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Abstract:

A general orthogonal parameter estimation algorithm is derived to estimate both the structure
and the parameters for a'wide range of stochastic nonlinear systems which can be described by a
nonlinear rational model. Simulation studies are included to demonstrate the performance of the
algorithm, '

1 Introduction

Almost all applications of parameter estimation assume that the model structure is
known a priori or that an appropriate structure will be obtained by a search over a lim-
ited model set. Thus if the system is known to be linear models are fitted over a range
of time delays and model orders and the best fit is selected as the final model. When
the system is nonlinear however the number of the combinations of models which have
to be searched can rapidly become overwhelming and a more structured procedure is
required. System identification then for nonlinear systems at least involves detecting
the model structure and then estimating the unknown parameters. Apart from the obvi-
ous computational advantage that this offers the models obtained will tend to be con-
cise, they will not be overparameterised and it may be possible to relate the terms in
the model to specific components of the system thus providing additional insight.

When the system under investigation is only mildly nonlinear it can be
represented by a polynomial NARMAX model and algorithms which solve both the
structure detection and parameter estimation problems have been derived. These are
based on an orthogonal estimator where the orthogonal property can be exploited to
allow an optimal search for the model structure (Korenberg, Billings, Liu, and Mcllroy
1988).
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Polynomial models are fine for many applications but they are inadequate for
severely nonlinear systems (Billings and Chen 1989) and recently the nonlinear
rational model was introduced to overcome these problems. Sontag (1979) has studied
the properties of the output affine model which can be considered as a subset of the
rational model (Billings and Chen 1989 ). Observability. realizability, and minimality
were investigated and Sontag proved conditions under which these models are globally
valid.

The extension of the rational model to nonlinear stochastic systems was intro-
duccd by Billings and Chen (1989) and Chen and Billings (1989). Parameterisation of
systems using rational models should therefore offer substantial advantages compared
to linear or polynomial expansions. However, the disadvantage is that rational models
are nonlinear in the parameters. When the rational model contains nonlinear polyno-
mial terms in the numerator and denominator attempts to multiply out and provide a
linear in the parameter model fail because of the inherent noise bias which is induced
even in the presence of just white noise. It is probably for these reasons that virtually
no parameter estimation algorithms are available for nonlinear stochastic rational
models. A prediction error estimation algorithm was derived by Billings and Chen
(1989) but this was computationally demanding and therefore difficult to apply to real
nonlinear systems.

In the present study a new orthogonal estimation algorithm which determines both
the structure and provides estimates of the unknown parameters for nonlinear stochas-
tic rational models is derived. The algorithm, called orthogonal rational model estima-
tor (ORME), exploits the results from Billings and Zhu (1991) and Zhu and Billings
(1991) to avoid the inherent bias problem. The new orthogonal formulation is shown
to be easy to implement and provides an opportunity for the first time to fit concise
nonlinear stochastic rational models from noise corrupted measurements. Simulation
results are included to demonstrate the effectiveness of the new algorithm.

2 The rational model

Approximation studies can normally be divided into two aspects. The first con-
cerns the approximation of functions whose computation is somewhat difficult, by
simpler functions, such as polynomials or the ratio of two polynomials, which are
easily evaluated with computers. This is called the function approximation problem,
and many publications have appeared devoted to this approach (Garabedian 1965,
Hayes 1970, Newman 1978). The approximating functions mainly take a static form

due to the nature of the problem, for example a polynomial usually takes the finite




power series form
y=l+oyx+o,x2+ - +a,x"
and a rational function, the ratio of two polynomials, is of the form
l+oyx+o,x2+ - + 0o, X"
1+ B x+Byx2+ - + B, x"

y:

The second problem concerns data fitting. In this case a simple function is usually con-
structed which will represent the data sequence as accurately as possible. This
approach is appropriate to both static curve fitting and dynamic model estimation. Sys-
tem identification belongs to the latter case and linear model fitting based on
differential or difference equation have been widely studied (Goodwin and Payne
1977, Ljung 1987).

Nonlinear approximation theory shows that rational functions may provide a more
powerful approximation (i.e. a smaller number of parameters for a similar accuracy)
than polynomial functions, such an approach is often abundantly justified, as shown by
the work of Hastings (1955). Rational functions, are much more general and are capa-
ble of accurately representing certain types of singular, or near singular behaviour, and
operating in infinite ranges. Rational functions have good extrapolation properties, they
are easy to evaluate, and include the polynomial functions as special cases. Static
rational functions have been successfully used to approximate some typical nonlinear
functions such as €%, ¢*, Vx, and Il (Braess 1980) and dynamic rational functions have
been primarily used in nonlinear system identification (Billings and Chen 1989, Bil-
lings and Zhu 1991, Zhu and Billings 1991). '

An obvious example to show the concise expression obtained by using a rational
function rather than a polynomial is given by considering the rational function

_ 1
1+x

Y

which when expanded as a power series can be represented by the polynomial

y=l-x+x2— oo +x"— -

There is, however, a need for some caution when attempting to use rational

—— ; T , : 2j
approximations. There is a possibility of degeneracy. The rational functions — and
1
@ . : , . a
S e deemed equivalent if a b, = a,b; and a rational function D of degree (m, n),
2

where m and n 2 1 are the degrees of the numerator and denominator polynomials
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respectively, is called degenerate if —Z—=0 or -%z—: (m-1, n-1) (Braess 1980).

