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[1] Kolmogorov’s classic theory for turbulence assumed an independence between
velocity increments and the value for the velocity itself. However, recent work has called
this assumption in to question, which has implications for the structure of atmospheric,
oceanic and fluvial flows. Here we propose a conceptually simple analytical framework
for studying velocity-intermittency coupling that is similar in essence to the popular
quadrant analysis method for studying near-wall flows. However, we study the dominant
(longitudinal) velocity component along with a measure of the roughness of the signal,
given mathematically by its series of Hölder exponents. Thus, we permit a possible
dependence between velocity and intermittency. We compare boundary layer data
obtained in a wind tunnel to turbulent jets and wake flows. These flow classes all have
distinct characteristics, which cause them to be readily distinguished using our technique
and the results are robust to changes in flow Reynolds numbers. Classification of
environmental flows is then possible based on their similarities to the idealized flow
classes and we demonstrate this using laboratory data for flow in a parallel-channel
confluence. Our results have clear implications for sediment transport in a range
of geophysical applications as they suggest that the recently proposed impulse-based
methods for studying bed load transport are particularly relevant in domains such
as gravel bed river flows where the boundary layer is disrupted and wake interactions
predominate.

Citation: Keylock, C. J., K. Nishimura, and J. Peinke (2012), A classification scheme for turbulence based on the velocity-

intermittency structure with an application to near-wall flow and with implications for bed load transport, J. Geophys. Res., 117,

F01037, doi:10.1029/2011JF002127.

1. Introduction

[2] One assumption that underpins Kolmogorov’s classic
analysis of scaling properties in turbulence [Kolmogorov,
1941] is that the values for the velocity increments are
independent of the values for the velocity, which explains
why many analyses derive results for the statistics of the
velocity increments independent of the velocity itself [She
and Leveque, 1994]. However, experimental [Praskovsky
et al., 1993; Sreenivasan and Stolovitzky, 1996] and theo-
retical [Hosokawa, 2007] work has called this assumption
in to question and a recent attempt to model the velocity
increments in the flow stochastically has found improved
results with the inclusion of a velocity-dependent drift term

in the relevant Fokker-Planck equation for the velocity
increments [Stresing and Peinke, 2010].
[3] This paper is motivated by such work and given the

complex nature of geophysical flows it would seem impor-
tant to examine if any similar dependency exists as these
may be of some significance for developing improved tur-
bulence closure schemes for problems involving pollutant
dispersal or sediment entrainment. However, rather than
adopting complex stochastic analysis methods to study such
phenomena we were also motivated by the need to develop a
simple tool for determining a dependency between velocity
and the velocity increments, or variables directly related to
scaling properties of the increments. This forms the primary
contribution of this paper and we show that the graphical
technique we develop can be used as a means for comparing
different turbulent flows, and for classifying environmental
flows relative to benchmark fluid mechanics cases. Impli-
cations of our results for sediment transport are then dis-
cussed toward the end of the manuscript. However, before
we embark on describing our method, we first briefly review
relevant parts of turbulence theory and describe formal
analysis methods for characterizing the dependency between
velocity and velocity increments.
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1.1. The Moments of Velocity Increments and Their
Analysis

[4] If one studies the longitudinal velocity increments for
a turbulent flow, vr = ux + r � ux, as a function of the sepa-
ration, r, Kolmogorov-style scaling implies that the scaling
law for the moments, n, of vr is self-similar:

hjvr
nj i∝jr xn

�

� ð1Þ

where the Kolmogorov [1941] proposal is that xn = 1
3
n.

However, because the energy dissipation for turbulent flows
is intermittent, this model has been refined in various ways
over the years to yield multifractal scalings [Kolmogorov,
1962; She and Leveque, 1994]. An alternative approach to
an analysis of moments is to study all the moments at once
via a direct study of the probability distribution function for
vr as a function of r. A method for doing this was introduced
by Friedrich and Peinke [1997] and applied to jet data by
Renner et al. [2001]. It considers turbulence to be a Markov
process (as shown by Hosokawa [2002]) and is based on an
analysis of the conditional probability of vr = l1

as a function
of vr = l2

, p(vr = l1
|vr = l2

), where l is a length scale in the
flow, l1 < l2 … < lN, lj lies within lj + 1 and the separation
between lj and lj + 1 is more than a scale slightly smaller
than the Taylor scale termed the Einstein-Markov coherence
length [Stresing and Peinke, 2010]. With the simplification
to notation given by vlj

≡ vr=lj
, one can study p(vl1

|
vl ∈ {2,3,N}), and if p(vl1

|vl2
) = p(vl1

|vl ∈ {2,3,N}) then the
Markovian property holds and the problem may be greatly
simplified, permitting a Fokker-Planck equation to be
written for p(vl1

|vl2
) given some constraints on the fourth

order conditional moment for vl:

