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Summary: One of the key ingredients in drug discovery is the derivation of conceptual templates

called pharmacophores. A pharmacophore model characterises the physico-chemical properties com-

mon to all active molecules, called ligands, bound to a particular protein receptor, together with

their relative spatial arrangement. Motivated by this important application, we develop a Bayesian

hierarchical model for the derivation of pharmacophore templates from multiple configurations of

point sets, partially labelled by the atom type of each point. The model is implemented through

a multi-stage template hunting algorithm which produces a series of templates that capture the

geometrical relationship of atoms matched across multiple configurations. Chemical information is

incorporated by distinguishing between atoms of different elements, whereby different elements are

less likely to be matched than atoms of the same element. We illustrate our method through examples

of deriving templates from sets of ligands which all bind structurally related protein active sites. The

resulting templates are considered to be plausible by experts with respect to the chemical affinity

of the subsets of molecules used to derive them.

Key words: Alignment; ligands; MCMC; pharmacophore; shape analysis; spatial matching; tem-

plate.
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1. Introduction

One of the key ingredients in drug discovery is the derivation of conceptual templates called

pharmacophores. A pharmacophore model is a specific three-dimensional map of chemical

properties common to active conformations of a set of small molecules, known as ligands, that

exhibit a particular biological activity. A pharmacophore model can be generated from three-

dimensional structural data describing ligands and their interaction with a particular protein

receptor site. Currently, this is often done manually by inspection and expert judgement,

see for example Rella et al. (2006). We note that methods for the multiple alignment of

configurations have been proposed by, for example, Ruffieux and Green (2008) and Dryden,

Hirst and Melville (2007), but these methods are not specifically tailored to producing

pharmacophore templates from matched points. Hence, there is a need to develop a statistical

methodology which simultaneously enables the automated identification of pharmacophore

models and the quantification of their plausibility. For more details on the pharmacophore

concept, see Leach and Gillet (2003, Chapter 3).

It is common to represent structures of protein-ligand complexes as configurations of points

in R
3, with each point representing the location of an individual atom. Pharmacophore

identification is therefore reduced directly to the problem of finding points common to a

set of configurations. Motivated by this, we develop a hierarchical model for the derivation

of pharmacophore templates. The method identifies common matched points from multiple

configurations, or subsets of them, and builds a hierarchy of templates capturing the geometry

of the matched points. We also consider the chemical plausibility of the templates, through

the use of chemical information to distinguish between atoms of different elements, with the

interpretation that different elements are less likely to be matched than atoms of the same

element type. This ensures that the resulting templates are sensible with regards to their

chemical properties, as well as their geometry.
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Within our model, we require the use of a method for the pairwise alignment of two con-

figurations. Here we use the pairwise alignment method described by Green and Mardia

(2006), which provides us with many of the ingredients needed to implement our strategy. An

alternative method could easily be substituted; all that we require is a method that estimates

which atoms match and the corresponding probabilities, allowing a “score” rating the overall

quality of matching between two ligands to be computed. We then use the output from these

alignments within a multi-stage algorithm for building templates, which requires the use of

a scoring function for discriminating between various pairwise alignments at each stage. The

templates are formed hierarchially, successively merging configurations or previously formed

templates, using only the common matched points identified from the pairwise alignments.

Our proposed algorithm is capable of identifying multiple subsets of configurations and

outputs templates representing the matched points in each.

An outline of this article is as follows. We describe the model behind our methodology in

Section 2. In Section 3, we consider the implementation of our model and outline an example

iteration of the algorithm for a fixed number of configurations. In Section 4 we consider two

applications of our method to finding points common to subsets of ligands which are bound

to related protein active sites. Finally, we discuss the proposed methodology in Section 5.