Although degeneracy does not affect uniqueness of the best approximation, it does
spoil the continuity of the metric projection, which in turn implies an anomalous
behaviour in many directions. For example such a degenerate function cannot be a best
and uniformly convergent approximation, and most of the theories on rational approxi-
mation presented by Braess (1980) are conditioned with the non degenerate property.
A rational function may also be less convenient for certain analytical manipulations,
such as integration or differentiation. There is a bound on the derivatives of polynomi-
als in terms of the functions but for rational functions the derivatives are unbounded
(Feinerman and Newman 1974).

2.1 Stochastic rational representations

In a practical environment, some uncertain behaviours or stochastic phenomena
are often encounted and model fitting based on a stochastic NARMAX model set will
be necessary. Let =1,2,--- be a time index. Let a(f), and b(f) be polymonials in
@), - - -, y(t-r), u(t=1), - - -, u(t-r), e(t), - - -, e(t=r)], where u(f) and y(@)
represent the input and output at time t respectively, e(f) is an unobservable indepen-
dent noise sequence with zero mean and finite variance 03, the r=0 is, an integer, the
order of the polynomials. The stochastic NARMAX model set can be classified as
(Sontag 1979, Chen and Billings 1989)

(1) Rational model

_aly(r=1), - = -, y(t=r), u(t=1), - - -, u(t-r), e(t=1), - - -, e(t-r))
o = b(y(r-1), - - -, y(t=r), u(t=1), - -, u(t-r), e(t=1), - - -, e(t-r)) + B

(2.1.1)
(2) Integral model
- a(y(t)v t Ty )’(f'"")v u(t_l)» Tty U(f—r), L’([—l), " e(t—-r))
Y b(u@-1), - - -, u(t-r), e(t-1), - - -, e(t-r)) + et
(Z2:1:2)
where the degree of y(f) in a(f) is less than s
(3) Recursive model
= a(y(t=1), - - -, y(t=n), u(t=1), - - -, u(t-n), e(t=1), - - -, e(t-r)) + e()

bu(t=1), - - -, u(t-r), e(t=1), - - -, e(t-r))
(2.1.3)




(4) Output affine model

ia,-(u(r—l), < u(t=r), e(t=1), - - -, e(t=r))y(t=i)

i=1

ap(u(t=1), - - -, u(t-r), e(t-1), - - -, e(t-r))

e (il=1),. = & Wt-F), &l-1}, < * = , é(t-T))
agu(t=1), - - -, u(t=r), e(t-1), - - - , e(t-r))

y(n) =

+ e(f) (2.1.4)

(5) Standard model (polynomial NARMAX model)

y(f) = a(}’(f—I), T )’(f‘r)» U(f'—l), Ty u(t—r), L’(f-l), Y e(t—r)) + E(f)

(2.1.5)
(6) Linear difference equation model (ARMAX model)
r r r
y(O) = Youy(t=i) + Y Pu(t-i) + Yye(t-i) + e(n) (2.1.6)
=1 =0 i=1

Inspection of the models shows that they are all types of NARMAX model (Chen
and Billings 1989). In the above examples the rational model is the most general
expression, in fact all the models are a subclass of the rational model. For example the
polynomial NARMAX model in egn (2.1.5) is a class of rational model with denomi-
nator b(r) = 1. All the results that follow which are derived for the rational model are

therefore appropriate to all the models given above.

The NARMAX model is a very general model which includes variaties of
discrete time linear and nonlinear difference equations as subsets. The NARMAX
model can be easily and accurately used to describe a wide range of linear and non-
linear systems because it is concise and can give a high accuracy of approximation to
a bounded system globally (Sontag 1979).

2.2 Model parametrization

A input output response map may be written as

y() =flu, y, e, 8,1 B2an

where f(.) is the input and output map, u, y, and e are input, output, and noise vectors,
0 is the unknown parameter vector , and ¢ is the time index. Two specific forms of this
map are:
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(i) Linear in the inputs, outputs, noise, and parameters
This gives
Sy + puy, y, € 0,1 =Muy, y, e, 0,0 + ifluy, v, €, 6, 1)
flu, Ayy + pyy, e, 6, 1) = Mu, yj, €, 0, 1) + pflu, vy, €, 0, 1)
flu, y, Ae; + pe,y, 0,0 =Au, y, e, 8,0+ 1fu, y, e, 6,1
flu,y, e, A0, + u0,, ) = Af(u, y, e, 0, 1) + pflu, y, €, 05, 1) (2.2.2)

which satisfy the superposition principle concerning the inputs, outputs, reise, and

parameters. Where A and L are some real scalars.