�r
∂

∂r
pðvlj jvlk

Þ ¼ ½�
∂

∂vlj

D1ðvlj ; rjÞ þ
∂2

∂v2lj
D2ðvlj ; rjÞ

�

pðvlj jvlk Þ

ð2Þ

where k > j, and D1 and D2 are the drift and diffusion
coefficients. Renner et al. [2001] found that D1 was linear
in vl, while D2 was quadratic and that (2) could then be
used to derive the distribution functions p(vl) with high
accuracy. The generalization to include a possible velocity
dependence for the increments was treated by Stresing and
Peinke [2010] where, if the Markovian property holds p
(vl1

|vl2
, ux) = p(vl1

|vl ∈ {2,3,N}, ux) and the relevance of
conditioning on the velocity was determined by checking
if p(vl1

|vl2
) = p(vl1

|vl2
, ux). This analysis found that while

there was no clear velocity dependence on the diffusion
coefficient, there was for the drift coefficient and that the
nature of this dependence depended on the type of flow
studied. Hence, the assumption in Kolmogorov’s deriva-
tion is not necessarily valid and the nature of the coupling
between the flow and its increments depends on the type
of flow considered as shown recently by Stresing et al.
[2010].

1.2. Relevance to Environmental Turbulence

[5] Given the complexity of environmental flows it seems
probable that similar dependencies exist and these are
important for understanding flow structures and, thus, ana-
lyzing a suite of phenomena such as pollutant dispersal or

sediment entrainment. For example, if strong fluctuations in
the data occur preferentially when the velocity is close to its
mean, peak turbulent shear stresses will be lower than if
strong fluctuations are coupled to higher mean velocities.
Thus, this is not simply a question of fluid mechanics
interest and it is important to test the extent to which fluid
mechanics theory applies in the environment [Lovejoy et al.,
2007]. However, the methods used to fit the Fokker-Planck
equations in the studies by Peinke and co-workers are quite
complex and require very long data sets, which may not be
realistically obtainable for many geophysical flows. Hence,
an alternative means for exploring this problem is needed.
In the subsequent sections of this paper, we present such a
method, apply it to high quality fluid mechanics data sets
and then classify different types of flows. We use this flow
classification to study the flow near the bed in the post
confluence region in a laboratory channel and, finally, dis-
cuss the implications of our results for sediment entrainment
by fluvial processes.

2. Analyzing the Coupling Between Velocity
and Velocity Increment Characteristics

[6] Quadrant analysis has a long history of use in studies
of near-wall flow [Lu and Willmarth, 1973] and has been
shown to be the most effective of traditional velocity-based
methods for detecting near-wall sweeps and ejections
[Bogard and Tiederman, 1986], which are of crucial
importance for our understanding of near-wall flow [Adrian
et al., 2000]. There has been considerable use of this method
in environmental fluid mechanics, particularly in sedimen-
tology where such processes are important for sediment
transport and bed defect initiation [Best, 1992]. In general, it
has been shown that of the two types of motion that con-
tribute positively to the Reynolds stress near the wall, ejec-
tions are more important for suspension transport [Niño and
Garcia, 1996], while sweeps are more important for bed-
load motion [Heathershaw and Thorne, 1985; Nelson et al.,
1995]. However, the rarer outward ejections [Nakagawa and
Nezu, 1977] are also important for bed load entrainment
[Heathershaw and Thorne, 1985; Nelson et al., 1995]. Tra-
ditional quadrants are based on a Reynolds decomposition of
the instantaneous velocity measurements in the wall-parallel,

ux, and wall-perpendicular, uz directions, e.g. u
=
x ¼ ux � ux ,

where the / indicates a fluctuating quantity and the overbar
a time-averaged mean. Four basic flow events can then be
defined from this decomposition as given in Table 1. It is of
course possible to take this further and identify flow struc-
tures based on a decomposition of all three components and
a classification into octants [Keylock, 2007].
[7] For the detection of particular near-wall structures, a

threshold or hole size, H, is typically introduced to eliminate
the incorrect classification of transient cases as true flow
structures. For example, for the detection of ejections Luchik
and Tiederman [1987] used a value for H of 1.21 to detect
ejections. That is:

