original image, and
image B corresponds to the reconstructed image using the com-
plete or the reduced-order forward models. A perfect match
between the original and reconstructed image is achieved
when ICC ¼ 1. The evolution of the ICC with respect to the
number of iterations [Fig. 4(b)] shows that the reconstruction
based on the ROM converges much faster.

Examples of the recovered absorption change obtained using
the complete and the RBFðCd ¼ 0.3Þ models are shown in
Fig. 5; the exact location of the perturbation is indicated with a
discontinuous line. For this reconstruction, the complete model
required 100 iterations using the conjugate gradient descent
(CGD) method and took ∼80 s; the ROM required only six iter-
ations and took ∼2.5 s.

3.2 Simulated 3-D Reconstruction Using a Rat’s
Head Model

The proposed approach was validated further through numerical
simulation studies using the model of a rat’s head described in
Sec. 2.3.2.

The simulation studies involved 12 optodes arranged in a
honeycomb pattern, which are located at the top of the head
as shown in Fig. 1(b). This results in 132 source-detector com-
binations. The optode configuration is the same as that used in
real experiments.

A perturbation was specified in the form of an inclusion
embedded in the brain [Fig. 6(a)] with time-varying optical
properties. In the first simulation study, the absorption values
corresponding to nodes lying inside the inclusion were obtained
by sampling a quasiperiodic function.35 The full 3-D FEM
model given by Eqs. (2) to (4) was simulated numerically to
generate synthetic optode measurements that were used to
reconstruct the dynamics of the absorption parameters.

The 3-D reconstructions of the inclusion for the first time
point using the FEM and the ROM (Sec. 2.3.5) are displayed in
Figs. 6(b) and 6(c), respectively. The isosurfaces correspond to
absorption thresholds of 10 and 30% of their maximum estimated
variation,max ðΔμaÞFEM ¼ 0.0013 mm−1 andmax ðΔμaÞROM ¼
0.0025 mm−1. To evaluate the quality of the reconstructions, ICC
was calculated in each iteration [Fig. 7(a)]. Both algorithms
achieved similar quality, but the reduction in time is extremely
significant, as speed ratio is approximately three orders of mag-
nitude. Specifically, the ROM approach achieves the maximum
ICC value only after four iterations and ∼2 s, while the FEM-
based method achieved similar quality after five iterations, but
at a considerably larger amount of time (∼1 h).

The FEM approach achieves the best ICC score (a 3%
improvement over the ROM approach) after 20 iterations and
more than 4 h (ROM speed-up factor is ∼1200). In both
cases, the image reconstruction times for the FEM approach

Fig. 3 Model selection for the phantom study. (a) Unexplained variance as a function of the number of
terms of the TPS-RBF model for source-detector pair 3-7. (b) Root mean squared error, as a function of
the number of terms, evaluated for the estimation and validation data.
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Fig. 4 Comparison of the finite element method (FEM) and reduced-order model (ROM) approaches
used in the phantom study. (a) Comparison of the outward flux for source-detector pair 3-7 calculated
using both the diffusion equation and the ROM approach. (b) Error (%) between both models.
(c) Evolution of image correlation coefficient (ICC) for 100 iterations using the FEM-based (red) and
ROM (blue) approaches in the reconstruction algorithm.

Fig. 5 Image reconstruction of the perturbation shown in Fig. 2(a) using (a) FEM-based and (b) ROM
approaches.

Fig. 6 Simulated 3-D reconstruction using the rat head mesh for a single time point. (a) Location of the
simulated perturbation. Reconstructed perturbation using (b) FEM-based approach and (c) ROM
approach. The iso-surfaces correspond to the 10% and 30% of the maximum recovered absorption
value. The overlapping skin, skull, and muscle tissues are not displayed.
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are prohibitively large, making DOT impractical in cases that
require rapid clinical diagnosis. In practice, accuracy can be
improved by using more accurate ROMs.

A point at the centre of the inclusion was selected to show the
reconstruction of the dynamic changes using both methods. The
estimated changes of optical absorption at this point displayed in
Fig. 7(b) along with the original perturbation signal show that
the ROM approach provides a better estimate of the dynamic
changes in the absorption coefficient. To demonstrate the con-
sistency of image reconstruction and speed-up, in Fig. 8 we

show the ICC and reconstruction times for both approaches
for the entire simulation.

