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Global Analysis and Qualitative Model Validation

mn

Nonlinear System Identification

Abstract S e

The analysis of parameterised noplinear models is considered. In particular the emphasis is on models produced as a
result of applying nonlinear system identification techniques. A qualitative approach is taken which calls upon ideas
from bifurcation theory, which when combined with an existing numerical method enables the analysis of a wide variety
of nonlinear model forms. The combination of qualitative and numerical aspects provides a flexible framework for
analysis at the same time as providing a global perspective that is difficult to achieve using analytical methods alone.
When combined with the well tried methods of system identification the approach enables the validation of nonlinear
models from a qualitative viewpoint. This contrasts well with the statistical model validation techniques used in
identification. The technique is applied to a number of examples to illustrate the effect of input design and signal to
noise ratio on the modelling process.

B

.
Introduction
Traditionally the analysis of parameterised nonlinear systems has called upon ideas and methods
from bifurcation and singularity theory. The so called dynamical systems approach is attractive, at
Jeast at first sight, in that it provides information on the very type of qualitative behaviour the
nonlinear model was constructed to emulate. In addition the methods become of use just at the
point where traditional linear theory breaks down. That is when one or more linearised

eigenvalues become degenerate.

Unfortunately these methods have two drawbacks. First, being generally analytically based, the3;
depend on a good deal of a priori knowledge of the solution structure of the system. In a general
parameterised nonlinear model such information will not be available and indeed may be difficult
to obtain. Secondly, most of the analytical approaches require the model structure to take a

particular form.

In contrast the techniques of nonlinear system identification developed in last ten years place few
such restrictions on the form of the nonlinear model. Adopting the model structure introduced by
Billings and Leontaritis, 1981, allows the construction of a wide class of parametric nonlinear
input output models. These recursive models map past inputs and outputs to the present output.

The question then becomes, how to assess the validity of such representations.

[

One answer to this question which is proposed in the present study is to suspend the parametric
models in a discrete, or cellular, state space. It is shown how this allows the application of a

particularly attractive and simple numerical algorithm which has the advantage of providing
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information on both the stationary and periodic nature of the models characteristic along with
Jocal and global stability information. As an added bonus this new approach places few

restrictions on the form the model may take.

This paper is organized as follows: Section I of this paper provides a brief description of the basis
and general procedure behind fitting nonlinear models using system identification techniques.
Section TI describes the cell map approach applied to parameterised models produced as a result
of applying the nonlinear system identification technique. Section III introduces via a number of
examples the concept of the qualitative validation of nonlinear models. In particular evidence of
the existence of bifurcation effects introduced in the course of nonlinear system identification is
provided and then used to construct nonlinear models that are both statistically and qualitatively

valid.



1. System Identification

The development and use of system identification techniques has received much attention over
recent years. This paper does not attempt 10 review or extend these ideas, for background
material see in the first instance Ljung, 1987, or Billings, 1985. It is important however to
understand the context which system identification plays in this work and to understand the

procedure for fitting a nonlinear model using measurements of only the system input and output.

The present study focuses on one particular useful nonlinear model structure, the so called
NARMAX model [Billings and Leontaritis, 1981]. This model structure can be used to represent
all the commonly occurring nonlinear systems, including Volterra series, block structured,
bilinear, state-affine, output-affine and rational models. However, the approach developed here is

by no means constrained to the analysis of NARMAX models alone [Haynes and Billings, 1991].
Consider the general nonlinear discrete time system represented by

x(t+1) = g(x(t)u(f)) xeX uweU  yeY  x(1)=(x1(t)-xa(1)"

y(#) = h(x(t)u(®) u(t)= (1 (et ) ¥O=G1Onym@)T (LD
where reZ is the set of integers, X is the state set of dimension #, U the input set of dimensionr, Y

the output set of dimension m, Xo is the initial state, g ; XxU—X represents the one step ahead

state transition function and A : XxU—Y is the output function.

Let the vector of all inputs from 1 to t be w' = (u(®),u(t -1),.,u(l) )I. The function that
describes the input output behaviour of a system is of primary importance in systems theory and
may be utilised to describe the experimental observations made by an observer. When the system
is initially at the zero equilibrium xo the zero-state response function for an input sequence u' of

length ¢ is
y() = fi(0') = £ 1 (u(t),u(t -1),.,u(1)) f,, :U-Y (1.2)

The response function £, | is a different function for every ¢ = 1,2... since the domain of u' differs.
The response function is said to be finitely realisable if and only if the dimension of thé state
vector in (1.1) is finite. The validity of the input output representation (1.2) depends upon the
form of f, |, and two rather mild conditions [Leontaritis and Billings, 1985]. Firstly, the response
function of the system should have a finite dimensional state space. Secondly, a rank condition is
satisfied requiring the state space of the linearised system to be the same as the true system.
Then, defining the observability indices of the linearised system as 711,71 2,..,lm Padulo and Arbib,

1974, then the following recursive model describes the system around xg
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yit+n) = @ (Y1t +n1= 1y 1(0) s Yt 47 = Doy () »
U (4D )nstd 1 (1), yoes Up(E+D st (2) ) i=12..m . (13)

For the case when r =1 and m =1 the system is SISO. Introducing the delay, 4, gives

y(t) = F'(y@=1).y@-n),ut-d).u(t-d -ny,)) (1.4)

where F/(.) is some nonlinear function. The input output- description (1.4) expands the current
output in terms of past inputs and outputs providing a model structure which will represent a
broad class of nonlinear systems. Unlike the response function (1.2) the model (1.3) is
independent of the initial condition, and is valid in a region about the equilibrium point. The
recursive input output model (1.4) is a valid realisation of the general state space representation
(1.1). Of course in practical system identification the state space model is unknown and hence the

response function f, |, is unavailable. However, this does not prevent the construction of models

of this form using nonlinear system identification techniques.