u=xu
=
z Quad2 ≥ H ½sðuxÞsðuzÞ�
�

�

�

� ð3Þ

where s indicates a standard deviation and the subscript on
the left-hand side indicates that H is only applied when the
flow is in quadrant 2.
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[8] Our method is based on quadrant analysis but rather
than considering two velocity components or the vertical
velocity component with an associated scalar [Katul et al.,
1997], we consider a component of the velocity together
with its associated series of pointwise Hölder exponents
[Keylock, 2010]. In the appendix to this manuscript we
outline the relation between velocity increments and Hölder
exponents, which shows that our form of analysis may be
related to the direct consideration of velocity and the scaling
of velocity increments. Data are obtained as time series and
converted into spatial series using a modified Taylor
hypothesis [Kahalerras et al., 2007]. The series of pointwise
Hölder exponents, ap(x, ux), is used to characterize the local
roughness of the velocity data where constant Hölder regu-
larity implies a signal with a single Hurst exponent, or fractal
dimension, while a signal with multifractal characteristics
(such as turbulence) will have ap(x, ux) that varies spatially
depending on the presence of active flow structures. Periods
of relative roughness are given by a low ap, with ap defined
over the interval 0 to 1 and ap at a constant value of 0.5
corresponding to the Hurst exponent of a Brownian motion.
Thus, this analysis is related to the calculation of the multi-
fractal spectrum (MFS) of the velocity series [Meneveau and
Sreenivasan, 1991; Muzy et al., 1991] but while the MFS
gives, informally, the histogram of Hölder exponents,
ap(x, ux) estimates the Hölder exponent for each datum in a
discrete time series.
[9] For the remainder of this manuscript, we only consider

the longitudinal velocity component, ux, and, consequently,
drop the subscript so that u ≡ ux in much of our description.
An analysis of the series of Hölder exponents for multiple
velocity components has been used recently to define active
and inactive periods within environmental flows [Keylock,
2008], where ap(t, u) [or ap(x, u)] can be obtained using a
fluctuation scaling theorem [Kolwankar and Lévy Véhel,
2002]. Thus, we consider the differentiability of a signal
(its smoothness) relative to polynomial approximations
about a particular point that is given by a Taylor series
expansion:

pX ðxÞ ¼ ∑
m�1

i¼0

uiðX Þ

i!
ðx� X Þi ð4Þ

where we study a velocity series, u(x), in a neighborhood, d,
about a position, X, and m is the number of times that u is
differentiable in X � d. We then state that u(x) has a point-
wise Hölder exponent, ap(ux) ≥ 0 if a constant K > 0 and the
polynomial pX(x) of degree m exist such that

uðxÞ � pX ðxÞj j≤Kjx� X b
�

� ð5Þ

The Hölder regularity, ap(ux), of u(x) at X is then given by
the supremum (least upper bound) of b that fulfils
equation (5).
[10] Accurate estimation of Hölder exponents can be

undertaken in appropriate function spaces [Seuret and Lévy
Véhel, 2003] or via refinements to the work of Jaffard
[1997] on wavelet bases. However, a simple and rapid
method [Kolwankar and Lévy Véhel, 2002] is based on a
log-log regression of the signal oscillations, OX � d, within a
distance d of the location of interest, X, against d, where
OX � d is given by:

OX�d ¼ maxðux∈½X�d;…;Xþd�Þ � minðux∈½X�d;…;Xþd�Þ ð6Þ

and d is distributed logarithmically. We adopt that approach
here with logarithmically distributed bins ranging in size up
to �213 data points (wind tunnel experiments) or �214

points (jet and wake data) for the analysis in section 4, but
reduced to �29 points for the shorter duration confluence-
flow data in section 5. Convergence properties of this
method as a function of the selected bin size were recently
studied empirically by Keylock [2010] and performance was
deemed better than wavelet-based methods.
[11] By subtracting their mean values to obtain fluctuating

series, indicated by a prime, we can study the joint properties
of u/(x) and ap

/ (x, u) and produce a four-way classification of
the flow analogous to the conventional quadrant analysis
explained in Table 1: {Q1: u/(x) > 0, ap

/ (x, u) > 0; fast and
smooth}, {Q2: u/(x) ≤ 0, ap

/ (x, u) > 0; slow and smooth},
{Q3: u/(x) ≤ 0, ap

/ (x, u) ≤ 0; slow and rough}, {Q4:
u/(x) > 0, ap

/ (x, u) ≤ 0; fast and rough}. An example analysis
is given in Figure 1 for a time series of 12.5 � 106 mea-
surements on a turbulent jet obtained at 8 KHz, with a mean
velocity of 2.25 m s�1, as described by Renner et al. [2001].
This analysis is based on hole sizes, H, of 3.5 and 4.0, where

a hole size exceedance is registered if û=ðxÞâ=
pðx; uÞ

�

�

�

�

�

� >

H ½sðuÞsðapÞ�, where, for example, û=ðxÞ ¼u=ðxÞ
sðuÞ, and s(…) is

the standard deviation. Figure 1 accounts for this normali-

zation by showing û=ðxÞ and â=
pðx; uÞ.