2. Methodology

We consider using data obtained from the multiple alignment of protein binding sites to

produce pharmacophore templates from a set of ligands. The data is in the form of ligands

reduced to point configurations in three-dimensional space, with each point partially labelled

by element type of the atom at that point. In this paper, we assume we have three-dimensional

data but the method can easily be extended to d 6= 3 dimensions. We have ligand configu-

rations xi: i = 1, . . . , C of sizes ni. That is, configuration i contains ni points (atoms). The

aim is to construct a template, µ0 say, comprising of n0 atoms, where n0 is unknown. We set
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out to identify n0 common points in a set of configurations I, where I ⊆ {xi} and {xi} is the

set of all configurations. Candidate templates are formed from pairwise alignments between

individual configurations and/or previously constructed templates, and these are evaluated

with a scoring function which we use to select the best candidate at each stage. Hence, we

require the use of a method for the pairwise alignment of two configurations. Here we use the

method described by Green and Mardia (2006), the output from which we can use to build

candidate templates at each stage and evaluate them according to our scoring function. We

will henceforth refer to this method as the Green-Mardia (GM) algorithm. Below, we first

briefly describe the GM algorithm, before describing our proposal for a hierarchical template

model, which we will refer to as the HT algorithm.

2.1 The GM pairwise alignment algorithm

Green and Mardia (2006) describe the pairwise alignment of two configurations using a

fully Bayesian aproach. Consider aligning a pair of configurations x and y under rigid body

transformations. Denote the jth atom in the x configuration by xj where j = 1, . . . , m.

Similarly, yk denotes the kth atom in the y configuration where k = 1, . . . , n. Let A and

τ denote the rotation matrix and translation vector to bring y into alignment with x.

Furthermore denote prior distributions on these parameters by p(A) and p(τ). We denote

the prior for σ, parameterising noise in atomic positions for x and y coordinates, by p(σ).

The joint posterior distribution for the model is

p(M, A, τ, σ, x, y) ∝ p(A)p(τ)p(σ) ×
∏

j,k:Mjk=1

(
κ
φ({xj − Ayk − τ}/σ√2)

(σ
√

2)3

)
, (1)

where φ(·) is the standard normal probability density function and κ > 0 is a parameter

representing the propensity of points to be matched. M is an unknown matrix for matching

between points on each configuration, where

Mjk =






1 if xj corresponds to yk

0 otherwise.

(2)
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We also use the priors

A ∼ uniform, τ ∼ N(0, σ2
τI3), σ−2 ∼ Γ(α, β). (3)

Euler angles, θ12, θ13 and θ23 say, are used to parameterise the rotation matrix as a product

of elementary rotations, such that

A = A12(θ12)A13(θ13)A23(θ23),

where −π < θ12, θ23 < π and −π/2 < θ13 < π/2 (see Green and Mardia, 2006). The uniform

measure is then cos θ13dθ12dθ13dθ23.

A point estimate of M , M̂ , is found by minimising the point-wise error rates P (M̂jk =

1|Mjk = 0) and P (M̂jk = 0|Mjk = 1) and is controlled by the cost ratio, K, of falsely

matching points. The posterior probability that the pair of points (j, k) are a match, pjk =

P (Mjk = 1|x, y), is given by the empirical frequency of this match from an MCMC run and

M̂ is a solution to a “linear assignment” problem with cost matrix (pjk − K). A standard

linear assignment program (lpsolve, Berkelaar, 1996) is then used to find M̂ , with the cost

matrix (pjk − K)+.

2.2 The Hierarchical Templates (HT) model

We denote the jth atom in the ith configuration by xij , j = 1, . . . , ni. Similarly, the j′th atom

in the template is denoted by µ0j′. Let Mi = (Mijj′) be the matching matrix for the ith ligand

and µ0, where

Mijj′ =






1 if xij corresponds to µ0j′

0 otherwise.

(4)

Also let Ai and τi, i = 1, . . . , |I| be rotation matrices and translation vectors to register

xi with respect to µ0. For given µ0j′, and for each j′ such that Mijj′ = 1, we assume the

likelihood

Aixij + τi|µ0j′ ∼ N(µ0j′, σ
2I3). (5)
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We use a Bayesian formulation where the priors for Ai, τi and σ−2 are as in (3) and µ0 has

a uniform prior. We assume an exchangeable prior for Mijj′ with the geometric probability

distribution

p(Mijj′) ∝ (κ)n0 , (6)

where κ is a matching propensity parameter and n0 is the number of points in the template

configuration µ0.