As part of the process of system identification is is necessary to construct estimates of the

parameters, or coefficients, in (1.4). Expanding F !(.) as a polynomial and defining
Vi=y(t=1),. Vo =y(t -1y), Vo s1=u(t -d),., Vs=u(t-d -n,)

where § =n, +n,, enables (1.4) to be expressed in the form

y() = Fi(V1,V2,. Vs) (15)
which when expanded yields
$ § & S iy
@) = DoV + 2 DV, ++ B DoV (16)
iy=1 i =1i,=1 =1 §=1

where 8; represents the coefficients of the linear, quadratic, cubic ... terms. Assuming that the
system output y(¢) is corrupted by zero mean additive noise e(t) such that y(z) becomes

y(#) + e(t) then the input output model (1.6) is then written as

Y€ = D -e@=in)) + Ty (u(-d=ir+))

iy=1

¥ .ffh.i}fua(y(t ~iy)-e(t=iy) My (t—iz)=e(t =i2))

+ D b i (3 (E—in) e =in) (e —d =i+1))

iy=1i,=1



Ny

+ iﬁ,,ﬁ,-lnyﬂ,(u(t-d—ilﬂ)(u(t—d—i2+1))+e(t)+HOT... (17)

iy=1i,=1
Inspection of (1.7) shows that even though the noise enters the process as an additive signal at the
output it appears in the model as multiplicative terms with the systems input and output. Although

the model is linear in the parameters the inclusion of lagged process outputs introduces cross

product terms between the noise and the process input and output signals. Rewriting (1.7) gives

y() = Fly(t-1),.y(t-n),u (t-d).,u(t-d-n,),e(t- 1,..e(t-n,)) + e(t) (1.8)

where n, is the order of the additive noise e(f). This model is referred to as a Nonlinear
AutoRegressive Moving Average model with eXogenous inputs, or NARMAX model. A
NARMAX model with first order dynamics expanded as a second order polynomial nonlinearity

would for example be represented as

y(t) = 6y (t-1) +6u(t-1) + By 2(t—1) + Oy (t = Du(t = 1) + bu’(t -1)

Much has been achieved in developing parameter estimation techniques for the NARMAX and
other models. In this paper we are interested only in the general model fitting procedure. It is
important to understand the basic ideas that lie behind the process of constructing a parametric
model before we consider the analysis of such models. The NARMAX model representation has
been chosen in order to illustrate this. Details of the algorithms used may be found in Billings
and Voon, 1984, 1986, and Korenberg et al, 1988. Identification techniques making use of
different model structures can be found in Chen and Billings, 1988a, 1988b, and Billings and
Chen, 1989,

1.1. Input Output Data Collection

The process of fitting a model of the above form begins with data collection. In carrying this out
the input signal should be designed so as to persistently excite the system. This requires selection
of the mean, p, variance, o7, and bandwidth of the input carefully. The input should be selected to
excite all the systems dynamic modes over the complete amplitude range of interest. Correct
input design is of primary importance if the model fitting exercise is to be successful. Indeed
optimal input design for the purpose of identification has been attempted [Kabola and Springer,

1982], though this can only be achieved if the system model structure is known a priori.



Traditionally in system identification work pseudo-random binary sequences, or PRBS, are used.
Unfortunately PRBS signals may not be persistently exciting for nonlinear systems. Additionally
using a PRBS biases the estimates in the vicinity of those binary levels chosen for the PRBS. This
may result in an effective linearisation of the nonlinear system. One approach used with some
success is to construct a compound PRBS input [Billings and Fakhouri, 1982]. A better idea is to
adopt a gaussian distributed input over the required amplitude range [Leontaritis and Billings,
1987.]

1.2. Nonlinear Structure Detection

The Structure Detection test, STD, can be used to determine whether the data collected is
representative of a linear or nonlinear system. Assume that the input u (¢)=u’(t)+b and output
noise e () are independent, e (t) and u’(f) are zero mean processes, b #0, all odd order moments

of u’(¢) and e (¢) are zero mean and all even order moments are assumed to exist.

Then it can be shown that the process is linear iff

dya(r) = E[y'(t+n)y?@®)]1 =0 V1 (19)
where y’(¢) is the system output, with mean level removed [Billings and Voon, 1983]. Note that
the test distinguishes between linear additive noise corruption of the measurements and distortion
due to nonlinear effects. The input conditions are satisfied by selecting an input such as a sine

wave, gaussian signal, independent uniformly distributed process or PRBS.

1.3. Parameter Estimation

This involves estimation of the model coefficients ¢; in the NARMAX model expansion given
values for the model parameters n,, n, ne, d and I in (1.4). When the system under test is
nonlinear it will in general be impossible to solve (1.8) for e (¢) and consequently the noise source
e (t) and the prediction error will not be equal. Reformulating (1.8) into a Prediction Error model

by defining 7 (¢) as the one step ahead prediction such that

1) = y(@) -9 (1.10)
gives
y(©) = Fl(y@ -1yt -n), ut-d)u-d-n), -1, -ne) + €0) (1.11)

where



y(t) = Fi(y@-1).u(t-d).)
E[£(t) 1 y(t=1)u(t-d).] =0 _ (1.12)

and n; is the order of the prediction error £(t). In general the noise source e (f) can neither be
measured nor computed from (1.8), all the parameter estimation algorithms must therefore be
developed based on (1.11). Direct application of least squares yields biased estimates in nonlinear
systems and alternative algorithms must be developed to overcome this difficulty. The Maximum
Likelihood method can be applied directly when it is known that a system is linear and the
innovations or prediction errors have a gaussian distribution. Again when the system is nonlinear
this is not possible [Billings and Voon, 1986]. The Prediction Error method [Bx]hngs and Voon,
1986], can however be applied without any knowledge of the distribution of the innovations. For
gaussian innovations the Prediction Error method is equivalent to the Maximum Likelihood
method. Alternatively the Orthogonal Estimation algorithm by Korenberg et al, 1988, can be used.
This method is used in this work as it enables both parameter estimation and model structure

selection to be carried out simultaneously.