(ii)) Nonlinear in the inputs, outputs, noise, and parameters
This gives
SOy + puy, y, 6, 0 # Muy, y, 6, ) + ufluy, y, 6, 1)
flu, Ay; + Hyy, 6, 0 # Aflu, yy, 6, 1) + Pf(u, yp, 6, )
flu, y, hey + Hey, 6, 1) = Aflu, y, e, 0, 1) + uflu, y, €5, 6, 1)
fu, y, MOy + 16y, 1) = M, y, 8;, ) + pflu, y, 6;, 1) (2.2.3)

which do not satisfy the superposition principle for any one of the inputs, outputs,
noise, or parameters.

It is easy to show that all rational egn (2.1.1), integral eqn (2.1.2), and recursive
eqn (2.1.3) models are nonlinear in the parameters, input, output, and noise. The output
affine model in egn (2.1.4) is nonlinear in the parameters, input, and noise but linear in
the output. The polynomial NARMAX model of eqn (2.1.5) is nonlinear in the input,
output, and noise but linear in the parameters. The ARMAX model in eqn (2.1.6) is

linear in the parameters, input, output, and noise.

From the classifications, the general NARMAX model includes all the combina-
tions of linear and nonlinear in the parameters, input, output, and noise. Hence the
parameterissd NARMAX model provides a general basis for the modelling of systems.

The rational model is generally given in a parametric form. Define the numerator
polynomial

num

at) = 3, Pn08y (224)
=1

and the denominator polynomial
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b() = dfpdj(t)edj (2.2.5)
F1
where  pui(0),  pgi0) are  referred to as terms consisting of
y(), - - -, y(t=r), u(t=1), - - -, u(t-r), e(t-1), - - -, e(r=r) and the total number of
parameters is num + den.
The parametrized rational model may then be expressed as

num

) = -;—% +e() = ﬁ——— +e(l) (2.2.6)
Y.P4(08;
1

where e(f) is an unobservable independent noise sequence with zero mean and finite
variance o2 as defined in section 2.1.

2.3 Linear in the parameters expansion

Idéntiﬁcation based on eqgn (2.2.6) directly is very complex because the model is
nonlinear in the parameters. Algorithms by Marquardt (1963) are available when the
measurements are noise free but this is unrealistic. The only alternative is the predic-
tion error algorithm of Billings and Chen (1989), which is computationally demanding.

An obvious solution would appear to be to multiply out to give a linear in the
parameters model. Whilst this appears to simplify the problem it induces an inherent
bias problem caused by the multiplication of lagged u’s, y’s, and €'s in pg(£) with e()
(Billings and Zhu 1991). This will be discussed in detail and a solution proposed in

section 3.

Expanding eqn (2.2.6) therefore to give a linear in the parameters expression

yields
den
Y() = a()— y(1) 2pqi(0)0, + b(De(r)
2
num den
= X Pa(08, — Xy(pgi(084 + O (2.3.1)
Fl F2
where

Y1) = y(Op41(Dlg, =

=pa®) -gg—g + pay(De() (2.3.2)
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Alternatively devide all the right hand side terms by 6, and redifine symbols to give
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essentially 6,; = 1. Notice that

£ = b(He(?)

den
= (P48 )e(n)
=i
den
= pai(De(t) + (X pa4i(H84e(t) (2.3.3)
=2
n;h,xb
E[L(D] = E[b(D]E[e()] = 0 (2.3.4)

providing e(f) has been reduced to an uncorrelated sequence as defined in eqn (2.2.6).

Eqn (2.3.1) can alternatively be expressed as

num

den
Y(0) = X paf08, — 2 y(pai(004; + bD)e(?)
F2

j=1
num den a(t)
= Y P08y — Empdj(t)edj + pa (e (2.3.5)
I =2
Although the term %pdj(t‘) in eqn (2.3.5) cannot be obtained directly the
expression is very useful in the analysis of bias and the derivation of the new estima-
tor.
Eqgn (2.3.1) may be written in vector notation as
Y(1) = (00 + L)
= $()O + py(Ne(?) (2.3.6)
where
0(1) = [9,() 04(N)]
= [pnl(r) e pmum(r) '—de(r)y(t) e '_pdden(t)y(t)]
a(t a(t
= P " Pann® PO+ €0) ** Paen D3 + e 37)
e’ =[0, 06,
= [enl “ Bpum B2 " " O genl (2.3.8)
and

0(0) = [0,() G401




-9.
= Pt P ~Po®) 28 : pdd,_,,mgﬁg] (2.3.9)
a)

Notice that the matrix q>(r) cannot be obtained directly because —=- cannot be meas-

b(r)

ured.