3.3 Simulated 3-D Reconstruction of Hemodynamic
Response to Hypercapnia in the Superior
Sagittal Sinus of a Rat’s Head

In this simulation study, a perturbation was specified in the form
of an inclusion located in the sagittal sinus of the rat cortex,
as shown in Figs. 9(a) and 9(b). The shape of the inclusion

Fig. 7 Comparison of the FEM- and ROM-based reconstruction approaches in the simulated 3-D image
reconstruction for a single time point. (a) Evolution of the ICC for the first time sample. (b) Reconstructed
time series using both the FEM- and ROM-based methods.

Fig. 8 Comparison of the FEM- and ROM-based reconstruction approaches in the simulated 3-D image
reconstruction for all the time points. (a) Evolution of the ICC. The quality of the image decreases for small
absorption changes (<3%). (b) Reconstruction times for the FEM- and ROM-based approaches.
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resembles a section of a blood vessel. We generated changes of
absorption coefficients for mesh nodes located inside the inclu-
sion using profiles of hemodynamic responses to hypercapnia
[Fig. 9(c)] in the sagittal sinus recorded in previous experimental
studies43 using fMRI and optical imaging spectroscopy.
The experiments followed the same protocol as detailed in
Sec. 2.1.

Absorption changes were computed by substituting the con-
centration profiles for oxyhemoglobin and deoxyhemoglobin,
shown in Fig. 9(c), in Eq. (9), using extinction coefficients at
wavelengths of 760 and 830 nm, for each of the two chromo-
phores. At the baseline, we assumed that the total hemoglobin
concentration was 100 μM and the hemoglobin oxygen satura-
tion was 50%. The finite element approximation of the diffusion
model [Eqs. (2) and (4)] and the measurement equation
[Eq. (4)], computed for the 3-D mesh, was simulated to generate
synthetic measurements of the outward flux at each optode loca-
tion for each time point. The synthetic measurements were sub-
sequently used in reconstruction. Absorption changes were
reconstructed using the complete and approximated models.
The number of iterations was limited to 10. The ROM was
selected using Cd ¼ 1 as the stopping criteria. The FEM-
based approach took 80 min to run 10 iterations for each
time point. In contrast, the ROM approach took ∼6 s to compute
absorption changes for each time point.

Once the absorption changes were reconstructed at each
wavelength, hemoglobin concentrations were derived as before
using Eq. (10). Figure 10(c) shows coronal sections of changes
in total hemoglobinΔ½HbT�ðx; y; z; tÞ for y ¼ −4, −1, and 2 mm
at t ¼ 120 s, reconstructed using the ROM approach.

The estimated changes in oxyhemoglobin (HbO2), deoxyhe-
moglobin (HbR), and total hemoglobin (HbT) for the nodes
lying within the inclusion were averaged and the values are dis-
played in Fig. 10(a). Clearly, the ROM approach provides a
much better estimate of the magnitude of the hemodynamic
changes. To further improve the accuracy, we derived linear cal-
ibration functions for the FEM- and ROM-based reconstruction
algorithms, which later were used to calibrate the time series of
hemodynamic changes in the rat barrel cortex reconstructed
using experimental data, following the hypercapnia challenge
detailed in Sec. 2.1.

The calibration functions are as follows:

• FEM approach:

Δ½HbO2�FEM;cal ¼ 5:26Δ½HbO2�FEM − 0.94

Δ½HbR�FEM;cal ¼ 5:26Δ½HbR�FEM þ 0.39:
(12)

• ROM approach:

Δ½HbO2�ROM;cal ¼ 0:93Δ½HbO2�ROM − 2.81

Δ½HbR�ROM;cal ¼ 0:91Δ½HbR�ROM − 0.90:
(13)

The calibrated changes of HbO2, HbR, and HbT recon-
structed using the FEM and ROM approaches are shown in
Fig. 10(b). The reconstruction errors for each method are
shown in Fig. 10(c). The errors can be reduced further by fitting
higher-order polynomials, but this may result in overfitting the
data at a particular location. We found that the linear calibration
functions given in Eqs. (12) and (13) could be used to calibrate
hemodynamic changes reconstructed at other locations.

3.4 Experimental 3-D Reconstruction of
Hemodynamic Response to Hypercapnia
in the Barrel Cortex of a Rat’s Head

Measurements were obtained using the DYNOT instrument at
sampling frequency of ∼3 Hz. Each sample for wavelengths
at 760 and 830 nm was processed with both the FEM- and
the ROM-based image reconstruction algorithms, and a full
tomography reconstruction of absorption changes was obtained.
Reconstruction of absorption changes was achieved after 5 to 10
iterations using either the ROM or FEM approaches. However,
our approach took on average ∼3 s, while the latter took
between 1 and 2 h per time point. Absorption changes were
later converted into hemoglobin changes using Eq. (10).

