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Spherical and Hyperbolic Embeddings of Data
Richard C. Wilson, Senior Member, IEEE, Edwin R. Hancock Senior Member, IEEE,, Elżbieta Pȩkalska,

Robert P. W. Duin Member, IEEE,

Abstract—Many computer vision and pattern recognition prob-
lems may be posed as the analysis of a set of dissimilarities
between objects. For many types of data, these dissimilarities
are not Euclidean (i.e. they do not represent the distances
between points in a Euclidean space), and therefore cannot
be isometrically embedded in a Euclidean space. Examples
include shape-dissimilarities, graph distances and mesh geodesic
distances. In this paper, we provide a means of embedding such
non-Euclidean data onto surfaces of constant curvature. We aim
to embed the data on a space whose radius of curvature is
determined by the dissimilarity data. The space can be either
of positive curvature (spherical) or of negative curvature (hyper-
bolic). We give an efficient method for solving the spherical and
hyperbolic embedding problems on symmetric dissimilarity data.
Our approach gives the radius of curvature and a method for
approximating the objects as points on a hyperspherical manifold
without optimisation. For objects which do not reside exactly
on the manifold, we develop a optimisation-based procedure for
approximate embedding on a hyperspherical manifold. We use
the exponential map between the manifold and its local tangent
space to solve the optimisation problem locally in the Euclidean
tangent space. This process is efficient enough to allow us to
embed datasets of several thousand objects. We apply our method
to a variety of data including time warping functions, shape
similarities, graph similarity and gesture similarity data. In each
case the embedding maintains the local structure of the data
while placing the points in a metric space.

Index Terms—embedding, non-Euclidean, spherical, hyper-
bolic

I. INTRODUCTION

There are many problems in computer vision and pattern

recognition which can be posed in terms of a set of measured

dissimilarities between objects [15]. In other words, there are

no intrinsic features or vectors associated with the objects

at hand, but instead there is a set of dissimilarities between

the objects. Some examples include shape-similarities, gesture

interpretation, mesh geodesic distances and graph comparison,

but there are many more. There are two challenges to the

analysis of such data. First, since they are not characterized by

pattern-vectors, the objects can not be clustered or classified

using standard pattern recognition techniques. For example,

pairwise rather than central clustering techniques must be

used on such data. Alternatively, the objects can be embedded

into a vector-space using techniques such as multidimensional

scaling [6] or IsoMap [31]. Once embedded in such a space

R. C. Wilson and E. R. Hancock are with the Department of Computer
Science, University of York, UK
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then the objects can be characterized by their embedding co-

ordinate vectors, and analyzed in a conventional manner.

Most embedding methods produce an embedding that is

Euclidean. However, dissimilarity data cannot always be em-

bedded exactly into a Euclidean space. This is the case when

the symmetric similarity matrix (the equivalent of a kernel

matrix) contains negative eigenvalues. Examples of such dis-

similarity data occur in a number of data sources furnished by

applications in computer vision. For instance, shape-similarity

measures and graph-similarity measures are rarely Euclidean.

Previous work [22] has shown that there is potentially useful

information in the non-Euclidean component of the dissimilar-

ities. Such data can be embedded in a pseudo-Euclidean space,

i.e. one where some dimensions are characterized by negative

eigenvalues and the squared-distance between objects has both

positive and negative components which sum together to give

the total distance. A pseudo-Euclidean space is however non-

metric, which makes it difficult to correctly compute geometric

properties. An alternative, which we explore in this paper, is

to embed the data on a curved manifold, which is metric but

non-Euclidean. The use of a metric space is important because

it provides the possibility of defining classifiers based on

geometric concepts such as boundaries, regions and margins.

Riemannian manifolds offer an interesting alternative to

Euclidean methods. A Riemannian manifold is curved, and the

geodesic distances between points on the manifold are metric.

However the distances can also be indefinite (in the sense

that the similarity matrix is indefinite) and so can represent

indefinite dissimilarities in a natural way. Our goal in this

paper is to embed objects onto the constant curvature space

and its associated spherical or hyperbolic geometry. This is a

potentially very useful model since, although it has intrinsic

curvature, geodesics are easily computed and the geometry is

well understood.