The joint log posterior for the model is

− 1
2σ2

|I|∑

i=1

ni∑

j=1

n0∑

j′=1

Mijj′||Aixij + τi − µ0j′||2 − 3|I| log(
√

2σ)

−|I| log(κ) − β/σ − (α − 1) logσ + log(cos θ13).

(7)

For given |I| there can be multiple configuration sets maximising the joint log posterior. It

should be noted that the model is identifiable only up to the equivalence class of the form

of µ0 i.e. Aµ0 + τ , where A is a rotation matrix and τ a translation vector. Given µ0 and

I, the conditional distribution of all the parameters (Ai, τi, σ and M) can be obtained in a

hierarchical pairwise method, using MCMC as follows:

We have explicit full conditionals for τ and σ and these parameters are updated using Gibbs

sampling; Mijj′ is updated using Metropolis-Hastings (Green and Mardia, 2006). With Euler

angles θ12, θ13 and θ23 parameterising the rotation A, θ12 and θ23 are updated using Gibbs

sampling from their full conditional von Mises distributions. Metropolis-Hastings is used to

update θ13.

2.3 Estimating µ0

We note from equation (7) that log p(µ0|rest) is (except for a constant)

− 1
2σ2

|I|∑

i=1

ni∑

j=1

n0∑

j′=1

Mijj′||Aixij + τi − µ0j′||2. (8)
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Thus a point estimate µ̂0 of µ0, where µ0 = (µ01, . . . , µ0n0
)T , is given by

µ̂0j′ =




|I|∑

i=1

ni∑

j=1

Mijj′||Aixij + τi||








|I|∑

i=1

ni∑

j=1

Mijj′




−1

(9)

j′ = 1, . . . , n0, up to equivalence class of form.

Hence we can estimate µ̂0 given point estimates of all other parameters. We now assume that

we can compute goodness of fit statistics, S, for selecting “optimal” estimates of µ̂0 using

only these pairwise estimates of the other parameters from any pairwise alignment method

giving matching matrices M and the corresponding posterior probability matrix of matches,

P , as well as estimates of the transformation parameters A and τ , such as GM and EM

(Kent, Mardia and Taylor, 2004) algorithms. Our goodness of fit statistics S then depend

on M and P in building µ0.

We first consider a simple example with 3 configurations to construct stage by stage estimates

of µ0. Suppose now that for pairs of configurations (1, 2), (1, 3) and (2, 3) we obtain matching

matrices M and posterior probability matrices P (1, 2), P (1, 3), P (2, 3), where the (i, j)th

element of P (1, 2) is the estimated posterior probability of matching the ith point of x1 to

the jth point of x2 and so on. Now say S selects the subset of x1 and x2 to be the “best”. Then

we can obtain the estimate µ̂
(1)
0 from equation (9), as all the parameters are now known.

We now apply pairwise comparison of µ̂
(1)
0 and x3 and calculate the statistic S. If S rejects

this new subset, we keep µ̂
(1)
0 as our estimate, otherwise we calculate µ̂

(2)
0 from equation (10)

as the new estimate of µ0 using the matching subset of µ̂
(1)
0 and x3. In this case these are

the only options but even for 4 configurations, there can be many options, including the

following multiple estimates for µ0.

(1) µ̂0 may be obtained using all 4 configurations.

(2) µ̂0 may include only 3 configurations such as (1, 2, 3) and (1, 3, 4).

(3) µ̂0 may include only 2 configurations such as (1, 2) or (3, 4).
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We give full details of a hypothetical example using six configurations in the supplementary

material.

3. Implementation of the HT Model

We consider a point estimate for µ0 within the equivalence class of form [µ0], i.e. Aµ̂0 + τ

is equivalent to µ̂0. We propose removing this non-identifiability for µ0 by taking µ0 to be

in the configuration space of one of the observed configurations and use a MAP estimator.

