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Abstract

An extension to the Morison equation is proposed to improve wave force predic-
tion. A comparison is made between the performance of Morison’s equation and the
extended model in curve-fitting to measured time data; both regular oscillatory flows
in a U-tube and irregular oscillatory flows in a wave flume are considered.

1 Introduction

Since its introduction in 1950 [1], the Morison equation has provided the main means
of predicting wave forces on slender cylinders. In the usual notation,

aF

ol

where u(f) is the instantaneous flow velocity. The dimensionless drag and inertia

coefficients Cg and Cpn will of course depend on the characteristics of the flow. In

general the main dependence is taken to be on Re, the Reynolds number, and K C, the

Keulegan-Carpenter number. Alternatively, they can be considered to be functions of

KC and 8 = Re/KC. The coefficients C; and Ci are usually obtained by applying
least-squares procedures to measured data.

The equation generally predicts the main trends in measured data quite well;
however, some characteristics of the flow are not represented adequately. For example,
in a regular oscillatory flow the force variation at the fundamental frequency may be
well predicted while that at higher harmonics is not. One result is that peak forces

= %PDC¢u|u|+ %'erDZCmﬂ (1)
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can be underpredicted. Furthermore, it is the high frequency content of the forces
which determines to a large extent the fatigue life of a structural element. These
are clearly serious limitations. The aim of the present research is to produce an
equation which provides a better means of predicting wave forces on cylinders in
situations of varying complexity, which will eventually include the dynamic response
of the cylinder if possible. The means by which this objective will be pursued will be
through the application of system identification techniques.

2 Vortex Shedding and the History Effect

It is well known that the time-history of the wave-force on a cylinder can be complex,
even when the flow is regular. Nonlinear effects can be significant and must all be
represented by the nonlinear drag term proportional to u|u| if Morison’s equation is
to predict accurately. The linear inertia component is mainly due the inviscid effect
of flow acceleration. Expansion of the drag term as a polynomial gives

ulu| = ayu+azud+asu’... (2)

which shows that even if the flow velocity is a sinusoid u(t) = Un sin(2nt/T) the force
signal will contain all odd harmonics. One immediately sees that the explanation for
the failure of Morison’s equation to predict the higher frequency behaviour of the
force signal is that the relative size of all harmonic components must be fixed by the
one coefficient Cy.

The reason why the drag term does not predict high frequency components is
because the effect of vortex shedding is not taken into account. During the first half-
cycle of flow oscillation starting from rest, simple theory suggests that ulu|is roughly
proportional to the rate at which vorticity is shed into the flow. This vorticity is
assembled into eddies or vortices which can detach from the cylinder and be convected
back past the cylinder during the period of flow reversal, a phenomenon which is
sometimes termed *wake re-encounter’. This will clearly change the barmonic content
of the force, producing deviations from the Morison prediction. While the knowledge
of the instantaneous flow velocity is sufficient to determine the general trend of the
force, its detailed behaviour is strongly dependent on vortex movement which occurs
for KC > 5. This means that at a given time the force can depend strongly on the
flow behaviour in the recent past. It is this *history’ effect which is inadequately
represented by Morison’s equation.

The approach taken here to extend Morison’s equation is to include additional
terms involving F(t) rather than u(t). Since the first ( Morison ) approximation is
associated with vorticity generation one might expect the history of the motion of
shed vorticity to be associated with higher order terms in F. The recent history of the
force is thus represented by including derivative terms F and F. Further nonlinear
terms F? and F|F| are also included; the first because it allows the model to generate
all harmonics including the even ones, the second simply as a means of allowing the
model greater freedom in shaping the relative proportions of the harmonics. As a
further rationale, one can point out that system identification techniques commonly
require the inclusion of output terms in a model as this generally allows the specifi-
cation of a parsimonious model i.e. one containing a minimal number of terms. The
initial choice for the extended Morison equation thus has the following form

arF +ayF + F+asF? + auF|F| = %PDCJUlUI + %wpD"Cmﬁ (3)
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The reasoning which leads to this structure is certainly intuitive. However, it does
have a physical basis and the complexity of the problem has effectively ruled out any
attempt to extend Morison’s equation by direct analytical means.

Previous attempts to extend Morisons equation have concentrated on the addition
of input (i.e. velocity and acceleration) terms. Notably, Sarpkaya [2] proposes a two-
term extension which allows improved prediction of the wave forces for U-tube data.