3 The bias problem
The bias problem which results from directly applying least squares type algo-

rithms to the rational model identification exists even in the case of white noise cor-
rupted data. It will be seen from following derivations that there is a noise element
which includes e(f) in the denomintor terms when the rational model is written as a
linear in the parameters expression. Consider egn (2.3.1) and take one of the denomi-

nator terms as an example on the right hand side

a

Y(Opgi(t) = paft) ——= b(1) + pgi(te(r) (3.1
where y(f) = ;Ef; + e(t) as defined in eqn(2.3.2), py1) b_E;_ represents the elements

which are independent of e(f) and pg(fe(f) represents the elements which involve the
current noise term e(f). We call this phenomenon an inherent error term which can not
be removed from the regression terms or variables. The inherent errors will introduce
bias in the parameter estimates associated with both numerator and denominator terms

when linear least squares type algorithms are used.

A polynomial NARMAX model without denominator terms, ie b(f) =1, is a
linear in the parameters model but in this case there are no inherent error terms. Hence
the estimates obtained from least squares algorithms are unbiased in case of the white
noise for the polynomial NARMAX.

To show the bias problem, consider eqn (2.3.6). The least squares parameter esti-
mate is computed as

6 =[d"o1! Y (3.2)
where

@7 = [¢T(1) - - T (V)

of) . . . oIV
okl . . . oIV



5% 10 -
Pm(1) . Pni(N)
prvlum(l) - pwfﬂ(N)
PaWEL ey . ™ EX 4 o)

b(1) b(N)

( ) _ aiN)
“Paden( D75 b(1) +e(1)) . —PagenNX b(N) + e(N)) |

Y=[xq) - yan’ (3.3)

It is clear from eqns (2.2.6), (2.3.1), and (2.3.6) that @ may include lagged noise
model terms where N is the data length. The normal matrix ®7® and the correlation

vector ®TY can be expressed as

):¢Z<r>¢n(r> ):@E(oqad(r)

=1

TP =
E¢§(t)¢n(t) }:¢§(r)¢dm
i =1 =1 i
] N N " [ [
Y oT00.(0 oL 1) 0 0
1=1 =1
= N .r N.p . + 5X
PHOLRGIDXHOIEG) 0 02X plOp 0
1=1 =1 i L 1=1
and
B Zoi0pa 05 ‘;E‘; 0
CDT}_’)= . atl) + N (3.4)
>:¢3§<r>pdl<r>--— YOO
= ORI =
where
PiO = a® * Pagen(®] (3.5)

‘and () is defined in eqn (2.3.9)
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Rewritting eqn (3.4) gives
TP = [dTD] )+ 02 ¥

'Y = [@TF) ;) + 02 ¥ (3.6)
where the definition of terms follows directly and
0 0 N o N
W N = 2p (Dp() = Y1)
0 plpa ) | = =1
=1
0 ¥ . N
Yy = N =2 (pa () = 2w (3.7)
Y PiOPs©) =1 =1
=1
where
p(®) = [0 py(0] (3.8)

All terms involving e(r) appear in 62 ¥ and 62 y which are called error terms and the

subscript (-—1) indicates that only lagged noise terms (eg e(t—j) j 21 ) are present.

Hence the estimate given in eqn (3.2) can be written as
6 =90 &Y
= [[®"®](p) + 02 W17 ([DTFly) + ©F V] (39

The two terms 62 ¥ and 62 y will cause bias even if the additive noise is white.
Detailed derivations and simulation studies were presented in a previous publication
(Billings and Zhu 1991). A new rational model estimator (RME) (Billings and Zhu
1991) based on an extended least squares formulation has been developed to remove
the bias and a recursive implementation of this estimator (RRME) (Zhu and Billings
1991) has also been derived for on line applications.

Although the RME algorithm provides unbiased parameter estimates for the sto-
chastic nonlinear rational model it does not solve the structure detection problem
which involves a combinational explosion if all possible model structures are tested in
a brute force manner. A natural solution to this problem is to develop an orthogonal
algorithm for the rational model. The major strength of an orthogonal algorithm lies

mainly in the fact that it should provide information regarding which terms in the




.

model are significant. This is vital in the identification of both linear and especially

- T3

nonlinear systems because the model structure of most real systems is rarely known a

priori.

4 Orthogonal algorithm

The orthogonal algorithm developed by (Korenberg 1985, Korenberg, Billings,
Liu, and Mcllroy 1988) for the NARMAX model which is linear in the parameters can
be applied to the rational model only when the data is totally noise free. This is clearly
uiyealistic and a new orthogonal forinulation is required for nonlinear siochastic
rational models. Transforming eqgn (2.3.1) into an auxiliary model form

den

Y(0) = 3 WD + 3 waDEa; + b @.1)
=2

=l ¥

where w.;(r) (* denotes either n or d) are constructed to be orthogonal over data record
N

such that 3 wa(f) wei(r) = 0, j # i, and §+; are the associated unknown parameters. This
1=1

expression can now be used to derive a new orthogonal estimator for the nonlinear

rational model.