Since our priors for A and τ in (3) are symmetric, it does not matter which configuration

is used as reference. We estimate model parameters for hierarchical templates conditional

on µ0, which requires pairwise alignment involving µ0. That is we need to embed a pairwise

alignment algorithm such as the EM algorithm (Hancock and Cross, 1998; Luo and Hancock,

2001; Kent et al., 2004) or Bayesian alignment (Green and Mardia, 2006; Dryden et al., 2007;

Schmidler, 2007) within a hierarchical structure. Here we use the GM algorithm which is a

fully Bayesian pairwise alignment methodology giving all the ingredients for comprehensive

Bayesian inference including the log-posterior, matching probabilities and point estimates

that can be used to summarise pairwise alignments.

3.1 Mechanism of the HT algorithm

The HT algorithm starts by considering each single configuration as a template and, taking

a bottom-up approach, successively merges pairs of templates to form new templates. At

each iteration, all pairwise alignments of items in the list of templates are evaluated and

the best pair, according to some criteria, are merged to form a new template. The new

template is added to the list, the two merged items are removed and the process is repeated.

The algorithm continues until no pairwise alignment satisfies the merging criteria. For

computational efficiency, details of pairwise alignments involving items which are not merged

are kept, so they do not have to be re-evaluated at the next iteration.
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Here we have used a template merging criterion based on the geometric mean of matching

probabilities for declared matches, G =
∏

p
(1/n0)
jk , where n0 is the number of matches given

by the estimate M̂ of the matching matrix M , which on the log scale is equal to n−1
0

∑
log pjk.

The merging criteria we have used is to select the pair of configurations (a, b) such that

(a, b) = arg max
a,b

Ga,b, (10)

where Ga,b is the geometric mean of the pairwise alignment between templates a and b.

Additionally, we impose the threshold values gmin and nmin, so that the conditions G > gmin

and n0 > nmin must be satisfied for a merge to be accepted. Hence, if no pair satisifes

this criteria then the algorithm will terminate. An outline of an example iteration of the

algorithm is given below. In the supplementary material, we give full details of a possible

algorithm flow for a hypothetical example involving six configurations.

3.2 Outline Iteration

We now outline an example iteration for C = 11 configurations, x1 . . . x11. We denote

our list of templates by X . Our initial list of templates is just the 11 configurations, so

X = {x1 . . . x11}. The choice of C = 11 is motivated by the real examples we consider in

section 4.

Let r denote the iteration number for the algorithm. At the rth iteration we denote a

vector of matching probabilities for the optimal pairwise alignment between the ith and

i′th configurations or templates by P r
(i,i′) = (pr

1, . . . , p
r
n0

), where n0 = nr
0(i,i′) is the number of

matched points from the optimal pairwise alignment at iteration r. Let Gr
(i,i′) =

n0∏

l=1

(pr
l )

1/n0 ,

the geometric mean of matching probabilities. Example iterations would proceed as follows:

(1) Consider all pairs of configurations. There are 11C2 = 55 pairwise matches. For each

pairwise match, between configurations xi and xi′ say, obtain the number of matching

atoms n1
0(i,i′), the corresponding matching probabilities P 1

(i,i′) and geometric mean G1
(i,i′).

(2) Merge matching configurations with the highest G1
(i,i′) meeting the merge criteria. Say
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this pair is (1, 2) with j = 1, . . . , n0 corresponding points. Form a template denoted by

Tii′ with the coordinates for point j given by mean coordinates of the jth corresponding

points in the registered configurations. Note that the new template consists of n0 points,

formed using only the n0 matched points from the pairwise alignment.

(3) Configurations 1 and 2 are removed from the set of configurations as they are a subset

of a newly formed template; the new template Tii′ is added to the list of configurations

as x12, so X = {x3, x4, . . . , x12}.

(4) Match the newly formed template, T12, against configurations x3, . . . , x11. Obtain number

of matching atoms n2
0(12,i′), matching probabilities P 2

(12,i′) and G2
(12,i′), i′ = 3, . . . , 11.

(5) The second iteration considers a set of pairwise alignments among configurations x3, . . . , x11

as well as new pairwise alignments involving T12 and configurations x3, . . . , x11 evaluated

in step (4), i.e we begin the cycle again in step (2). Note that for previously considered

pairs (i, i′) that have not been merged, P r
(i,i′) = P r−1

(i,i′) and Gr
(i,i′) = Gr−1

(i,i′). These are being

tracked together with the number of matches, nr
0(i,i′), so we do not need to recompute

them.