1.4. Orthogonal Parameter Estimation

Estimation of the model coefficients, § in (1.11) is achieved by constructing an auxiliary

orthogonal parameter set, w;, such that the linear in the parameters expansion of (1.11)
y@ = 21 6 pi(t) + €@ (L13)
i=

where n, denotes the number of parameters in the model and p;(t) represents a term in the
expansion of a NARMAX model with no two p;(f)s are identical, eg. p1(t)=y(t-1),
pa(t)=u(t-1).... The orthogonal algorithm involves transforming (1.13) into an equivalent

auxiliary model

YO = gm0 + €0 (1149

where the g;’s are the orthogonal coefficients and w;(t), i =1..,n4 are constructed to be orthogonal
over the data records such that w;(f) wj.i() = 0 for i=1.,j. The orthogonal estimation

rocedure obtains estimates of the g’s and transforms them back to the system parameters §;’s
P 8 ¥ p

[Korenberg et al, 1988].
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1.5. Model Structure Selection

The successful application of a parameterised model in nonlinear identification is critically
dependent upon detecting which candidate terms should be included. This is carried out using the
Error Reduction Ratio, or ERR test which is derived as a by-product of the orthogonal estimation

algorithm. Consider the auxiliary model described by (1.14). Multiplying the model by itself and

taking the time average gives
yie) = ag? wi(e) + €(t) (1.15)

Assuming that £(¢) is a zero mean white noise sequence and the orthogonal property holds. The

maximum mean squared prediction error is achieved when no terms are included in the model,
n = 0, such that €2(¢) | »,=0 = y%(¢). The ERR; is defined as the reduction in mean square error

by including a term gw;(¢) in (1.15), equal to g?wi(t), expressed as a percentage reduction in the

maximum mean squared error, such that

Y
= gif_’—(_f-)— x 100
yi(®)

Insignificant terms in (1.14) can then be discarded by defining a threshold value of ERR below

ERR; i =1,..,ng ) (1.16)

which terms are considered to contribute a negligible reduction in the mean squared error.

The great advantage of the ERR is that it does not require the estimation of a complete model in
order to determine the significance of a candidate term. The ERR value is however dependent'
upon the order in which a term enters the auxiliary equation, for more detail on this éee Billings et
al, 1989.

1.6. Nonlinear Model Validation Test

The final stage in the model fitting process involves statistically checking the whiteness of
modelling residues for unmodelled predictable behaviour. Model Validity Tests, MVT detect
information in the residuals which, if neglected, will introduce bias in the parameter estimates. If
the system under test is linear the residuals should be unpredictable from all past inputs and
outputs. Assume that the input u(#) and noise e (f) are independent zero mean processes, and all
odd order moments are zero, e (t) is white and u (¢) may be white. The traditional MVT tests for

linear systems require [Box and Jenkins, 1976]

$ee(r) = 6(7)



dug(r) = 0 Vr (1.17)

The use of these correlation techniques for model validation has been shown to be inappropriate
when the system under test is nonlinear . In the general case when it is known that the system
under test is nonlinear, as indicated by the STD test, then the residuals will be unpredictable from

all past inputs and outputs if, in addition to (1.17), [Billings et al, 1989],

deeu(r) = 0 Pr>0
dure(r) = 0 Vr
pure(r) = 0 Vr (1.18)

The identified model is then said to pass both the linear and nonlinear MVT tests.

1.7. Example

The NARMAX model orthogonal estimator coupled with the nonlinear structure detection test
and model validity tests are combined together. The arrangement of the candidate terms, p;(f), in
(1.13) is accomplished using a Forward Regression algorithm applied to the estimated prediction
error £(¢). To illustrate the procedure for fitting a NARMAX model consider the system
described by |

y(t) = 08y(t-1)+05u(t-1) +02u(t-1yE-1)+ e(t) (1.19)

The input u(t) is composed of a uniformly distributed signal u (f)e[+1.0] superimposed on a
mean level b=02. The additive output noise signal, e (), is a gaussian white noise process
N(0.0,0.2). Input output data generated is shown in Fig. (1a), along with the results of the STD
test, (1.9), Fig. (1b), that clearly indicate the data to be from a nonlinear system. For this trivial

system selectingn, =1,n,=1,n,=3,d =1and/ =1 gave the linear model with coefficients

Terms Estimates ERR Standard Deviation
y(t- 1)= 0.841e+00  (0.863e+02) (0.662e-02)
u(t- 1)= 0.699e+00  (0.101e+02) (0.137e-01)
e(t- 1)= 0.855e+00  (0.149e+01) (0.428e-01)



e(t-3)=  -0328e+00  (0.193e+00) (0.463e-01)