4.1 Orthogonal transform

Consider the orthogonal equation in eqn (4.1), where the numerator term w,;(f)
and denominator term w(r) are defined as

1 dl
an(() = pnj(t) - Eannijwm'(t) - andtjwdi(t)
=1 i=2

nl J-1
wit) = = gy = X 0aniWni(0) — 2 Cgq;Wai(t) (4.1.1)
=1 =2
where the ordering of the numerator and denominator terms w,(f) and wg(f) is arbi-

trary, d/ is the number of denominator terms selected and sl is the number of numera-

tor terms selected.

As discussed in section 3, there is an inherent error which is ind:ccal in the
denomiantor term by the noise. From the orthogonal transform of the original equation
given in egn (2.3.1), this inherent error will propagate to numerator terms in the auxil-
lary model eqn (4.1) because the orthogonally transformed terms are backwards depen-
dent. This problem can be illustrated by considering the orthogonal transform of the
first denominator term from eqn (4.1.1) and egn (2.3.2) to give
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W () = = pp(t) ¥(1)

== pp(D) % — pa(®) e(t) (4.12)
Let
Wi == pol®) 5
eq(t) = — par(t) (4.1.3)
then eqn (4.1.2) may be rewritten as
Waal) = wwan(t) + ega(0) e(t) 4.1.4)

where e ,(f)e(r) indicates the existence of the inherent error in the orthogonal transform
and represents all terms which include the factor e(f), all other terms (which may
include e(r—j), j > 0 elements) are combined in ww(f). Therefore define

Jj-1 dl
anj(f) = pnj(t) - Zanmjwwnf(r) - Eandr'jwwdi(t)
=1

i=2
a(t) nl -1
wwgi(f) = = pg(N—= B() = 20w = X 0aqwwgi(0) (4.1.3)
i=1 =2

and

-1
€,;(1) =_f>;{anng ROE E&nd, €4:(0)

=2
nl -1
e4{(1) = = pai(t) = 2 0gnieni(1) — 3 0uqi€4i(t) (4.1.6)
i=1 =2

similarly where e«;(f)e(r) represents all terms which include the factor e(f), all other
terms (which may include e(t—j), j > 0 elements) are combined in wws; ;(#). Conse-
quently as j is incremented in eqn (4.1.5) and eqn (4.1.6) ¢,,;(f) and e,{(f) are known for

all i</ and can be used to compute and remove the bias.

Hence the eqn (4.1.1) can be written as
wnj(’) = anj(l‘) + enj(t)e(t)
wai(t) = ww () + egi(Ne(r) 4.1.7)

Alternatively eqn (4.1) can be written in the form of

Aum den
Y{0) = 3 w04, + de,(r)gd, + b(t)e(r)
1
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num . den num 2 den R
= Y ww, (N8, + Twwi(08g + ( X ey(N8y; + 24Dy + D) Je(t)
=l =2 ‘ =1 =2
num den . -
= E Mm'nj(t)g‘nj + Ewwdj(r)gtf:{ + Pdl(t)e(f) (41.8)
F=1 =2

With reference to the definitions given in eqn (4.1.7), it should be noticed that the
terms ww,(r) and ww,(f) cannot be measured. These expressions will be used to
derive some formulae for the orthogonal transform in this section and for the parame-
ter estimation in sectoin 4.3 and some properties of the err test used for structure

detection in section 4.4.

The coefficients G,

Gpgijy Ognijp and Gy in egn (4.1.1) can be computed
directly.

Coefficient a,,,; is given by
= wm'(t) pnj(t)
nnij w,zu-(t)
_ (wwy(0) + epi(Del) ) ppy(0)
(wwy(1) + e,i(De(r) )?

where the overbar denotes time averaging, and by definition e(f) is zero mean white

o

(4.1.9)

noise sequence which is independent of p,;(£) and e,(f) respectively such that

ww (1) pni(t
anm}' = L pnj( ) (4110)
wwk(t) + ehi(1) o2

An unbiased estimate of o, can be obtained by substracting eZ(t) 6% in the
denominator of Q,,,;;
me-(!) pnj(l)

wwl(t) + e2(f) o2 — % (r) o2

ﬁtmu =

_ wwi(f) pi() @.111)
wwii(l) h

Similarly the coefficient Qg5 is given by

Ww4il0) Pri(f)
)

_ (ww (1) + egi(D)e(r) ) pi(1)

(wwgi(t) + egi(De(t) )?

pgij =

(4.1.12)
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Since e(r) is a zero mean white noise sequence eqn (4.1.5) becomes
ww (1) ppi(0)

- (4.1.13)
WD + &) o2

An unbiased estimate of ,; can be obtained by substracting e3(f) 6% in the

denominator of o,

”Wd,‘(f) pnj(r)

Gt = 2 T P T
wwii(f) + e5(f) o — ez O,
_ wwl) ppy() (4.1.14)
wwﬁ,—(t)
The coefficient oy, is given by
6 _ wm'(t) de(f))’(t)
dnij = — —_————
’ “’31(0

a(t)
b

(W) + eni(De(?) )

(ww, (1) + e,(Ne(t) ) pg(D(———= + e()

ww,i(1) pai(t) b(; + pgi(t) e,i(0) o2
__ (4.1.15)
wwk () + e (1) o2

An unbiased estimate of a,,; can be obtained by substracting p4(f) e,(1) o2 and

eZ(t) o2 in the numerator and denominator respectively of Ol

bE; + Pg®) €nD) O2 — pgD €,(0) O
wn2 (1) + €2(f) 62 = e%(t) o

me(l’) pdj(’) Zg;

- 4.1.16)
ww2i(h)

ww,,i(1) pait)

adnij S

Similarly the coefficient oy is given by

w4i(1) pgi(Dy(t)
wEi(1)

Qagij = =

a(r)
b(t)

(wwg() + eg(De(®) )?