For following iterations only pairs of configurations or templates that are not merged

in previous iterations are considered to be merged to form a new template. Successive

templates are formed hierarchically whereby the coordinates for the template involving

a set of configurations, I ⊆ {x1, x2, . . . , x11} are µ̂I = 1
|I|

∑

i′∈I

xi′ .

Plausible pharmacophores are templates consisting of say q > 2 configurations and

n0 > 3 atoms.

The algorithm may output one template, containing matched points across some or all

configurations, or multiple templates derived from matched points from different subsets

of configurations. We do not allow overlap between subsets, so each configuration can only

contribute to at most one template. Part of our strategy is analogous to that of an agglom-
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erative clustering algorithm, (see, for example, Mardia, Kent and Bibby, 1979, pp. 371-373),

but with some important differences. Our objects are point configurations rather than single

points, and we require a similarity measure between pairs of configurations, or templates.

Additionally, our similarity measure is dynamic, in the sense that new similarity measures

must be calculated from pairwise alignments between a newly formed template and all

existing templates. Therefore, at each stage we have an updated list of similarity measures,

consisting of all measures previously calculated as well as the new measures obtained from

pairwise alignments involving the most recently formed template.

The algorithm has computational complexity O(C2) for the number of pairwise alignments

performed. Recall that we denote the iteration number of the algorithm by r, where r > 1.

We begin with a finite number C of configurations. Note that for the first step, r = 1, we need

to perform C(C−1)
2

pairwise alignments. For each subsequent step r > 2, we have C − r + 1

configurations, or templates, and we need only perform C − r pairwise alignments between

the template formed at step r − 1 and the other templates in our list. The total number of

iterations is at most C, since after C iterations we would have only one template remaining.

Thus the algorithm has the polynomial cost complexity of O(C2). Additionally, an extra

layer of cost complexity is added for each pairwise alignment performed, which depends on

the sizes of the configurations.

3.3 Restricted Transformations

There are situations where we may wish impose restrictions on transformation parameters

(rotation matrices A and translation vectors τ) when identifying the template from pre-

aligned ligands. For example we might

(1) allow only small deviations of Ai from identity matrix I3 and small deviations for τi from

the zero vector;

(2) set Ai = I3 and τi = 0 to prohibit any degree of transformation.



Hierarchical Bayesian Modelling of Pharmacophores in Bioinformatics 11

These restrictions would be important in situations where alternative geometrical alignments

are to be avoided, such as in the presence of ring-like structures or when the ligands

have already been aligned. In our application described in Section 4 we do not consider

transformation in aligning the ligands when identifying plausible pharmacophores as they

are pre-aligned in some meaningful sense. However, there may be occasions when one would

not wish to restrict transformations, such as when searching a database of compounds for

matches to a pharmacophore template. In this case, the compounds would not necessarily

have any meaningful pre-alignment.

3.4 Atom type information

We can consider that points are “coloured” with the interpretation that like-coloured points

are more likely to be matched than unlike-coloured ones. In the context of searching for

commonality between ligands, one might take the atom elements (carbon, nitrogen, etc) as

the colour information. We can specify the matching propensity parameter κ as a function

of concomitant information like atom types to parameterise the tendency a priori for points

to be matched. In pairwise alignment, we have either a colour match or mismatch. With

multiple alignment there can be many sophisticated ways of scoring colour-mismatching, as

the number of different colours in a match can range from one to say S > 2, the total number

of colours. Here we consider a simple way whereby we have binary categorization as follows:

• matches with all atoms having the same type,

• matches with at least one atom type different.