In our formulation, the space can be either of positive

curvature (i.e. a spherical surface) or of negative curvature

(i.e. a hyperbolic surface). We show how to approximate a

distribution of dissimilarity data by a suitable hypersphere.

Our analysis commences by defining the embedding in terms

of a co-ordinate matrix that minimises the Frobenius norm

with a similarity matrix. We show how the curvature of the

embedding hypersphere is related to the eigenvalues of this

matrix. In the case of a spherical embedding, the radius of

curvature is given by an optimisation problem involving the

smallest eigenvalues of a similarity matrix, while in the case of

a hyperbolic embedding it is dependent on the second-smallest

eigenvalue. Under the embedding, the geodesic distances be-

tween points are metric but non-Euclidean. Once embedded,

we can characterize the objects using a revised dissimilarity

matrix based on geodesic distances on the hypersphere. We
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apply our method to a variety of data including time warping

functions, shape similarities, graph comparison and gesture

interpretation data. In each case the embedding maintains the

local structure of the data while placing the points in a metric

space.

II. RELATED WORK

Multidimensional scaling (MDS) has its roots in Psychomet-

rics and has a long history. Initially, the goal was to analyze

perceptual similarities in order to visualize the results of

psychological experiments. In classical MDS, the embedding

space is generally Euclidean and an embedding space often

sought which is two or three dimensional for visualization

purposes. However, it was soon realized that some types of

data do not seem to lie naturally on a Euclidean manifold

[29]; the perceptual similarities of color and musical notes are

good examples. Rather, these seem to lie on curves or circles

in the embedding space.

Over the last decade or so, there has been a resurgence in re-

search into embedding techniques, fueled by the appearance of

a family of spectral embedding methods, typified by ISOMAP

[31], Laplacian Eigenmaps [2] and Locally Linear Embedding

(LLE) [25]. These are non-linear embedding techniques, which

are able to embed points from a non-linear high-dimensional

manifold into a low-dimensional space while preserving the

structure. The essence of these methods is to examine the

structure of the points using local neighbourhoods, and to

preserve this structure in the final embedding. While these

methods successfully embed non-linear data-manifolds, the

final embedding is Euclidean. They therefore cannot represent

manifolds with non-zero intrinsic curvature (as opposed to

extrinsically curved manifolds).

To overcome some of the limitations imposed by a Eu-

clidean embedding space, a family of methods has been

proposed which model the data-manifold as a set of piecewise

connected manifolds. Local Tangent Space Alignment(LTSA)

[36] and manifold charting [3] are examples of this approach.

As an example, LTSA discovers a set of local tangent spaces

and the neighbourhood relationships between them, via a set of

global to local transformations. Such methods can approximate

intrinsically curved manifolds, but can be computationally

expensive. The piecewise model also makes computations

such as the geodesic distance between arbitrary points more

complex.

Motivated by the observation that many datasets seem to lie

on arcs or circles, there have been a number of works which

look at the problem of embedding dissimilarities onto curved

manifolds, most typically circles or spheres. For example,

Hubert et al [16] have investigated the use of unidimensional

embeddings on circles. In particular, the problem of mapping

distances onto the sphere S2 has received particular attention

since it has a number of applications such as the embedding

of points on the surface of the Earth, and texture mapping

spheroid objects [12]. Cox and Cox [7] were some of the

first to look in detail at the problem of spherical embedding.

They employ the Kruskal stress [17] of the point configuration

and use spherical-polar coordinates to parameterise the point-

positions. The stress can then be optimized with respect to the

zenith and azimuth angles of the points. Similarly, Elad et al

[12] use a stress measure which is then optimized with respect

to the spherical polar coordinates of the points (Equation 1).

ǫ =

n
∑

i,j

wij(DG(i, j)−DE
G(i, j))

2 (1)

These methods are effective and specifically designed for

the two-dimensional sphere S2. However, they do not easily

extend to spheres of higher dimension.