[12] The lack of events in Q1 is clear and can be explained
from the nature of a jet experiment, where a stream of fast
flowing fluid is injected into quiescent fluid. The latter is
entrained into the jet, forming patches of slower moving,
less fluctuating fluid. Thus, where ap

/ (x) > 0 , we find
u/(x) < 0 (Quadrant 2). We hypothesize that this situation is
somewhat similar to the situation near the wall where tur-
bulent sweeps break into the viscous sublayer, so that when
u/(x) > 0 velocity increments are large and ap

/ (x) < 0 (Q4),
and when u/(x) < 0, ap

/ (x) > 0 (Q2), resulting in a relative
lack of Q1 events. Furthermore, we hypothesize that as one

Table 1. The Definition of Traditional Flow Quadrants

Quadrant Number Name ux
/ uz

/ Reynolds Stress Contribution

1 outward interaction positive positive negative
2 ejection negative positive positive
3 inward interaction negative negative negative
4 sweep positive negative positive
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moves further from the wall the strength of this effect
diminishes. This hypothesis is explored in section 4. How-
ever, first we examine the case of homogeneous, isotropic
turbulence from the perspective of our flow classification.

3. Homogeneous, Isotropic Turbulence (HIT)

[13] As discussed in the introduction, the motivations for
this paper were a testing of some of the assumptions in
Kolmogorov’s classic work as they pertain to environmental
flows, which lack both homogeneity and isotropy. In order
to demonstrate that homogeneous, isotropic turbulence
(HIT) is different to environmental flows it is informative to
contrast the results in Figure 1 with those in Figure 2 which
are taken from the John Hopkins on-line turbulence data set
for a direct numerical simulation of HIT using a 10243 node
simulation [Li et al., 2008]. Spatial series consisting of 1024
values are very short data sets compared to some of the
others used in this paper and consequently, to obtain robust
statistics we averaged our data over 100 different spatial
series. That is a regular grid of 10 � 10 points in the x�z
plane was defined and the spatial series of uy was extracted
for 1024 points along the y-axis. Our results are shown in
Figure 2 and it is clear that the dependence of quadrant
statistics on H does not exist in this case. Hence, the starting
point of this paper that while the theory developed by
Kolmogorov [1941] may apply to HIT, it does not neces-
sarily mean that it applies to other flows, appears to be borne
out. This is reinforced by the additional flow types studied in
sections 4 and 5.

4. Flow Classification for Idealized Flow Types

[14] To extend the range of flow classes and to test the
hypothesis from section 2 that for near-wall flows, as one
moves away from the wall, the behavior in quadrant 1
increasingly departs from jet-like characteristics, we
obtained nine velocity profiles at two different mean veloc-
ities (U

∞
= 6 m s�1 and U

∞
= 8 m s�1) in a horizontal, 1 m

cross-section wind tunnel with a 5 m measuring section
located in a cold room at �15�C described by Kosugi et al.
[2004]. The surface was hydraulically rough consisting of
snow grains with an average diameter of 3 mm, fixed in
place by spraying them with water droplets and letting the
water freeze. The longitudinal component of velocity was
recorded at 5 kHz and 217 samples were recorded at each
sampling point for each profile. The turbulence intensity
sðuÞ=u averaged 4.7 % for 6 m s�1 and 5.0 % for 8 m s�1

inlet conditions at a height of 0.15 m from the wall (760
wall units, z+, for U∞

= 6 m s�1 and 966 z+ forU∞
= 8 m s�1).

Based on the wall unit scaling, the thickness of the viscous
sublayer may be estimated to vary between 1 mm and
1.2 mm for the two input velocities. The Taylor Reynolds
number at 0.15 m averaged 142 and 267 for the two U

∞
and

Figure 3a shows that all profiles collapse appropriately
using wall stress, u∗, scaling. Figures 3b–3e show the pro-
portion of the data in each quadrant for H = 0 at various
heights. It is important to note here the similarity of the
results for the two different flow velocities and therefore,
Reynolds numbers, which demonstrates that the results
from our method are Reynolds number-independent.
[15] The hypothesis from section 2 is borne out in

Figure 3, where the flow close to the wall (Figures 3d and
3e) is rarely in Q1 relative to z ≥ 0.1 m (Figures 3b and 3c)
and this result holds for all nine individual experimental
profiles. However, if we go further, and study the relative
proportion of the data in each quadrant as a function of H,
important differences emerge as shown in Figure 4. In this
figure we plot mean results for the wind tunnel experiments,
as well as the jet data and measurements made in the far
wake of a cylinder at inlet velocities of U

∞
= 8.48 m s�1 and

24.3 m s�1 [Stresing et al., 2010]. The means for the wind
tunnel data were taken over the two measurements nearest
the wall (z = 0.01 m, z = 0.02 m) and the two furthest from
the wall (z = 0.12 m, z = 0.15 m) for the five experiments
at U

∞
= 6 m s�1 and four at U

∞
= 8 m s�1 to give ten and

eight measurements, respectively. It is clear that z affects
the nature of the results in Figure 4 more than U

∞
for the

wind tunnel data. The wake data are also more similar to
each other than might be expected from differences in U

∞
.