It is clear that the main disadvantage of adopting any extension to Morison's
equation is that it would entail the re-evaluation of all previously determined drag
and inertia coefficients together with the determination of the corresponding values
of the additional coefficients. This would require a considerable experimental effort.
However, it is hoped that the possible improvement in predictive capabilities would
be such as to justify such a programme.

3 System Identification and Parameter Estimation.

The first of the two main problems in identifying a mathematical model of an inpuf-
output system is that of structure detection, i.e. what is the form of the equation of
the underlying process? In this study the problem is bypassed by adopting the form
(3) on heuristic grounds. A further systematic approach is presently being carried
out using more sophisticated techniques based on NARMAX routines [3] which allow
the model structure to be determined as part of the identification process. The
NARMAX method produces a representation of the force at a given instant as a
function of forces and velocities at previous instants. The techniques have a number
of valuable features including the capability of determining the structure of any noise
processes present, they can also detect the presence of delays between input and
output signals which can arise in experiments due instrumentation.

Having obtained a model structure the next problem is that of parameter estima-
tion, i.e. how to determine Cy4, Cm and aj . ..oy in equation (3). Thisis accomplished
by minimising the difference between the model output and the measured output data
which correspond to the measured input. Suppose N sampled records of force, ve-
locity and acceleration are availableie. {F;,u;, 4 :1=1,..., N} where F; is the ith
sampled force value etc. At each sampling instant (by hypothesis) the data satifies
the equation -

orFi + agFy + Fi + aaF? + a4 Fi|F| = Buuilui| + Batti + G (4)
where f; and j; are introduced as a convenient shorthand for the constants in equa-
tion (3). a1,...,a4,P1 and B2 are estimates of the parameters here and (; represents

the error or residual in the model at instant i. The least-squares estimates of the
parameters are formed by minimising the sum of the squared errors

N
r=3 (5)

i=1
with respect to variations of the parameter estimates. The problem is best expressed
in matrices. Assembling all equations (3) fori=1,..., N gives '
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{F} = [4]{B} + {¢} (7

in matrix notation ( square brackets denote matrices, curved brackets denote vectors
), [A] is called the design matrix, {8} is the vector of parameters and {¢} is the vector
of residuals. In this notation the sum of squared errors (5) is

{7} = {FYT = {BYT[AIT)({F} - [AHAD (8)
Minimising this expression with respect to the parameter estimates yields the well-
known normal equations for the least-squares estimates.

[A)7[4]{8} = [A]"{F} (9)

which are trivially solved by

{8) = (A" [A)HAT{F} (10)
provided that [4]T[A] is invertible. Because of random errors in the measurements,
different samples of data will contain different noise components, consequently they
will lead to slightly different parameter estimates. The parameter estimates therefore
constitute a random sample from a population of possible estimates; this population
being characterised by a probability distribution. Clearly, it is desirable that the
expected value of this distribution should coincide with the true parameters. If such
a condition holds, the parameter estimator is said to be unbiased. Now, given that
the unbiased estimates are distributed about the true parameters, knowledge of the
variance of the parameter distribution would provide valuable information about the
possible scatter in the estimates. In fact, this information is readily available; the
covariance matrix for the parameters is defined as

[C1(B) = E[({A} - E{B)-({8} - E{A))"] (11)
where the carets are used to emphasize the fact that quantities are estimates and the
expectation E is taken over all possible estimates. The diagonal elements C;; are the
variances of the parameter estimates S;. Under a number of mild assumptions it is
possible to show that, given an estimate {8}

[C] = o7.([A)T (4D~ (12)

where o7 is the variance of the residul sequence {; obtained by using {8} to predict
the output. The standard deviation for each parameter is therefore:

o1 = oy (AITIADF (13)
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If the parameter distributions are Gaussian, standard theory yields a 95% confi-
dence interval of {3} £ 1.96{c}, i.e. there is a 95% probability that the true param-
eters fall within this interval.

In order to determine whether a term is an important part of the model, a sig-
nificance factor can be defined as follows. Each model term 6(t), e.g. 8(t) = F(t) or
8(t) = F(t)|F(t)], can be used on its own to generate a time-series which will have
variance oZ. The significance factor s¢ is then defined by

o3
89 = 100— (14)
oF

where o is the variance of the estimated force, i.e. the sum of all the model terms.
Roughly speaking, s is the percentage contributed to the model variance by the term
6.