A priori, matching probabilities are proportional to exp (γ) for same colour matches and

exp (δ) for different colour matches, where γ and δ are specified “award/penalty” parameters

for matching or mismatching colours, where γ > δ. For example, setting γ = 1.0 and δ =

−0.5 awards colour matching twice as much as penalizing colour mismatching. Note that

δ −→ −∞ prohibits matching different colours, for instance element types.
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4. Application

We have two sets of eleven ligand configurations from multiple structural alignments of

ligand binding sites in SitesBase (Gold and Jackson, 2006), one for a protein kinase and

one for trypsin. SitesBase entries were automatically formed from the protein data bank, or

PDB (Berman et al., 2000), by locating the local protein environment (amino acids within

5Å) around bound ligands (identified by PDB HETATM records, as described by Gold and

Jackson (2006)). For simplicity we will refer to the set of ligands from a series of protein

kinases as 1ATP and label these 1 − 11. Similarly, we will refer to the set of ligands from

a series of trypsin-ligand bound structures as 3PTB and label these 12 − 22. These refer to

two sets of ligand binding sites which in each case are superimposed on a single site. In the

case of 1ATP, ten more distantly related protein kinase binding sites were superimposed on

a subunit of protein kinase 1ATP. They contain a diverse set of kinase inhibitors. In the case

of 3PTB, ten more trypsin-ligand bound complexes were superimposed on the site of trypsin

bound to benzamidine, 3PTB. The ligands are shown in Figure 1 and the sizes (number of

atoms) of each ligand are given below in Tables 1 and 2.

[Table 1 about here.]

[Table 2 about here.]

Finding a pharmacophore model for the 1ATP ligands by manual inspection is considered

difficult even for an experienced biologist, while finding a pharmacophore model for the 3PTB

ligands is an easier task. Using our HT algorithm we find three subsets of conformations for

the 1ATP data and two subsets of configurations for the 3PTB data. From these we can

obtain templates capturing the geometry of the matched points in each subset. Since the

ligands are pre-aligned by their binding to other proteins, we set A = I3 and τ = 0 to

prohibit spatial transformation. Allowing unrestricted transformation gave either the same

(1ATP) or very similar (3PTB) results. With slight tuning of the hyperparameters for σ−2
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we obtain the same results for the 3PTB case as well. In the following two applications, we

keep the hyperparameters for σ−2 fixed throughout, with α = 1 and β = 5.

[Figure 1 about here.]

4.1 1ATP ligands

We denote 1ATP ligands by numbers 1, 2, . . . , 11. Using the HT algorithm we identify

common atoms in three different subsets, each consisting of three configurations. Here

we have used the geometric mean threshold gmin = 0.5 and the cost ratio K = 0.1, as

experience showed these values provide a good balance between allowing templates to merge

but preventing the final templates becoming too general, in agreement with expert opinion.

We also impose the restriction nmin > 3, meaning acceptable templates must consist of at

least 3 atoms.

Table 3 shows the configurations contributing to each of the templates found and the number

of atoms they have in common. Figure 2 shows the geometry of the configurations. We

use colouring information in order to distinguish between atoms of different elements, as

described in section 3.4. It is more sensible from a chemical viewpoint to match points of

the same element, hence we discourage matches between different element types. It is still

possible to match elements of different types if their interpoint distances are relatively small.

Here we use the values γ = 0 and δ = −20 to discourage matches between elements of

different types; no matches between different elements were found in this case. If we do not

use colouring information, the three subsets of configurations found are the same as those

given in Table 3, but there are differences in a small number of the individual matches

between points. We find one match between different elements in template A and three

matches between different elements if templates B and C. There are two fewer points in

template C when colouring information is used, and the same number of points in templates
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A and B. We give details of the results obtained without using colouring information in the

supplementary material.

[Table 3 about here.]

[Figure 2 about here.]

4.2 3PTB ligands

We denote the eleven 3PTB ligands by numbers 12, 13, . . . , 22. The HT algorithm identifies

2 subsets of configurations. We have used the values gmin = 0.5, K = 0.1 and nmin = 3 as

before. Once again, we use colouring information to distinguish between different element

types, with δ = −20. The configurations contributing to each template are shown in Table 4

and their geometry in Figure 3. The details of the results obtained when colouring information

is not used are given in the supplementary material. We find no matches between atoms of

different elements, regardless of whether we use colouring information or not.

[Table 4 about here.]

[Figure 3 about here.]