Figure 2. Our quadrant analysis for homogeneous, isotro-
pic turbulence taken from a direct numerical simulation.
Note that the values are ≈25% for all quadrants at all choices
for H.

Figure 1. Our new form of quadrant analysis for the jet
data with the normalized velocity fluctuations, û=ðxÞ, plotted
against the normalized Hölder exponents, â=

pðx; uÞ. The hole
size, H, used here is 3.5, with a value of 4.0 shown in gray.
The lack of events in quadrant 1 is clear.
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This supports our assertion about Reynolds number inde-
pendence. The decrease in Q1 with H is strongest for the jet
data, but is clearly seen near the wall and to a lesser extent
further from the wall for the wind tunnel data. For these
flows it is very rare to see fast flow where fluctuations are

suppressed. In contrast, results for the wake data are slightly
increasing in Q1.
[16] While the hypothesis established in section 2, that jet

data and flow near the wall would have a lack of events in
quadrant 1, is borne out, jets and near-wall flows can readily

Figure 3. Boundary layer flow characteristics based on five experiments at U
∞
= 6 ms�1 (black lines)

and four at U
∞
= 8 ms�1 (gray lines). (a) Dimensionless mean vertical velocity profiles using a wall units

normalization, and (b–e) the distribution of time spent in different quadrants as a function of height above
the snow surface for a hole size, H = 0.0. The bars indicate the range of results, with the central value
showing the median. These bars are displaced slightly from the integer quadrant number for display
purposes.

Figure 4. The relative proportion of events in each quadrant as a function of hole size, H. Thus, at any
choice for H, the values for a particular data set over the four quadrants sum to 100%. The red line is the jet
data while the black and gray lines are the wake data at 8.5 m s�1 (black) and 24.3 m s�1 (gray). The blue
lines are the surface layer wind tunnel data at U

∞
= 6 m s�1 (blue) and U

∞
= 8 m s�1 (green). The solid line

indicates the data near the wall, while the dotted lines are the sites closest to the center line of the wind
tunnel.
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be discriminated based on their behavior in other quadrants
(particularly quadrants 2 and 4). The jet sees a relative
increase in Q2 with H, which compensates for the decline
in Q1 (and lesser decline in Q3 and Q4), while high in
the wall flow it is Q3 that compensates for declines in Q1
and (strongly in) Q4. Close to the wall Q4 compensates for
declines in Q1 and Q3, while the wake data also see
increases in Q4 and Q1 to compensate for a clear decay in
Q2. The pattern for jet flow was explained above, while
the wall data can be explained with reference to near-wall
turbulence structure [Adrian et al., 2000]. The faster flow
near the wall is due to sweeps delivering fluid from a
higher level in the flow where velocity fluctuations are
more pronounced, resulting in a dominance of Q4. Higher
up in the wall flow, the upward ejection of hairpin struc-
tures with slower u than average at that z, but which are
regions of concentrated vorticity, explains the dominance
of Q3. At low H, the wake flow has a high proportion of
slow moving, smooth flow from the near-wake region (Q2).
As H increases this declines in importance relative to the
fast, rough eddies that are generated by the shearing pro-
cesses (Q4) and the occasional collapse of the recirculation
region, with a downstream advection of fast, low turbulence
fluid (Q1) [Simpson, 1989]. Because environmental fluid
mechanics flows will often combine aspects of boundary-
layer, wake and jet flows, the similarity between any real
flow and the idealized cases reported here permits a flow
classification to be undertaken. It is clear from these results
than assuming an independence between velocity and the
pointwise Hölder regularity and, thus, the increment struc-
ture functions, is not appropriate for a wide range of non-
isotropic flows and that this information provides a useful
basis for flow classification.

5. An Application to a Flume Study of a Parallel-
Channel Confluence

[17] The previous section of this manuscript demonstrated
that idealized flow classes can be readily discriminated
using our technique, which in turn calls into question the
independence between velocity and Hölder structure for
non-isotropic flows. Complex environmental flows may be
classified as having some of the attributes of boundary-layer,

jet or wake flows depending on position and time. In this
section of the paper we apply our method to data obtained
from a parallel-channel confluence experiment undertaken in
a 0.30 m wide flume over a rough bed of fixed sedimentary
grains.
[18] The parallel-channel confluence was introduced by