Having obtained a set of model parameters, it is necessary to check the accuracy
of the model. The simplest means of doing this is to plot and compare the measured
force F; with the curve-fit value

By = —ay F; = aaFi — a3F} — a4 Fi|Fi| + Bruilui| + Bathi (15)

based on the estimated parameters. Omne can also use a numerical measure of the
closeness of fit; the measure adopted here is the normalised mean-square error or
MSE defined by

N
MSE(F) = %Z(n ~ F)? (16)

This M SE has the following useful property; if the mean of the force signal F is
used as the model i.e. F; = F for all i, the MSE is 100%, i.e.

100 e, g 100 5 _
, MSE(F) = NU%;(F. == Stk =0 (17)

A more stringent test of the model validity is to predict the wave force from
equation (4) using measured velocities and accelerations only, via some time-stepping
procedure. This can then be compared with the measured force.

The most comprehensive set of model validity tests are those of Billings [4].
Briefly, the validity of the model is contingent on the vanishing of certain correlation
functions between the input ( in this case velocity), and residual data.

4 Application of the New Model Structure to U-
Tube Data.

The U-tube data here were obtained by digitising the force time-history figures from
published papers and reports. The data sets examined are from the experimental
study by Obasaju et.al. [5]. In the experiment, at various different values of KC, the
time-history of the force on a cylinder ina regular planar oscillatory flow was measure.
For each KC value considered, two types of force histories were distinguised in the
experiment. Elements of the first class of force histories were produced by carefully
averaging over cycles which exhibited the same form or mode of vortex shedding.
Elements of the second class were obtained by averaging over all cycles, irrespective

5



of the mode of vortex shedding. It is the second class which is considered here. For
a fixed B value of 417, the KC values for which averaged force cycles were available
were 3.31, 6.48, 11.88, 17.5 and 34.68.

- For comparison purposes, the Morison equation was fitted to each data set. The
resulting coefficient estimates and model M SE’s were

331 1.13 + 0.38 [ 2.28 £ 0.11 | 0.168
6.48 | 1.756 = 0.15 | 2.02 +£ 0.08 | 0.422
11.88 | 2.51 + 0.30 | 0.92 + 0.31 | 7.362
17.50 | 2.08 £ 0.05 | 1.03 £ 0.07 | 0.680
34.68 | 1.69 + 0.05 | 1.28 £ 0.13 | 1.067

Table 1: Results for Morison equation fit to the U-tube data.

The comparisons for the data sets with KC' = 11.88, 17.5 and 34.68 are shown in
Figures 1, 2 and 3 respectively, (the other two force-histories are inertia dominated
and essentially harmonic. The Morison equation is clearly inadequate when there is
a significant effect from vortex shedding. This is most marked in Figure 1.

In order to assemble the data for fitting the model equation (3), the force data
was differentiated twice using a five-point centred difference giving F and F. The
resulting M SE’s for the extended model fit are tabulated below.

KC | MSE W‘ﬁ—%

3.31 | 0.092 0.548
6.48 | 0.120 0.284
11.88 | 1.538 0.209
17.50 | 0.289 0.425
34.68 | 0.510 0.750 I

Table 2: M SE values for curve-fit of equation (3) to data.

These results show distinct improvements over Morison’s equation. In fact con-
sideration of the significance factors indicated that the F? term made no contribution
and the F and F terms only made a limited contribution. This raised the possibil-
ity of having an improved model with only one additional term. As a consequence,
parameter estimates for the model structure

F + oF|F| = prulu| + By (18)

were obtained. The resulting M SE values are given below.



KC | MSE ﬂs—(gfﬁs&%ﬁ,’"‘j

3.31 | 0.162 0.964
6.48 | 0.186 0.445
11.88 | 2.210 0.300
17.50 | 0.529 0.870
34.68 | 0.746 0.699

Table 3: MSE values for curve-fit of equation (18) to data.

Still showing an improvement over Morisons equation, particularly when vortex
shedding is important. Unfortunately, this model structure can not be used to predict
( as distinct from curve-fit to ) the wave forces. The reason for this is that prediction
requires the solution of the equation (18) for F at each sampling instant. The exact
solution has been obtained and was found to demonstrate bifurcation phenomena as
the RHS of the equation changed. Specifically, at one sampling instant the equation
can have three real roots, at the following it may have only one. This effect is shown
clearly in Figure 4 where the force history for KC = 11.88 is predicted from the
model. This problem effectively rules out equation (18) as a possible extended wave
force equation.