Note the total error sum contributed by the 4 terms due to (1.16) is ERR;=98.1%. . Rewriting this

model in the more usual form gives
y, = 0.841y,_; + 0.699u, _; + 0.855¢,_; — 0.328¢,_3 (1.20)

where y, =y (t), u,=u(t) and e,=e¢(t). The model above gives good predictions, Fig. (2a). and
passes the linear MVT tests, (1.17), shown in the upper two plots in Fig. (2b). However, the
deficiency of the linear model is highlighted by the nonlinear MVT tests, (1.18), which clearly lie
outside the 95% confidence intervals, shown in the lower three plots in Fig. (2b). Setting/=2a

quadratic nonlinear model is now fitted resulting in the nonlinear model

Terms Estimates ERR Standard Deviation
y(t- 1)= 0.800e+00  (0.863e+02) (0.125e-02)
u(t-1)= 0.502e+00  (0.101e+02) (0.284e-02)
y(t- 1)*u(t- 1)= 0.200e+00  (0.348e+01) (0.125e-02)
e(t-1)= -759e+00  (0.381e-01) (0.427e-01)

The model produces excellent predictions, Fig. (3a), having a total error sum ERR; =99.9%, and
passes both the linear and nonlinear MVT test, Fig. (3b). Rewriting this model gives

y: = 0.80@,_1 + 0.502!»‘:.,1 + 0.200“;-1)):_1 = 0.7596:-1

Notice that the inclusion of the nonlinear term improves the ERR sum in this case by about 2%
over the best linear fit. It may then be argued that the best linear model would, for all intents and

purposes be sufficient. We show later in this paper the folly in this reasoning.

< 0=



2. Global Analysis

The stability of a model, both absolute and structural, is dependent on the location and
distribution of degenerate singularities on the solution manifold of that system. To date little has
been done to study the qualitative aspects of the type of nonlinear models produced as a result of
the identification process. Analytical methods meet some of the requirements for certain classes
of models. Such methods however, tend to be valid for only one particular model structure or
type. For application to the type of nonlinear models produced in system identification, a flexible
approach is essential that is not limited in this way. Furthermore, it is desirable to add a global
aspect to the analysis to enable both the state space, and parameter space, of the model to be

probed for interesting behaviour.

In order to achieve these aims a dual approach has been adopted. This combines the essentially
qualitative ideas of Bifurcation theory and Singularity methods with a simple yet attractive
numerical algorithm. The analysis of nonlinear systems using the Cell Map approximation was
first carried out by Hsu, see for example Hsu and Guttalu, 1980. This method has been extended
to the qualitative analysis of nonlinear parameterised models of the type commonly encountered
in bifurcation studies [Haynes and Billings, 1991]. The approach proves attractive for a number of
reasons. Firstly, it provides a method of enumerating both the stationary and periodic solution
structure of the system over a given parameter range. Secondly, and more importantly,
information of a global nature is provided on the extent of the systems stability domains. As a

result of this both local and global bifurcation phenomena can be detected.

2.1. Cell Mappings

The process of analysing a system using Cell Map analysis comprises of a number of steps. The
first is the suspension of the nonlinear system, say (1.1), in a cell state space, Z". This is an n-
dimensional space whose elements are n-tuples of integers. Each element is called a cell vector,

or simply a cell, and is denoted by z.

There are many ways to obtain a cell structure over a given euclidean state space. The simplest
way is to construct a cell structure consisting of rectangular parallelepipeds of uniform size (
squares, cubes etc ). Letx; ,i =1,..,n be the state variables and let each coordinate axis of the state
variable be divided into a number N;, of intervals of uniform size 4;. The interval z; along the X;

axis is defined such that it covers all the x; of interest.

1
(Z,' )hz <x < (Z,' + '5 )h, Z; = 1,2,..,N,' (21)



The n-tuple z; ,i =1,..,n is then called the cell vector, denoted by z. A point x belongs to a cell z iff
x; and z; satisfy (2.1) Fi€[L,n]. Each cell z is considered as an entity and the entire collection of
cells as the cell state space. Consider now the mapping between two cells z (j) and z (j +1), where
j=1,2.. is used to denote a sequence in the same manner as the iterates of a mapping. The cell

map, C(z), is a mapping of a set of integers {N +} such that

z(j+1) = C(z(j)) z2(J))EZ' CS (22)
The cell function, F(z,C), is then defined as

F(zC) = C(z) -z (23)
If CX(z) denotes C(z) applied K times, and the K-th step ahead cell function is

FX(z,cX) = CX(z) -z (2.4)

A singular cell 2" as a cell satisfying the relationship

F(z',C) = 0 or z = C(z) (2.5)

and a periodic cell cycle, given that C’(z) is the identity mapping, is a sequence of K distinct cells

2°(j), j =1.., K, K being the minimum value which satisfies
2(m+1) = C™(z'(1))) m=1.K-1 (1) = C¥(2°(1)) (2.6)

Each element of the periodic cycle is a periodic cell. The complete cell cycle is labelled as P-K.
Additionally those cells eventually mapped onto the P-K cycle by (2.2) are defined as within the
domain of attraction , or DOA, of the cell cycle and labelled as the DOA-K cells. ’

The size of the cell state space is determined by the system itself. For most practical systems
there are ranges of values of the state variable beyond which we are no longer interested. This
means that there is only a finite region of the state space which is of concern. Similarly for a
dynamical system governed by a cell mapping there is only a finite region of cell space of interest,
and correspondingly a finite number, N, of cells, named the regular cells. The sink cell is used to
encompasses all possible cells outside the region of interest. If the mapped image of a regular cell
lies outside the region of interest it is then said to be mapped into the sink cell. The regular cells
are labelled by positive integers {1,2..,Nc}. The sink cell is labelled as {0}, the zero cell. This
makes the total number of cells N, +1, such that S={N.+}. The set, S, is closed under the

mapping described by

2(j+1) = C(z(j)) 2(j), 2(j+1)€Z" C S

5 P



c(0) = 0 S = {N.+} 2.7)

A number of consequences arise from the definitions above. The sink cell, C(0), is a P-1 cell.
The set of regular cells within the influence domain of the sink cell, these béing eventually
mapped to C(0), are in the domain of attraction of the sink cell, and labelled the DOA-Sink cell.