These methods all follow a pattern which is typically of

approaches to non-Euclidean MDS. The key idea is to define

a measure of the quality of the embedding, called the stress,

and then optimize the position of the points to minimize

the stress. This is a very general approach which can be

used to embed into all kinds of manifold. The optimization

is an important step; here the stress majorization(SMACOF)

algorithm has proved very popular [9], [10]. For more details

of these approaches to MDS, readers are referred to [6]

The possibility of embedding onto higher dimensional

spheres has been explored by Lindman and Caelli in the

context of interpreting psychological data [19]. As with other

methods, their method involves optimizing a stress which is

an extension of the original MDS method of Torgerson [32].

Interestingly, Lindman and Caelli note that the mathematics

of hyperbolic space is very similar to that of spherical space,

and propose a method for embedding into hyperbolic space as

well. This suggests that hyperbolic space may also be a viable

alternative for representing dissimilarity-based data, although

problems may arise from the different topologies - for example

spherical space is closed, whereas hyperbolic space is not.

Hyperbolic embeddings have also been explored by Shavitt

and Tankel, who have used the hyperbolic embedding as a

model of internet connectivity [28]. In other work, Robles-

Kelly and Hancock [24] show how to preprocess the available

dissimilarity data so that it conforms either to spherical or

hyperbolic geometry. In practice the former corresponds to a

scaling of the distance using a sine function, and the latter

scaling the data using a hyperbolic sine function.

Non-Euclidean data has recently been receiving increas-

ing attention. In particular, hyperspherical data has found

application in many diverse areas of computer vision and

pattern recognition. In the spectral analysis of materials,

spectra are commonly length-normalized and therefore exist

on a hypersphere. Similarly, it is common to use bag-of-

words descriptors in document analysis along with the cosine

distance, which is implicitly a spherical representation. In

computer vision, a wide range of problems involving prob-

ability density functions, dynamic time-warping and non-rigid

registration of curves can be cast in a form where the data is

embedded on a hypersphere [30]. In [33], Veeraraghavan et al

demonstrate the utility of modelling time-warping priors on a

sphere for activity recognition. Spherical embedding therefore

has a central role in many problems.

In this paper, we propose a number of novel extensions

to address the problem of embedding into spherical and

hyperbolic spaces. Firstly, we show how to find and appro-

priate radius of curvature for the manifold directly from the
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data. We then develop a method of embedding into these

spaces which, in contrast to other approaches, is not based on

optimization. Finally, we develop an optimization scheme to

refine the results which is specifically tailored to the problem

of constant-curvature embeddings and easily extends to any

number of dimensions in spherical or hyperbolic space.

III. INDEFINITE SPACES

We begin with the assumption that we have measured a set

of dissimilarities between all pairs of patterns in our dataset.

This information is represented by the matrix D, where Dij is

dissimilarity between the objects indexed by i and j. We can

define an equivalent set of similarities by using the matrix of

squared dissimilarities D′, where D′
ij = D2

ij . This is achieved

by identifying the similarities as − 1
2D

′ and centering the

resulting matrix:

S = −
1

2
(I−

1

n
J)D′(I−

1

n
J) (2)

Here J is the matrix of all-ones, and n is the number of objects.

In Euclidean space, this procedure gives the inner-product or

kernel matrix for the points.

If S is positive semi-definite, then the original dissimilarities

are Euclidean and we can use the kernel embedding to find

position-vectors xi for the points in Euclidean space; Let

the matrix X be the matrix of point-positions, such that the

position-vector xi of the ith point corresponds to the ith row

of X. Then we have

X = US

√

ΛS

where US and ΛS are the eigenvector and eigenvalue matrices

of S, respectively. In this case, the relationship between the

squared distance matrix and the kernel matrix is

D′
ij = Sii + Sjj − 2Sij (3)

This is precisely the procedure used in classical MDS.

If S is indefinite, which is often the case, then the objects

cannot exist in Euclidean space with the given dissimilarities

represented as Euclidean distances. In this case S is not a

kernel matrix. This does not necessarily mean the the dissim-

ilarities are non-metric; metricity is a separate issue which we

discuss below. One measure of the deviation from definiteness

which has proved useful is the negative eigenfraction(NEF)

[22] which measures the fractional weight of eigenvalues

which are negative:

NEF =

∑

λi<0 |λi|
∑

i |λi|
(4)

If NEF=0, then the data is Euclidean.