Cwwai0) + eg(De() ) py(2 + e(t))
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wwgi(f) pgi() -Z% + pgi(D) eq(t) o2

= — “4.1.17)
wwi(1) + e5(f) o2

An unbiased estimate of 0,,; can be obtained by substracting p,(1) e4(r) 03 and

e%(t) o2 in the numerator and denominator respectively of Olgij

wwgi(f) pafr) %%% + Pgi(t) €ai(®) 0% = pgD) €4 o
(04 ==
ddij ww(f) + e3(1) o2 — e%(1) o2
ww (1) p4i(f) L£e
_ b(r) (4.1.18)
WH%,'({)

4.2 Initial settings

Initial values are required in the orthogonal transform given in egn (4.1.1). If the

first term selected is a numerator term these values can be set as
W1 (1) = pri(®) = wwy, (1)
and

e,(H=0 (4.2.1)
Alternatively if the first term selected is a denominator term, then set

Wi () = = ppn(t) y(©

a)
b(r)

= Wwdz(r) + edz(t) e(f)

== (ppl®) + pa(0) e(r) )

and

edz(t) = - sz(t) (422)

4.3 Parameter estimation

The unkown parameters §+; associated with the orthogonal terms in the auxiliary
eqaution eqn (4.1) must now be determined. From the orthogonality of wai(f) and with
refrence to eqn (2.4.2), eqn (4.1), and eqn (4.1.7), define

w0 Y

T30
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( W“,,J(f) + E,y(f)e(f) )pdl(r)( b( ) + e({))

(wwyh) + e, (De(r) )’

a(n)
b(1)
wwi(f) + (1) o

ww () pay() —= + pay (1) e, (1) c;

and
de(f) Y()
0)

8d4j =

(wwgn) + egi(Ne(n) )de(t)(-g(—)- + e(n)

(wwgD) + egDe(t) )?

wwyi(t) par(1) b(; + par () e4(1) 03
= 4.3.1)
wwk() + e3(1) o2

Obviously the bias in the parameter estimates is caused by the noise e(f) which is
present in the terms w,(f) and wy(r). Unbiased estimates of g,; and g,; can be obtained

by substracting the bias terms in gnj and g; to yield

“Mn](r) pdl([) +pd](t) enj(t) 03 - Pdl(f) en](t) 02

= b( ) -
K ww2i(0) + e2(1) o2 — €2 (1) o7
w0 Pai) 5
) WWi(1)

and similarly

dej{f) pdl(f) +pdl(t) edj([) 0 pdl(t) edj(f) Gg

, b( b
g T
ww (1) pai (1) gg?

= 4.3.2)
W“%j(f)

2

Notice that througtout the bias is dependent on o, simply because of the assumption

that e(r) has been reduced to a zero mean white noise sequence by the action of fitting




-]

w I8 =
a noise model.

4.4 Error reduction ratio computation

Parameter estimation must be combined with structure detection if parsimonious
nonlinear models are to be obtained. Detecting which terms should be included within
the model and which should be discarded can be acheived by exploiting the properties
of eqn (4.1) and by defining an error reduction ratio (err) test (Korenberg, Billings,
Liu, and Mcllroy 1988). The err test which is a by-product of the orthogonal estima-
tion algorithm must be rederived for the rational model because of the inherent error.
Consider eqn (4.1)

den
Y() = 3 w0 + ):wd,(t)gd, + b(De(n) (4.4.1)
=1
Squaring eqn (4.4.1) and taking expected value gives

num

Y = }:g,,, Wl (1) + Egd,n 0,

num den
+ 23 8 wai(Db(De(t) + 23 845 wai(Db(De(t) + b(t) o2 (4.4.2)
=1 J=2

From eqn (4.4.2) the first two terms on the right hand side are given by

num num

}:gn, wai() = Zgn,- (W, (1) + e,i(Ne())

numi

= X g5 ww2i(0) + (1) o2 )

and
den den
Y 6 w0 = T8 vy + egDe())?
=2 =2
den
= Y (g5 wwZi(t) + €5() o2) (4.4.3)
=2

and the third and fourth terms on the right hand side are given by

nglgnj W = nfi:’gnj (anj(r) + gnje(t))b(f)e(f)
= s

= 3 £, e, (OD(D) O
1

and



= T

den  den
Y 84 waiDb(De(t) = X84 (wwyi() + ege(D)b(Ne()
=2 =2
den
= 3 84j eq(Nb() & (4.4.4)
2