In order to recover the improvement, it is therefore necessary to consider the
full extended model (3) in the hope that this will prove stable for the prediction
of wave forces. The problem here is that the derivative terms did not appear to
be significant. However, it was thought that this might be due to the fact that the
estimated derivatives F and F are quite noisy as they were estimated on data digitised
from plots. In order to test this hypothesis, the discrete difference or NARMAX (3]
form of equation (3) was adopted. The forward-difference version of (3) was obtained
( this corresponds to the centred-difference form of a first order differential equation
model).

Fi=a,Fi1+aFi-2+ azFi_1|Fi-1] + biui—1 + bovi2 + apti—1|ti-1] (19)

The resulting MSE values on fitting this model structure were:



KC | MSE | srsp{storion)

3.31 | 0.014 0.080
6.48 | 0.001 0.020
11.88 | 0.044 0.005
17.50 | 0.011 0.016
34.68 | 0.101 0.096

Table 4: MSE values for curve-fit of equation (19) to data.

This constitutes a very significant improvement. The comparisons corresponding
to Figures 1 to 3 are given in Figures 5 to 7. Equation (19) was then used to step the
force data F; forward in time using the measured velocities only ( the values F; and
F, are used to start the iteration). This procedure gave the predicted output. The
MSE values for the comparison between the predicted forces and measured forces
are given below.

KC | MSE mﬁ,—sﬁ—m

3.31 | 0.034 0.202
6.48 | 0.499 1.180
11.88 | 20.40 2.771
1750 | 0.295 |  0.434
34.68 | 0.936 0.877

Table 5: M SE values for predicted forces using equation (19).

Unfortunately, the improvement is not as expected. This is a little surprising
given that there are no obvious bifurcation type effects and that the least-squares
curve-fits (Figures 5 to 7) are nearly perfect. However, the lack of bifurcation is
encouraging. A stability study of the model indicated that this behaviour may be
due to a fundamental instability in the model/data structure which may be curable.
Research is currently proceeding on this effect.

5 Application to Wave Flume Data.

The data was obtained from the Delta flume of the De Voorst facility of Delft Hy-
draulics Limited. The particular data considered here comes from the run OAlF1
which used a fixed smooth cylinder. The unidirectional wave profiles were generated
so that the the surface elevation spectrum approximated to a JONSWAP spectrum.
More details of the experiment can be found in [6] which contains an exhaustive
wave-by-wave Morison analysis of the full De Voorst data set. In the experiment,
the velocity signal was obtained from electromagnetic flowmeters placed adjacent to



the cylinder at the same distance from the wave maker. The forces were recorded
from force sleeves placed at three levels (Stations 2,3 and 4) on the cylinder. The
data from Station 2 had to be discarded as the sleeve fell within the crest to trough
region of the wave. Of those remaining, Station 3 was nearest to the surface while
fully immersed and was consequently subjected to the highest nonlinear forces. For
this reason data from Station 3 was used in the following analysis.

Only one example of a curve-fit to De Voorst data will be presented here. The
entire velocity and transverse force records for the data were plotted and 1000 points
of the data around the instant where the maximum transverse force occurred was
chosen for analysis. This is because the transverse force can be taken as an indicator
of the intensity of vortex shedding. The Morison fit to the chosen data is shown
in Figure 8. Cy4 and Cn were estimated as 0.601 and 1.83 respectively. The MSE
value for the fit was 2.47. This good prediction is consistent with K C values being
comparitively low. As a result the dominant part of the measured force is the linear
inertia component. The extended model (19) was then fitted to the data and the
resulting curve-fit is given in Figure 9, the MSE value being 0.775. As in the case
of the U-tube data, this represents a substantial improvement. The model-predicted
output for the model, shown in Figure 10, gave an MSE of 2.34 which is slightly
better than Morison. Unfortunately, the improvement is small compared to that for
the curve-fit. This seems to be the same problem as that which beset the U-tube
data. Further research is in progress.

6 Conclusion.

In conclusion, the model structures proposed here are the product of some intuitive
reasoning based on a knowledge of flow mechanisms. Unfortunately, they cannot
yet provide a final form for an extension of Morison’s equation as they appear to
be plagued by possible stability or bifurcation problems which prevent the accurate
prediction of wave force data from velocities. However, the tremendous improvements
in the curve-fits to the data indicate that the structures would be of value if the
stability problems could be overcome. The new model structures produce comparable
improvements for both regular U-tube data and irregular wave-flume data. The
techniques applied here have quite general applicability and will be applied to the
multidirectional sea data from the Christchurch Bay Tower experiment.
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