2.2. Cell Mapping Discretisation
The cell map, C(z), system may be considered as a discrete system similar to the point mapping
Xe41 = 8(X) x€R’ (2.8)

In order to make use of the qualitative ideas provided by dynamical systems theory it is necessary

to extend the algorithm of Hsu to the more general parameterised nonlinear system

X1 = (X, m) x€R® peR” (29)

Applying the center point method of discretisation requires the division of R” into a collection of

cells according to (2.1) and the calculation of each cells center point x@(j) such that

() = x® + by z(j) - h—z‘ 2G)=bNi = 1LNi i=Lun (2.10)
where A; is the cell size and x(? the lower bound defining the region of interest such that

® < x < x® @ =(xP, 2Py x®=(xf,.xP) (2.11)
Similarly R™ is discretised using

p@() = p? + g z(j) - % 2()=LN; j=1L.N; i=n+l.,n+m(212)
where g; is the cell size and the region of interest defined by

p® < p < p® pO=(pPn®) w®=(pP,.pP)  (213)
The point mapping or image of the center point x)(f) is then calculated using (2.9) such that

x4 = g (x, u@) (2.14)

and the cell map C(z) is constructed by determining the image of each cell within S using

1@k +1) - x
z(j+1) = INT|= ( h) o1l i=tl.n j=1uN;

Ci(z()))

Cj(Z,‘U)) = Z,‘(j) i=n+l.,n+m j = L'-rNi (215)

Note we are in effect constructing m separate cell mappings of dimension », each representing a
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slice within the parameter space p = (f1,.., )’

23. Cell Map Analysis

Having constructed C(z) the classification of all cells within S is carried out using an Unravelling
Algorithrn [Hsu and Guttalu, 1980]. The algorithm involves calling up each cell in turn and
processing it in order to determine its global characteristics. Each cell is then classified

accordingly.

A cell may be a singular cell, P-1, or a periodic cell cycle, P-K, satisfying (2.5) or (2.6). The set of
all such cells make up the invariant stable and unstable orbits within Z". When K =1 a fixed point

has been located, when K >1 a periodic solution or limit cycle has been detected.

Alternatively a cell may simply be a regular cell in the DOA of a P-K cell. Each such cell is then
said to be in the same group and have the same periodicity as that cell cycle and is labelled

accordingly.

Finally a cell may be mapped by (2.2) outside the region of interest into the Sink cell. Such a cell
is then said to be in the domain of attraction of the sink cell, the DOA-Sink, and is labelled
accordingly. For more detail on the Unravelling algorithm and is variants see Hsu, 1987 or
Haynes and Billings, 1991.

2.4. Suspension of the NARMAX Model

To analyse a NARMAX model within the framework outlined above it is first necessary to
suspend the model, appropriately parameterised in the cell state space. Rewriting (1.8) assuming

the input u (¢) to be a quasi static parameter and neglecting the noise terms é (z),..,¢ (t —=n,) gives
y(@) = F'y@-1).y(t-n),p] (2.16)
where u (¢) is assumed constant such that
po=u@) = u(t-d) = u@t-d=-1) = = u(t-d-ny) (2.17)

The NARMAX model can now be written in the form of a parameterised discrete dynamical

system
'xkﬂ = F(x,p,a) x€R" peR acR (2.18)

where X1 =y(t), % = (Yt =1y ¢ =n)), p=u(t), @ = (0y-.6), n=ny and k=n,.
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The convention adopted here when considering multiparameter problems is to label p as the
primary parameter and a as an auxiliary parameter vector. The auxiliary parameter vector a is
only considered when taking into account perturbations to the basic problem. These are brought
about by variations in the coefficients, o; , i =1,..,k which in this parameterisation correspond to

the identified model parameters 6, , i =1,..,n4 in (1.13).

2.5. Example
Consider the simple difference equation or NARMAX model identified earlier. Applying (2.16-
18) gives

Xee1 = 0.8x, + 02p + 02px; (219)

Assuming the parameter vector, a, in (2.18) is a constant, gives

Xer1 = §( X%, 4) x€R peR _ (2.20)

Suspending (2.21) in a cell state space gives
z(G+1) = C(z(j), m) zeZ p€eR (221)

Analysis of this example was carried out by defining a cell state space, such that xg[-20,20] and
pue[~2,3] over a mesh of 125x125 cells and applying (2.9-15). Application of the Unravelling
algorithm produced the Cell Map diagram, Fig. (4).

Here a continuous curve of P-1 cells represents the variation of the stable fixed points in (2.19)
for p<1. These points are globally stable in that they act as an attractor ¥z€Z or Fx€R. The

shaded region represents the DOA-Sink cells for u> 1, that is those cell mapped out of the region

of interest into the sink cell.