Best and Roy [1991] as an end-member case for the flow
dynamics at discordant river confluences. Because the
junction angle is zero there is minimal momentum exchange
between the flows and the dynamics of the confluence zone
are driven by coherent flow structures that emerge from the
interaction between two shear layers oriented at 90� to one
another: the shear layer formed between the two incoming
flows that induces vorticity in the longitudinal-transverse
plane; the shear layer formed over the step of the discordant
channel with vorticity in the longitudinal-vertical plane. The
bed discordance reflects the fact that in natural channels
there is often a significant sudden change in depth between
the bed elevation of the smaller tributary and that of the main
channel [Best and Ashworth, 1997]. Best and Roy [1991]
noted that the coupling between the shear layers induces a
fully three-dimensional flow structure, although large-eddy
simulations by Keylock et al. [2005] showed that for a con-
stant discharge ratio, the width of the discordant tributary
plays an important role for the dynamics as a wider tributary
reduces the pressure gradient between the recirculation zone
behind the step and the rest of the flow, decoupling the two
shear layers. There have been a number of additional
experimental [Biron et al., 1996] and numerical [Bradbrook
et al., 1998] studies of this particular flow geometry.
[19] The data used in this study were obtained in a

hydraulic flume using an acoustic Doppler velocimeter,
which recorded three perpendicular velocity components at
25 Hz. Data were obtained for 300 s from a sampling vol-
ume with its base 1 median grain size (≈2.5 mm) above a
fixed bed (sediment glued into position with 94 % of grains
by mass with diameters in the 2.0 to 2.8 mm range) in the
post-confluence region of the parallel-channel confluence. In
this paper we consider the measurement sites in Figure 5,
which represent a range of flow regimes (recirculation zone,
impact of a shear layer, boundary-layer recovery). These are
a small subset of all the measurements taken and the full set
were used to delimit the recirculation region. The stratified

Figure 5. Plan view illustration of the parallel-channel confluence experimental set-up in a 0.30 m width
hydraulic flume, showing the origin for the co-ordinate system used in this study, the seven sites from
which time series were sampled (crosses),and the splitter plate used to separate the flows upstream of
the post-confluence region. The flow in the right-hand channel passes over a 0.05 m step, meaning that
the post-confluence region is subject to the coupled effect of shear between the two channel flows and
shearing/Kelvin-Helmholtz instability as the right-hand tributary passes over the step. The mean reattach-
ment length is curved due to this interaction and is at x/zstep ≈ 3.2 for y/wf = 0.233, and x/zstep ≈ 3.8 for
y/wf = 0.167.
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sampling strategy was determined on the basis of zones of
sediment entrainment and deposition in similar experiments
at the same velocity but using a mobile bed with the same
sedimentary characteristics. The hydraulic flume had a width
of 305 mm and a 9 mm splitter plate was placed along the
center of the flume upstream of the confluence to partition
the two flows, one of which passed over a step with a height,
zstep, of 50 mm. The flow depth in the raised channel was
70 mm and 120 mm in the unraised channel, with flow
velocities of 0.55 m s�1 and 0.52 m s�1, respectively,
meaning that the Reynolds number in both channels excee-
ded 35 000 and the Froude number was less than 0.45. The
data that are analyzed here were obtained along a transect in
the post-confluence region but aligned with the center of the
raised channel, as well as at a position largely unaffected by
the flow dynamics of the shear layers (y/wf > 0.5), and one
close to reattachment where the flow is of a complex nature
(x/zstep = 3.0, y/wf = 0.167), Figure 5. These data were pre-
viously used by Keylock [2009] to test a method for deter-
mining the effective dimensionality of active periods
[Keylock, 2008] in a turbulent flow field.
[20] Our results are given in Figure 6 where, as the

colors change from green, to blue, to black, one moves
further along the transect, away from separation (x/zstep ∈
{3, 4, 5, 6,, 7, 10}, y/wf = 0.233) and where the red
and magenta lines are for (x/zstep = 6.0, y/wf = 0.733) and
(x/zstep = 3.0, y/wf = 0.167), respectively. The results are
truncated at H = 2.5, compared to H = 5.0 in Figure 4
because of the much shorter duration of the record,
which means that there are too few data beyond this H
for significant conclusions to be drawn. Note that at
(x/zstep = 3.0, y/wf = 0.167) and (x/zstep = 3.0, y/wf = 0.233)
the measurements are within the recirculation zone and the
mean value for ux is negative. Consequently, in order to
compare these data to the others, the results from quad-
rants 1 and 2, and then quadrants 3 and 4, were trans-
posed. Some of the flows in Figure 4 and various sites in

Figure 6 show similar behavior. To facilitate a comparison
between these cases, selected data from Figure 4 and
Figure 6 are plotted together in Figure 7.
[21] It is clear in Figure 6b and 6d in particular, that the

flows that are least affected by separation processes (the
black line where x/zstep = 10 and the red line where
y/wf > 0.7) have a different response to the other sites and
their gradual rise in quadrant 4 together with decay in
quadrant 2 and a fairly constant response in quadrant 3 is,
from Figure 4 and Figure 7, indicative of a far-wake flow
field, although the response in quadrant 1 is also similar to
flow high in the near-wall flow. At these two locations the
flow is primarily described by boundary-layer recovery
interspersed with periodic shedding of slow fluid from the
recirculation region behind the step, which is borne out by
the results. The shedding of structures in the lee of the
obstacle is what explains the opposite response of the far-
wake data to the jet data in Figure 4 (less turbulent recir-
culation zone flow immersed in a more turbulent flow
compared to highly turbulent flow injected into a quiescent
fluid) and our results imply that the shedding of the recir-
culation zone has similar effects as in far-wake situations.
[22] The sites at (x/zstep ∈ {4, 5, 6,, 7}, y/wf = 0.233)