Substituting eqn (4.4.3) and eqn (4.4.4) into eqn (4.4.2) and then multiplying by

:-1—:-_——_.._ on both sides gives

Y2(6) b

1 rum g5 wwi(n) + e2(0) OF + 28, €, (DB() ©F
bX) = Y1) b
% g5 wwh(1) + e%(1) 02 + 284 e (b)) o> . o2 AT
2 YA b0 1&0)
Define the estimated error reduction ratio as
o By W) + €(0) 0% + 2805 €O o
Y Y20 b
g5 wwii(0) + €5(1) O + 284 e (OD(0) o2
errg = ———— (4.4.6)
Y2(H) bA(1)
introduce
g5 wwk ()
efr,; = ==
Y21 b%(0)
a2 TR
s ww(
. L ] (4.47)
YA b
as the err estimates that would arise if e(f) = 0, and
2 2 Ay T oD
e,:(t) oz + 28, e, (b(r) o,
Biar] ey § = wi) O¢ + 28, €,(0b(1)
Y2(t) b1
e5i(1) 07 + 244 e4(ND(0) OF
Bias | eFrdj] = (4.4.8)

YX(1) bX1)
as the biases which are induced in the err estimates for the realistic case of e(f) # 0.
An unbiased estimate of err for the rational model can therefore be estimated

using

efr,; = erry; — Bias [ efry; ]
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eFrdj = erry; — Bias [ efry; ] 4.4.9)
where err,;, Bias | efr,; ] errg;, and Bias | efrdj ] are obtained directly from the com-
putations.

With reference to the definations in egns (4.4.6), (4.4.7), and (4.4.8), eqn (4.4.5)
can alternatively be written as

num den 0’3
== Y e+ Zerrdj+-—2
o} . Oy
num den num den 02
= Eefr,,j + Ze?rdj + Y bias [ efr, gl + Y bias [ ek | +— (4.4.10)
=1 =2 =1 P2 UY
where
op = b*(1)
o} = Y1) (4.4.11)

Eng (4.4.10) can be used as an information criterion for determining the number of

terms to be included in the model, it therefore determines the model structure. The
e}

larger the value of err the more the ratio -—;- will be reduced, and hence the
Oy

corresponding term should be included in the model. Insignificant terms can be
rejected by defining a cut off value of 1 — }'efrs; below which terms are deemed to be
negligible. As a criterion err compromises the prediction accuracy and complexity of a
final model.

There are several alternative term selection methods, most of these including a
stepwise regression algorithm and a log determinant ratio have been studied respec-
tively by Billings and Voon (1986) and Leontaritis and Billings (1987).

4.4 Implementation of the algorithm

Implementation of the algorithm requires a knowledge of the noise variance 03,

this can be obtained by a recursive routine like
O(k) = Orth. Estimator (., 62(k-1))
a(., Ok))

Shsr—— ¥ -ty (4.5.1)
N nd r——:%ﬂ b(., OK))
where Orth. Estimator denotes the algorithm presented in this section, "." denotes the

terms selected in the model, k is the iteration index, N is the data length and md is the




o
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maximum lag in the terms.

The general orthogonal rational model estimator (ORME) with arbitrary order
selection for numerator and denominator terms can now be summarised as follows

i1
W:J,'(f) = Al(f) - Edn;jw*,-(t)
i=1

j—1
e.J(l‘) = Az(t) —éﬁ**fjc*,-(r)

wa (DAL (D) = ex (DA, (D)6

gv; = W*j(’)_};(_’)_“ e*g(ﬁd;(f)ﬁg
wx(1) — ex; (NG,
5t =1+ $py 0,
2

iy = B0 — £e50 7 — 280 (0B 6
: 0 5

1 N a(., Ok
62 = T o - L O (4.5.2)

N-md ;3.1 b(., ©(k)

where * denotes either n or d, k is the iteration index, and
Pri(1), for the numerator
Ay0) = —Pgi0y(1),  for the denominator
0, for the numerator
A0 = ~pg(1),  for the denominator (4.5.3)

The parameters in the original model given in eqn (2.4.1) can then be computed from

A

emu'n+‘:1’en—1 (}‘) = g num+dert—l(k)

i num+den—1 a
Oky=gk - X 6,;(k)0;(k), = num+tden-2,-- -, 1 (4.5.4)
=i+l

where ¢; denotes either §,; or g;; and similarly ; for 8, or 6, Gi; for Gusjy.

A comparison with the original algorithm derived for the polynomial NARMAX
model, which was given in Korenberg (1985), Korenberg, Billings, Liu, and Mcllroy
(1988), and Chen, Billings, and Luo (1989), shows that the new ORME algorithm adds
extra formulae for e(1), 63, and b(f) which are used to remove the inherent bias.




.