A stability picture of the system is thus quickly built up. This example is of course trivial, the
same results can be obtained analytically directly from (2.19)

x - gp) =0 such that x = % —1—’:; (2.22)
linearising about X gives
Ap) = Dog(xp) | xor = 08+ 02p (223)

Hence for pu<1 the eigenvalue,

A(s) | < 1, for all x, and the curve of fixed points is stable.
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3. Qualitative Model Validation and Bifurcation

Section I served to illustrate how both the theory, and implementation, of an identification
algorithm can have fundamental bearing on the resulting form of the nonlinear model. In order to
access the qualitative characteristic of such models in the present study the parameterised
equation is suspended in a cell map framework. This enables the characterisation of both
stationary and periodic behaviour at the same time as providing global and local stability
information. The framework of analysis described in previous section is now employed to carry
out what can be thought of as the qualitative validation of nonlinear models. In so doing two

problems are addressed which are not easy to answer using traditional techniques alone.

3.1. Input Experiment and Design

The importance of input experiment design and the collection of I/O data to be used in
identification is well known [Goodwin and Payne, 1975] Criteria such as input amplitude,
probability distribution and bandwidth play an important role. In this section it is demonstrated
using the global analysis procedure how simple input design considerations can influence the
results obtained in the identification process. More importantly, the statistical model validity tests
do not always point out these deficiencies. The approach outlined comprises of an iterative

sequence of input design; model identification; statistical then qualitative model validation.

To illustrate the importance of input design consider the identification of a general known block
structured model, Fig. (5a) [Billings and Fakhouri, 1982]. Block structured continuous systems of
this type can be analysed using the multidimensional Laplace transform by constructing a model

of the form [George, 1959, Schetzen, 1980].
n i
Y( S 1-s8p ) = Z Gi(sl!")si ) ]---[1 U(s]) (31)
i=1 j=

where G;(*) is the i-th order kernel transform. Applying the multidimensional Z-transform

[Alper, 1964] to (3.1) yields

Y( Zqyenslny ) Hl(Z 1) bt H(Zl,..,Zn) = él H;'(Zl,..,Zj ) (32)

where
H,-(zl,..,z,- ) = Z G,'(Sl,..,S,' ) 1_[1 U(S]) (33)
=

An expression for Y(z) may then be constructed using the process of association of variables
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[Jagen and Reddy, 1972] given U (s) explicitly and the position of any sample or zero order hold

devices. Unfortunately a recursive input output model, as in (1.8), can not be constructed.

3.1.1. System Characteristic

The continuous system depicted in Fig. (5a) may be represented, using (3.1), as

YEus2) = G55, + 2)(25'010+ 10)6; +2) (34
Alternatively, writing this system as a set of ODE’s gives

xi(t) = -201(r) + 23(t)

x3(t) = —10cy(z) + 10u(t) (3.5)
Taking the input u(t) as the parameter p gives

x(t) = F(xp) xeR? peR (3.6)

This parameterised continuous system may then be analysed directly using the framework
outlined above, see also Haynes and Billings, 1991. Suspending (3.6) in a parameterised cell state

space gives
z(j+1) = C(z(j), n) ze€Z* peR (3.7)

Defining the region of interest such that x;€[-25,25], x,€[-25,25], and pe[-5,5] over
125x125x40 cells and applying (2.9-15) gives C(z). Applying the Unravelling algorithm to C(z)
results in the cell diagram, Fig. (5b). A stationary fixed point, represented by the P-1 curve, varies
smoothly with the parameter p. Not unsurprisingly this system is globally stable for all input
values. However, as the Cell Map algorithm always requires a finite range of u over which to
work Fig. (5b) does not truly reflect this global stability w.r.t p. However, extending the range of

p€R can easily demonstrate this.

3.1.2. Identification and Cell Map Analysis

Proceeding now to generate some I/O data from the system. Linearisation suggests an input
bandwidth of 1Hz will suffice and a sampling interval f;=5Hz was chosen. The I/O data was
generated by simulating the system using a Runge-Kutter 4th order integration with a small step
size compared to f;. The input was a uniformly distributed signal u (£)€[+ 1.0] superimposed on a
mean level, b =0.5, Fig. (6a). The corresponding STD test for this data again clearly indicates the
need for a nonlinear model, Fig. (6b).
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Nonlinear identification of this data, setting n,=n,=1, n,=5, d=0 and /=2 produced the
quadratic NARMAX model with 1st order dynamics

y, = 0.660y, -y +0.030u, 1 +0.237u_1 +0.046uf_q +0.034y, -1 U - +0.014y?_;
-0.023u, _ y; -1 —0.641e, _; —0.098¢, _5 +0.002¢, _, +0.046¢, _4 (3.8)

The identified NARMAX model produces reasonable predictions, with ERR;=97.2%, Fig. (7a),
and passed all the MVT tests, Fig. (7b).

Over-fitting by setting n,=n,=2, d =0 and /=2 produced a NARMAX model with 2nd order
dynamics.
yr = 0.086y,_1+0.146u_; +0.352y, o +0.215u7  +0.2168; 1 u;+0.049, - 0.062%, -y
+0.053u, 5 —0.0141, 5 y, 1 +0.0220%_5 +0.17Ty, -5 14y -1 ~0.044y, 3 u, = 0.123u; 5 y; -2
—0.037u2 ~0.055y, 5 1, —0.089?_; +0.114y, _ y, -1 ~0.378¢; -, —0.101e, _s (3.9)

Clearly a greater number of terms have been included in this model. Again the identified
NARMAX model produces good predictions, Fig. (8a), with ERR;=97.3% and passed all the
MVT tests, Fig. (8b). |

Looking at the results from the above identification, either model seems to give an acceptable fit
to this I/O data. No indication is given, in either the model predictions or the MVT test, as to
which is the better model. Indeed the only discriminating feature is the number of terms in the

respective models.