largely exhibit a similar response to one another that for
quadrant 1 is akin to the blue and green lines in Figure 4
(blue line in Figure 7) for near wall data, while the behav-
ior in quadrants 2 and 3 is intermediate between near-wall
and wake cases and the rise in quadrant 4 is greater than seen
in even the near-wall flow. Given that these measurements
were made near the wall and are affected by the wake
shedding processes that affect (x/zstep = 10, y/wf = 0.233)
this behavior is not unsurprising. In particular, the coinci-
dence of wake shedding and energetic Kelvin-Helmholtz
eddies in the confluence explains the dominance of quad-
rant 4 at high H relative to other quadrants as well as to
near-wall flows affected largely by less energetic hairpin

Figure 6. The relative proportion of events in each quadrant as a function of hole size, H, for the conflu-
ence experiment. The lines in each plot correspond to data from different sites in the post-confluence
region: (x/zstep = 6.0, y/wf = 0.733) red, (x/zstep = 3.0, y/wf = 0.167) magenta, (x/zstep = 3.0, y/wf = 0.233)
green dotted, (x/zstep = 4.0, y/wf = 0.233) green, (x/zstep = 5.0, y/wf = 0.233) blue dotted, (x/zstep = 6.0,
y/wf = 0.233) blue, (x/zstep = 7.0, y/wf = 0.233) black dotted, (x/zstep = 10.0, y/wf = 0.233) black.
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vortex formation and corresponding sweeps. Hence, these
sites seem to be different to, but related to near-wall flow.
[23] The recirculation region (magenta line in Figure 6)

appears to have rather different characteristics even after the
sign change. In quadrants 1 and 4 it behaves like the near-
wall cases, while in quadrants 3 and 4 it is nearer the far-
wake cases. It should be noted that none of the idealized
flow types in Figure 4 covered this case and its status as a
distinct case is to be expected.
[24] The lack of an increase in percentage occupancy

with H in quadrant 2, coupled to increases in quadrant 4 for
the sites in Figure 6 would suggest that, when compared to
the red line in Figure 3, the jet model is inappropriate for the
post-confluence flow as one might expect. That none of the
sites, which are subject to a variety of forms of vortex
impingement seem to exhibit characteristics of the jet data
cautions against the use of jet data as a model for sediment
transport by coherent flow structures in environmental flows
[Hogg et al., 1996].
[25] This application of our method appears to be suc-

cessful. The sites furthest from the region of coherent
structure impingement upon the bed, which are mainly
subject to the advected remnants of these structures appear
to have similar characteristics to far-wake flows. On the
other hand, flow near a lower boundary that is suddenly
subject to major reorganizations as structures impose upon
the bed, are similar to near-wall boundary layer flows. There
is perhaps no clear analogue for flow in a recirculation zone
from the fluid mechanics data analyzed in section 4 and it is
at these sites where the behavior differs most markedly from
the analogues in Figure 4. As discussed by Simpson [1989]
recirculation zones are not regions of quiescent flow but
the effect of intermittency-driven-by-impingement will be
dampened compared to a near-wall boundary layer flow or a
region where structures are directly impinging upon the bed,

explaining the observed characteristics that are more similar
to a far wake.

6. Implications for Sediment Transport

[26] While the mobilization of particles into suspension is
largely a function of the strength of ejections (upward
movements of relatively slow moving fluid from the wall),
bed load entrainment is coupled to u/ > 0, largely driven by the
dominant action of sweeps, although the rarer outward inter-
actions are more efficient [Heathershaw and Thorne, 1985;
Nelson et al., 1995]. Recently there has been an increased
understanding of the role of impulse rather than instantaneous
maximum forces for particle entrainment [Diplas et al., 2008;
Valyrakis et al., 2010], with some particles transported when
u/ > 0 for a sustained period but peak stresses are relatively
low. Sustaining u/ > 0 for a significant period implies that
ap
/ > 0. Figures 1, 3, and 4 show that for jet flows and

boundary layer flows, the joint probability of fast, smooth (Q1)
events is relatively low, meaning that in the natural environ-
ment, for a well-developed boundary layer, impulse-based
considerations, while important, will be potentially out-
weighed by the effect of higher u/ flow events where ap