Secondly all the averaging operations for Gus;;, £+)» and efry; also include bias removal

.22 -

terms and thirdly an iteration framework for the estimation of the noise variance &,
has to be adopted.

This algorithm will reduce to the original algorithm derived for polynomial NAR-
MAX model if b(r) = 1.

The ORME algorithm may be programmed by the following steps:

i) Set 63 = 0, err cut off and max iteration.

(i) Select terms and estimate associated parameters with the formulae of eqn
(4.5.2).

(iii) Compute the noise sequence e(f) and estimate the variance 03 with the

selected model.

@v) Go back to step (ii) and repeat until 63 converges to a constant value or

the max iteration is exceeded.

5 Simulation studies

Three simulation examples were chosen to illustrate the application of the ORME
algorithm for term selection and parameter estimation of stochastic nonlinear rational
models. In all three examples 1000 pairs of input and output data were used with the
same input and noise signals. The input u(f) was a zero mean uniform random
sequence with amplitude eange %1 (variance ﬁﬁ = 0.33) and the noise e(f) was a zero
mean Gaussian sequence with variance 0’3 = 0.01.

The initial model specification consisted of 20 terms for the first two examples
and this was used as the full model with numerator degree = denominator degree = 2
and input lag = output lag = noise lag = 1, and a full model consisting of 56 terms for
the third example was specified with numerator degree = denominator degree = 2 and
input lag = output lag = noise lag = 2. In each case the true model structure is
represented by just three or four terms from the much larger model set. Both the struc-
ture, or terms to include in the model, and the unknown parameters are estimated using

the ORME algorithm with no apriori information whatever.

Example S; consisted of the rational model

0 = 2D 4 gy = FUD + u@D) + et

- 5.1
b(n 1+ y2(t=1) + y(t=Du(t-1) +eld e

The linear in the parameters expression for this model is

Y1) = y2(-1) + u(t=1) + e(t-1) = y()y*(t=1) — y()y(=1u(t=1) + b(r)e(r)
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(5.2)

where
Y() = y() (5.3)

The input and output data sequences for this example are shown in Fig. 1.1. For
the detection of the model structure and the estimation of the parameter a cut off point
of 0.02 was used for including terms in err and an initial value of 63 = 0.0. A model
with five selected terms was fitted and the parameter estimates after six iterations are
listed in Table 1.1. The one step ahead predictions and residuals are illustrated in Fig.
1.2. The model validity tests are shown in Fig. 1.3. All these results indicate that the
ORME algorithm produced a good unbiased §;.

Example S, consisted of the output affine model

yn = O o etp=l L) u(t=1e(t=1)

b(r) 1+ u%(t-1)

+ e(r) (5.4)

The linear in the parameters expression for this model is
Y(©) = y(t=1) + u(t-e(t-1) — yOu*(t-1) + b()e(?)
(5.5)

where
Y(n) =y (5.6)

The input and output data sequence for this example are shown in Fig. 2.1. For
the detection of the model structure and the estimation of the parameters a cut off
point of 0.34 was used for term selection with an initial value of 65 =0.0. A model
with three selected terms was fitted and the parameter estimates after six iterations are
given in Table 2.1. The one step ahead predictions and residuals are illustrated in Fig.
2.2. The model validation were all within the 95% confidence bands. Once again the
ORME algorithm gave both a correct term selection and unbiased parameter estima-
tion.

Example S5 consisted of the rational model

()] _ YA + u(=1u=2) + y(t-De(t-2)
o b(r) el 1 + Y2(-1) + it (t~2)

+ e(f) (5.7)

The linear in the parameters expression for this model is

Y(t) = yA(t=1) + u(t-Du(=2)+ y(t-1e(=2) — y()y*(t=1) — y()u?(t-2) + b()e(r)
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(5.8)

where ‘
Y(r) = y(n (5.9

This is a more complicated model than the first two examples. The input and out-
put data sequence for this example are shown in Fig. 3.1. For the detection of the
model structure and the estimation of the parameters a cut off point of 0.05 was used
for term selection with an initial value of 63 = 0.0. A model with five selected terms
was fitted and the parameter estimates after six iterations are given in Table 3.1. The
one step ahead predictions and residuals are illustrated in Fig. 3.2. The model valida-
tion tests were all within the 95% confidence bands. Again the ORME algorithm gave
both a correct term selection and unbiased parameter estimation for this higher order
lag rational model identification.

Because the estimate of the variance of the noise tends to be overestiamted in
the first few iterations in all the above examples o2 was weighted as 10, 50, 90, 99,

and 100% for each iteration respectively.

6 Conclusions

A new orthogonal estimation algorithm has been derived for the identification of
stochastic nonlinear rational models. The algorithm is computationally straightforward
and provides, without any a priori information, a method of detecting the model struc-
ture or which terms should be included in the numerator and denominator together
with unbiased estimates of the unknown parameters in the presence of linear and non-
linear noise corruption.
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Figure 1.3 Model validation for example S,
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