Analysis of the two representations was carried out by suspending the each model in a
parameterised cell state space in turn. Defining a cell state space for (3.8) using (2.9-15) with
x1€[-25,25] and p€[-5,5] over a mesh of 125x125 cells and applying the Unravelling algorithm
produced the cell diagram, Fig. (9a). Defining a similar cell state space for (3.9) with
X1, x2€[~25,25) and pe[-5,5] results in the cell diagram, Fig. (9b).

Comparing these two cell diagrams with Fig. (5b) highlights the inadequacy of both models. The
shaded area represents the DOA of the attracting P-1 cells. Notice for the 2nd order model the
Unravelling algorithm detects a number of P-2 cell cycles. Qualitative agreement between the
either model and the true system characteristic is only achieved over a relatively narrow range of

input parameter, p. Also notice that the first order model (3.8) is stable over a larger domain.

The failure of these two models to capture the true characteristic of the original system, is due to

the inability of the input to excite the system over a wide enough range. Indeed a rough
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correspondence can be seen between size of the input used in the identification experiment and

the domain of stability apparent in the identified models.

3.13. Input Design and Cell Map Analysis

In an attempt to improve the qualitative characteristic of the model the identification is now

repeated, redesigning the input signal so as to excite the nonlinear system over a wider region.

Fig. (10a) shows the I/O data generated using a noise input u (#)€[+ - 1.0] superimposed upon a
square wave of amplitude *1 along with the corresponding STD test, Fig. (10b) . Identification of
this data, by setting n,=n,=1, n.=5, d=0 and [ =2, px_'oduced the 1st order model with
Y ERR;=99.4%.

y, = 0.683y,_1+0.247u?_; +0.065u? —0.57%, -1 —0.04%, _5 +0.04%; _, (3.10)

Identification by setting n, =n,=2, n,=5, d =0 and /=2, produced the 2nd order model with
Y ERR;=99.5%.

Yo = 0.026y, 1 +0.256u2_; +0.441y, _5+0.163u?_, +0.063u? +0.04%u, _; u,
-0.393¢,_,-0.071e, _s (3.11)

Both the identified NARMAX models produced good predictions and passed the MVT tests.

Analysis of the models (3.10) and (3.11) using the Cell Map framework yields the cell diagrams
Fig. (11a) and Fig. (11b). Comparing this to Fig. (5b) shows a clear qualitative agreement
between system and model characteristics over the entire range of input considered for both the
above models. The only noticeable difference being a small core of P-2 cells detected around the
origin for the second model. This effect can be attributed to the coarse cell size used in the
analysis.

An important point has arisen in the process of developing the iterative procedure outlined above.
Statistical model validation techniques cannot always be relied upon to produce qualitatively
correct results over a wide range of operation. They cannot detect poor experimental design for
example. Input design is of primary importance in the identification of nonlinear systems, both

the deterministic and stochastic elements need to be chosen correctly.
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3.2. Model Structure Selection

As briefly discussed above the process of obtaining a parsimonious model from the full model
representation (1.11), uses the method of Forward Regression to delete insignificant terms from
the auxiliary model, (1.14), according to the value of the ERR; calculated using (1.16). This
problem is magnified in nonlinear systems due to the large number of candidate terms the
algorithm is required to consider. Consider the effect of S/N ratio on the qualitative behaviour of
a model. It is well known that parameter estimates obtained using virtually any algorithm
deteriorate as the S/N is decreased. However the approach described in this work can be used to

good effect in order to gain a deeper understand of this problem.

32.1. System Definition

To illustrate this problem consider the system depicted in Fig. (12a). This system is to be studied
in a number of differing S/N environments. Assume now that the output of this system is

corrupted by an additive white noise signal such that

z(t) = y(@) +e(t) (3.12)
and the S/N ratio for the system is defined as

- Var(y(t))
S/N Var(e(t)) (3.13)

Note from the discussion earlier this will induce multiplicative correlated noise terms in the

NARMAX model.

Writing this system as a set of ODE's and analysing it directly using the Cell Map algorithm
results in the cell diagram, Fig. (12b). Once again the input u (r) was chosen as the parameter p
and the cell state space was defined as x1, x,€[ - 125,125] and pe[-5,5] over 125x125x40 cells.
Again this simple system exhibits global stability for all input values and has a fixed point,

delineated by the curve of P-1 cells, that varies smoothly with p in a cubic fashion.

I/O data from the system was generated using an input with mean p=1.0, RMS o= 1..0 and
bandwidth, f; = 1.0Hz. The sampling interval was set at f; =6.0Hz over 1000 samples. A number of
different 1/O datasets were constructed such that the signal to noise ratio varied from oo and 1 by
adjusting e (¢) the output noise appropriately. Consider just the cases where S/N=c0, 1, 3, and 6.
Fig. (13a) shows the noise free signal, §/N=00 and Fig. (13b) the noisy data, when S/N=1. The

other cases lie in between these extreme values.
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3.2.2. Identification

A 2nd order cubic NARMAX model with 3rd order noise model was fitted to each of the
datasets. Fig. (14a) and Fig (14b) show the model predictions, §(¢), obtained using this model
structure for S/N=oco and S/N=1. The identified models pass all the MVT tests and produce
reasonable predictions for all the S/N ratios considered. Although the performance of the model
predictions seems to significantly deteriorate as the S/N ratio decreases. If however the predicted
output, y(¢), is compared with the true noise free output y(¢), that is when S/N=co, very little
difference in the outputs is noticeable, Fig. (15). Indeed, the identification algorithm is remarkably
successfully in fitting an accurate noise model to the I/O data despite the adverse S/N conditions.