/ < 0
and the flow event is of limited duration. However, when
considering flow in complex environments, such as gravel bed
rivers where vortex shedding from individual clasts occurs
[Hardy et al., 2007] or where the form resistance from the bed
disrupts the classical boundary layer [Venditti et al., 2005], the
flow is more likely to behave as the wake flow (gray and black
lines in Figure 4 and the far-field locations from the parallel-
channel confluence experiment in Figure 6). In which case, Q1
is of much greater importance and we can expect that impulse-
based considerations are of greater relevance for elucidating
bed load sediment entrainment. Hence, our flow classification
scheme, which appears to have been successfully applied to

Figure 7. The relative proportion of events in each quadrant as a function of hole size, H, for selected
data from Figure 4 and Figure 6: jet data (red), the 8.5 m s�1 wake data (black), the surface layer wind
tunnel data near the bed at U

∞
= 6 m s�1 (blue), the surface layer wind tunnel data high in the flow at

U
∞
= 6 m s�1 (green), confluence sites (x/zstep = 6.0, y/wf = 0.733) red dotted, (x/zstep = 3.0, y/wf = 0.167)

magenta dotted, (x/zstep = 4.0, y/wf = 0.233) green dotted, (x/zstep = 10.0, y/wf = 0.233) black dotted.
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the case of near-bed flow in a complex environment, can be
used to infer the importance of the recent, exciting develop-
ments in bed-load entrainment studies. Elucidating this con-
nection explicitly will be the topic of future research.

7. Conclusion

[27] A method for studying the coupling between turbu-
lent fluctuating velocities and their pointwise Hölder expo-
nents has been presented. This method can successfully
discriminate between various classes of turbulent flow in a
manner that agrees with knowledge of the relevant dynam-
ics. Because the differences between flow types dominates
variation in Reynolds number, our method would appear
to be robust to variation in mean velocity. The technique
demonstrates the presence of a coupling between velocities
and the intermittency in different flows and provides a
means for classifying environmental turbulence flows.
Based on this method, it would seem that the recently pro-
posed ideas concerning impulse-based bed load sediment
entrainment are primarily relevant in rough boundaries,
where the boundary-layer structure is disrupted such that
much of the near-wall flow can be considered to behave as a
far-wake flow.

Appendix A: Hölder Exponents and Their Relation
to Velocity Increments

[28] The main part of this paper develops a method for the
visual analysis of turbulence signals based on the depen-
dence between the fluctuating longitudinal velocity and the
fluctuating series of Hölder exponents for the data, where a
Hölder exponent may be thought of as a pointwise estimate
of the fractal dimension of the signal. In this appendix we
develop a connection between the structure functions given
by different choices for n in equation (1) and the value for
Hölder exponents. Thus, we show that the analysis devel-
oped here is related to those that directly study velocity
increments [Hosokawa, 2007; Stresing and Peinke, 2010].
[29] The structure function approach was developed by

Frisch and Parisi [1985] as shown in equation (1) and the
top line of equation (A3). Given a power law scaling
between the moments of the velocity increments, vr, and
their separation, r, denoted by xn, a monofractal signal
will exhibit a linear scaling between the moment order, n, and
xn as seen in Kolmogorov’s original theory [Kolmogorov,
1941], while a multifractal signal will exhibit a convex rela-
tion between n, and xn [Frisch and Parisi, 1985]. Thus,
a connection between the velocity increments and the fractal or
multifractal nature of a velocity signal can be demonstrated.
[30] Given the definition of the Hölder exponent in

equation (5), multifractal analysis is concerned with the
study of the sets Sa, where a function has a given Hölder
exponent, a. If for each a, we define the singularity spec-
trum, D(a) as the set of values for a for which Sa is not
empty. The Frisch-Parisi conjecture states that

DðaÞ ¼ min
n
ðan� xn þ 1Þ ðA1Þ

That is, the structure functions and the Hölder exponents are
related via a Legendre transform. Hence, the analysis in this

paper based on Hölder exponents is intimately connected to
structure functions and, thus, velocity increments. To make
this more explicit and following Jaffard [1997], if we are
close to a singularity of order a, we will find that in a win-
dow, |r|, that the local behavior scales as

uxþr � ux
n ≈j jr anjj ðA2Þ

With a dimension to these singularities of D(a) it follows
that there are approximately |r|�D(a) boxes with a volume
|r|m where m is the dimension of the space over which the
function is defined. Hence, the contribution of this singu-
larity to the integral used to evaluate the structure function
〈|vr|

n
〉 is approximately |r|an + m � D(a). The largest con-

tributor to the integral will be given by the smallest expo-
nent because r → 0. Thus,

hjvr
nj i∝jr xn

�

� ðA3Þ

xn ¼ min
n
ðan� DðaÞ þ mÞ ðA4Þ

This derivation gives the link between the scaling behavior
of the structure functions and the spectrum of Hölder
exponents. However, usually we know xn and are trying to
estimate D(a). Thus, we need to take the inverse Legendre
transform, which for a m = 1 dimensional signal yields
equation (A1).
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