To validate the results of our experimental study, we com-
pared the reconstructed hemodynamic changes during hyper-
capnia with MRI measurements of changes (average across

Fig. 9 Simulated hypercapnia using the rat head mesh. (a) and (b) Location and size of the simulated
absorber. (c) Oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) profiles used to generate synthetic
optical flux measurements.
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seven animals) in the cerebral blood volume (CBV-fMRI),
obtained by using a paramagnetic contrast agent (MION),43 fol-
lowing identical hypercapnic perturbations (onset time of the
10% step increase of CO2 was at ton ¼ t0 þ 60 s, t0 ¼ −60 s,
with the offset at toff ¼ ton þ 120 s).

Figure 11(a) shows a representative coronal section CBV-
MRI statistical parameter map superimposed on a 256 × 256

structural scan. A coronal section of the change in total hemo-
globin Δ½HbT�ðx; y; z; tÞ for y ¼ 2, obtained using the ROM
approach at t ¼ 120 s, is shown coregistered with the anatomi-
cal MRI map of the same in rat [Fig. 11(b)]. This coronal slice
is centered to the area directly under the optode holder.

Coregistration was easily achieved given that the finite element
mesh was derived directly from the MRI data; this minimized
the influence of systematic errors due to geometry mismatch and
optode positioning, which affect reconstructed images.44 To
visualize the time evolution of hemodynamic changes during
the experiment, we positioned the two ROIs [two rectangles
in Fig. 11(b)] in the rat barrel cortex to correspond to a super-
ficial (0 to 1 mm) region and a deep (1 to 2 mm) cortical region,
which were used in Ref. 43 to measure changes in blood volume
following hypercapnia and whisker stimulation.

The changes in oxyhemoglobin (HbO2) and deoxyhemoglo-
bin (HbR) for the nodes lying within the two ROIs were

Fig. 10 Reconstructed changes in HbO2 and HbR in the rat brain during hypercapnia based on simulated
measurements. (a) Coronal sections of the change in total hemoglobin Δ½HbT�ðx; y; z; tÞ for y ¼ −4, −1,
2 mm at t ¼ 120 s. (b) Uncalibrated hemodynamic responses reconstructed using the FEM and ROM
approaches superimposed on the original simulated changes. (c) Calibrated hemodynamic responses
reconstructed using the FEM and ROM approaches. (d) Reconstruction errors corresponding to cali-
brated responses.
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Fig. 11 Reconstructed changes in HbO2, HbR, and HbT in the rat brain during hypercapnia based on
experimental diffuse optical tomography (DOT) measurements. (a) Spatial map of blood volume
changes measured using CBV-MRI. The two rectangles mark the superficial and deep cortical areas
used to compute blood volumes. (b) HbT in a coregistered image of MRI and DOT for t ¼ 120 s.
The two rectangles mark the superficial and deep cortical areas used to compute blood volumes.
(c) Reconstructed changes in HbO2 and HbR inside the regions defined in (b), using FEM and ROM
approaches. (c) Changes in HbT inside the regions defined in (b), reconstructed using FEM and
ROM approaches, superimposed on blood volume changes (CBV) inside the regions defined in (a),
reconstructed using CBV-MRI.
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averaged, and the final hemodynamic responses [Fig. 11(c)]
were inferred using the calibration functions given in Eqs. (12)
and (13). The changes in HbT for the deep and superficial cort-
ical layers, reconstructed using the ROM and FEM approaches,
are shown in Fig. 11(d) superimposed on the CBV-weighted
fMRI reconstructions obtained for the corresponding superficial
and deep regions.

We found that the CBV response in the superficial cortical
layer CBVsup is commensurate with the fractional changes in
HbT (superficial) reconstructed from DOT measurements
using ROM. The time series obtained using the ROM approach
show very similar onset gradients and peak values (26 μM ver-
sus 24 μM), but CBVsup starts to increase earlier and returns
faster to the baseline. It is very likely that this reflects interani-
mal variability as the DOT and CBV measurements were not
measured concurrently in the same animal. The CBV response
in the deep cortical layer CBVdeep peaks at 33.8 μM, while HbT
(deep) time series reconstructed from DOT measurements using
the ROM approach peak at ∼30.3 μM. This reflects the reduced
depth sensitivity of DOT compared with fMRI.