5. Discussion

In this paper we have proposed a fast method for aligning multiple configurations of unla-

belled point sets and identifying common matched points across all configurations, or subsets

of them, in order to derive templates capturing the geometry of the matched points. Our

method is able to identify multiple subsets of configurations. In this sense, part of the im-

plementation strategy is analogous to an agglomerative clustering algorithm, but with some

important differences. The algorithm is implemented via a multi-stage pairwise alignment

approach, so at each stage we have an updated “similarity measure” based on a criteria

calculated from the pairwise matching probabilities given by the probability matrices P , the
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set of which is updated at each stage to include alignments involving newly-formed templates.

The algorithm continues to merge templates until no further acceptable merges meeting the

criteria can be formed. An important advantage of our method is the ability to identify

multiple subsets of configurations to derive templates representing the common points in

each. From the perspective of our current application, this is important in pharmacophore

modelling, where experts would expect more than one plausible pharmacophore as ligands

may bind active sites in more than one way. Note that we have concentrated here on rigid

body transformations (form analysis). This choice is motivated by our application described

in this paper, but the methodology is applicable to other transformations (see, for example,

Dryden and Mardia, 1998) used in shape analysis.

In the implementation we have described in this paper, we remove items merged to form

new templates at each stage, so any given ligand can contribute to at most one template.

An alternative approach allowing for “overlapping” templates, would be to not remove items

from the list of available objects in step (3) of the HT algorithm. The resulting templates

would overlap in the sense that an individual ligand could feature in more than one template.

We could also consider the number of ligands contributing to a template when discriminating

between pairwise alignments to decide on a merge at each stage. For example, a scoring

function of the form

(Nwn0)
−1

∑
log pjk,

where N is the number of configurations contributing to a template, would weight templates

with larger values of N more favourably for w > 1. This parameter could be adjusted

depending on how much weight one wishes to place on more inclusive templates. The case

where w = 0 reduces to the situation we have in the examples in this paper, where the

number of configurations contributing to a template has not been considered as part of the

process of evaluating them.
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The algorithm is computationally simple, with complexity O(C2), and fast to implement. The

tracking of all acceptable templates, beyond those chosen as optimal at each stage, prevents

the need to reevaluate pairwise alignments, saving considerable computation. It should be

noted that the complexity also depends on the choice of pairwise alignment method, in this

case that given by Green and Mardia (2006).

The method we have developed here aims to construct templates representing common

points in multiple configurations. Each template is essentially an object which captures

the average geometrical information of common points in an optimal way. In the context

of the applications described here, it should be noted that a template does not represent a

chemical entity in itself. The geometrical information contained in a template could however

be used to identify the key features common to each configuration and their relative spatial

orientation, so that a plausible pharmacophore model could be constructed. Further work

could require templates to satisfy chemical constraints, in order to determine a representative

molecule directly.

Supplementary Materials

Web Appendices, Tables, and Figures referred to in Sections 3 and 4 are available under the

Paper Information link at the Biometrics website http://www.biometrics.tibs.org.
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a) 1ATP and b) 3PTB ligands

Figure 1. Sets of 1ATP and 3PTB ligands.
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Template A and Template B

Template C

Figure 2. 1ATP ligands contributing to the templates found by the HT algorithm. The
template geometry is defined by the mean position of common matching atoms.
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Template A and Template B

Figure 3. 3PTB ligands contributing to the templates found by the HT algorithm. The
template geometry is defined by the mean position of common matching atoms.
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Table 1

Sizes of 1ATP Ligands

Ligand No. 1 2 3 4 5 6 7 8 9 10 11
No. of Atoms 31 35 35 18 27 36 20 18 27 35 37
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Table 2

Sizes of 3PTB Ligands

Ligand No. 1 2 3 4 5 6 7 8 9 10 11
No. of Atoms 9 20 22 40 41 25 24 72 9 11 14
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Table 3

Probable templates for 1ATP

Template # Configurations # of common atoms

A 2 3 6 35
B 4 5 7 18
C 9 10 11 24
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Table 4

Probable templates for 3PTB

Template # Configurations # of common atoms

A 19 21 11
B 12 14 15 16 17 18 20 22 9
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