The fitted models were:-

NARMAX Model §/N=co, »;ERR;=99.99%

¥, = 0.720y, -1 +0.039u3_; +0.172u7 u, +0.065u? -2 Uy -1

NARMAX Model S/N=1, Y ERR;=46.14% |

y, = 0.298u?_5+0.100y, -1 +1.230u,+ 0.017y2_5 —0.173u3_5 = 0.007y? 14, -1 —0.001y, > u?
+0.216u2 - 0.742u3_1 +0.562u, - u? 1 +0.014; _2 y, -1~ 0.001y; - yiq
~0.133u?_1 y; -1 +0.016y, .2 y: -1 +0.115u%_5 y, -1+ 14200, - 14201, 4
—0.137y, -1 Uy +0.048y, -y u? +0.178u; -1 y,-1=0.029% -2 y: 5 +0.028y, -5 u?_1 +0.001y7 4
~0.018u, _5 y2_1 +0.008u, -1 Y71 +0.046u? -0.091e, -5 +0.038¢, .3 -0.130e; _

NARMAX Model S/N=3, 2 ERR;=93.41%

y, = +0.2535¢ +00y, -1 +0.2524¢ +00u3_; +0.3154¢ +00y, -, +0.8977 —01u?_» +0.2304e +00u?
+0.9628¢ —02y2_, —0.6897¢ —03y;_, +0.2613¢ +00u2_, —0.4792¢ +00u?_q +0.1815¢ +00u, -
0.6192¢ — 0114, 5 y, 3 +0.4616¢ =02, _5 y?_5 —0.9311e —02, _, ~0.3338e +00e; _5—0.1815¢ +00e; _

NARMAX Model S/N=6, >,ERR;=98.86%

y, = +0.08%,_1+0.007u7 4 +0.46Ty, 5 +0.108u3_, +0.201uf 4 u,+0.121u?_5 u, -1 -0.47%; -,

Based on these results it would be tempting to conclude that all these models provide adequate

prediction over the range of S/N environments considered. However, inspection of the model

structures above highlights a noticeable difference in the number of parameters included in each.

This is due to the combined effect of the output noise and the thresholds set for including terms in

the model, (1.16). The later being set to the same value in each case to show the influence of S/N
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ratio and emphasize the danger of over parameterising the model. Intuitively the percentage
reduction in the mean square error in (1.16), for any one term in the awxiliary model, (1.14), will
be significantly altered by noise in the measurement and otherwise insignificant terms can be
wrongly included in the final model. In the worst case, here when S/N=1, a model with 29 terms
has been identified. It is for these reasons that intelligent structure detection has been introduced

[Billings et al, 1989].

323. Cell Map Analysis

Analysis of these models using the Cell Map framework is achieved simply by suspending each
model turn in the cell state space defining such that x;€[ - 125,125], x,€[ - 125,125] and p€[-5,5]
over a mesh of 125x125x50 cells. Applying the Unravelling algorithm produces the cell diagrams
shown in Fig. (16a-c). In each diagram the shaded region denotes the DOA of all the P-K cell

cycles detected, that is the entire stable domain within Z.

For S/N=1 a very poor stability characteristic exhibited, the models stable DOA covers only a
small fraction of the region of interest considered, Fig. (16a). However, the stability of the
identified model is seen to improve as the S/N increases. For S/N=3 the nonlinear discrete
model is stable over the same range of input used to generate the I/O data, u€[-4,4]. But
additional induced bifurcations are present outside this parameter region, the model] still being
only locally valid, Fig. (16b). For S/N ratios greater than this the model is stable over the entire
input parameter range, see for example Fig. (16c), where S/N=6. The Cell Map characteristic is
then qualitatively the same as that of the original system. Additional bifurcations introduced, by
the modelling process, are no longer evident and the model is globally valid and indeed globally

stable.

Note also how an associated reduction in model complexity accompanies the improvement in
model validity, demonstrating the need for intelligent structure detection [Billings et al, 1989]. For
lower values of S/N ratio the qualitative information provided by the analysis above proves to be
very useful in accessing both model validity and model stability. In addition the analysis clearly

shows the folly of fitting an overly complex nonlinear parametric model.
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3.3. Conclusions

In this work we have attempted to illustrate the importance of model validation from the
qualitative viewpoint. In the process of constructing a nonlinear model a number of choices have
to be made. Broadly these can be viewed as deciding what generic model type is to be adopted,
for example NARMAX, experiment design for data collection and choosing a mechanism for
structure selection. In system identification studies the later depends to a large extent on what

statistical methods are used.

It is obviously important to validate the model both from the statistical and behavioural
viewpoints. This means checking not only that the modelling residuals are white, indicating that
all predictable dynamics has been captured. But that also the model exhibits the expected

qualitative characteristics.

The approach introduced in this paper makes use of an iterative framework of experiment design,
system identification and model validation in order to achieve this. Use is made of the
parameterised cell state space in order to provide both local and global information on a wide

variety of different model types and at the same time provide an iterative aspect to the analysis.

In the process of achieving this two important aspects of the modelling process have been
addressed. The first concerns input design and illustrates the importance of choosing the correct
input if locally valid models are to be avoided. The second illustrates the dramatic effect low S/N
ratios can have on the model and its stability. Here a trade off exists between model complexity,
S/N ratio and qualitative model validity. The later being measured in this study mainly in terms of
the size of the stability domain, or DOA, and to a lesser extent by the presence of induced
bifurcations. Most of all this work demonstrates the need for feedback of both statistical and
qualitative information in the sequence of events comprising input design, identification and cell

map analysis.
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Fig. (8b) - Model Validity Test - 2nd Order Model
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