Figure 12 displays the evolution of Δ½HbO2�ðx; y; z; tÞ,
Δ½HbR�ðx; y; z; tÞ, and Δ½HbT�ðx; y; z; tÞ for y ¼ 2 at t ¼
f0;60;120;180g s. The reconstruction at t ¼ 0 s shows minimal
activity during the baseline period. Reconstructions at t ¼ 60
and 120 s show an increase in oxyhemoglobin and a decrease
in deoxyhemoglobin, which is the typical response to an
increase of CO2. The reconstructed spatial maps agree with sim-
ilar DOT and fMRI studies.43,44

4 Discussion
The results demonstrate that our fast image reconstruction
approach for DOT, which uses highly optimized maps between
the space of optical parameters and the space of measurements,
generates 3-D images in a fraction of the time taken by standard
FEM-based algorithms, while preserving image quality.

In this work, we used RBFs17 to construct our reduced-order
forward light models. We found this modeling approach to be
more powerful and better suited for this modeling task compared
to the polynomial approximation technique.18 The models are
developed based on numerical simulation data generated by
an FEM approximation of the diffusion equation over a fine
mesh. A greedy algorithm is used to select a minimal number
of RBF basis functions from a library of candidate regressors.
An important advantage of RBF over polynomial approxima-
tions is that it produces a much smaller set of candidate
model terms that have to be evaluated.

The number of candidate terms for a polynomial model of
order q with n inputs, given by

M ¼
Xq
i¼1

ni; where ni ¼
ni−1ðnþ i − 1Þ

i
; n0 ¼ 1

increases rapidly as the model order and the number of inputs
increase. For RBF approximations, the dimension of the candidate
set depends mainly on the length of the estimation data, which is
especially advantageous when modeling light transport in the 3-D
case, where there are hundreds or even thousands of input nodes.

The RBF models can be constructed to approximate with
desired accuracy the predictions of the full forward model,
which was used to generate training data. In practice, however,
reducing the error below a certain threshold rapidly increases
model complexity, which in turn increase reconstruction times,
while the quality of the reconstructed image does not improve
significantly. For a given geometry and ROI, simulation studies
can be carried out to determine the ROM, which offers the opti-
mal trade-off between reconstruction accuracy and speed. Even
when more complex forward RBF light models are used, how-
ever, the speed-up is still considerable.

If a high-fidelity subject-specific head model is available,45

our approach can be used to derive much simpler individualized

Fig. 12 Spatial maps of reconstructed changes in HbO2 and HbR in the rat brain based on experimental
DOT measurements at different time points during hypercapnia.
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forward light models covering the relevant field of view, which
can be used to perform fast reconstructions.

This study demonstrated the applicability of the proposed
DOT reconstruction approach for real-time monitoring of
brain hemodynamics through a hypercapnia experiment. The
results agree with the expected physiological changes and
with the results of a similar experimental study carried out
by Bluestone et al.19 using the model-based iterative image
reconstruction,46 which reported typical reconstruction times
of ∼2 to 4 h per time point. To circumvent the computational
bottleneck, the authors of the previous study used measurements
corresponding to a single source-detector pair to calculate the
time course of HbO2, HbR, and HbT using the Beer-Lambert
law and only performed full tomographic reconstruction at spe-
cific time points of interest. In contrast, in our study, we per-
formed 3-D reconstructions at each time point and have
shown that following the hypercapnic challenge, the recon-
structed changes in total hemoglobin, which are believed to
be approximately the CBV changes in the barrel cortex, are
in good agreement with blood volume changes measured in a
previous study43 using the CBV-MRI technique.47,48

Even on a modestly powered desktop PC and using code
written in MATLAB®, which is significantly slower than com-
piled code, it took ∼3 s to compute a 3-D reconstruction at each
time point. Using compiled C/C++ code, the time to compute a
reconstruction could be reduced below the acquisition time of
the instrument. The low computational cost of the method
means that DOT reconstruction algorithms can be run on a
mobile device. Given the lower cost and increased portability
of DOT instrumentation, this opens up the possibility to use
DOT routinely for continuous monitoring brain function of new-
borns49 as well as adults50–52 in real time and at much higher
resolution53 than what is achievable using the standard algo-
rithms. In a clinical context, in the absence of subject-specific
anatomical images, atlas-based head models registered on the
subject’s head, such as those proposed by Ferradal,54 could be
used to obtain ROMs that are suitable for real-time processing.
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