We can assess the non-metricity of the data by measuring

violations of metric properties. It is very rare to have an initial

distance measure which gives negative distance, so we will

assume than the dissimilarities are all positive. The two mea-

sures of interest are then the fraction of triples which violate

the triangle inequality (TV) and the degree of asymmetry of

the dissimilarities. The methods applied in this paper assume

symmetry - some of the data we have studied shows mild

asymmetry which is corrected before processing. We give

figures in the experimental section for triangle violations and

asymmetry.

One way to treat such non-Euclidean data is to correct it

before embedding. An example of this is to disregard the

negative eigenvalues present in S. We then obtain

S+ = USΛ+U
T
S (5)

where Λ+ is the eigenvalue matrix with negative eigenvalues

set to zero. Now S+ is a kernel matrix and we can find

the embedding in the standard way. We refer to this as the

kernel embedding of S to highlight its derivation from the

kernel matrix, but essentially this is identical to classical

multidimensional scaling.

Another alternative is to embed the non-Euclidean dissimi-

larity data in a non-Riemannian pseudo-Euclidean space [21],

[15]. This space uses the non-Euclidean inner product

< x,y >= xTMy, M =

(

Ip 0
0 −Iq

)

(6)

where Ia denotes the a × a identity matrix. The diagonal

values of −1 in M indicate dimensions corresponding to the

‘negative’ part of the space. The space has a signature (p, q)
with p positive dimensions and q negative dimensions. This

inner-product induces a norm, or distance measure:

|x|2 =< x,x >= xTMx =
∑

i+

x2i −
∑

i
−

x2i (7)

where i+ runs over the positive dimensions of the space, and

i− runs over the negative dimensions. We can then write the

similarity as

S = USΛ
1
2

S||MΛ
1
2

S||U
T
S (8)

and the pseudo-Euclidean embedding is

X = USΛ
1
2

S|| (9)

where ΛS|| indicates that we have take the absolute value of

the eigenvalues.

So the pseudo-Euclidean embedding reproduces precisely

the original distance and similarity matrices. However, while

the pseudo-Euclidean embedding reproduces the original dis-

tance matrix, it introduces a number of other problems. The

embedding space is non-metric and the squared-distance be-

tween pairs of points in the space can be negative. Locality

is not preserved in such a space, and geometric constructions

such as lines are difficult to define in a consistent way. The

space is more general than needed to represent the given

dissimilarities (as it allows negative squared-distances) and the

projection of new objects is ill defined. In order to overcome

these problems, we would like to embed the points in a space

with a metric distance measure which produces indefinite

similarity matrices; this means that the space must be curved.

IV. GEOMETRY OF CONSTANT-CURVATURE MANIFOLDS

A. Spherical Geometry

Spherical geometry is the geometry on the surface of a

hypersphere. The hypersphere can be straightforwardly em-

bedded in Euclidean space; for example the embedding of a
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sphere of radius r in three dimensions is well known:

x2 + y2 + z2 = r2

x = (r sinu sin v, r cosu sin v, r cos v)T (10)

The embedding of an (n − 1)-dimensional sphere in n-

dimensional space is a straightforward extension of this.
∑

i

x2i = r2 (11)

This surface is curved and has a constant sectional curvature

of K = 1/r2 everywhere.

The geodesic distance between two points in a curved space

is the length of the shortest curve lying in the space and joining

the two points. For a spherical space, the geodesic is a great

circle on the hypersphere. The distance is the length of the

arc of the great circle which joins the two points. If the angle

subtended by two points at the centre of the hypersphere is

θij , then the distance between them is

dij = rθij (12)

With the coordinate origin at the centre of the hypersphere,

we can represent a point by a position vector xi of length r.

Since the inner product is < xi,xj >= r2 cos θij we can also

write

dij = r cos−1(〈xi,xj〉 /r
2) (13)

The hypersphere is metric but not Euclidean. It is there-

fore a good candidate for representing points which produce

indefinite kernels.

B. Hyperbolic geometry

As we previously observed, the pseudo-Euclidean(pE) space

has been used to embed points derived from indefinite kernels.

The pE space is clearly non-Riemannian as points may have

negative distances to each other. However, it is still possible to

define a sub-space which is Riemannian. As an example, take

the 3D pE space with a single negative dimension (z) and the

‘sphere’ defined by

x2 + y2 − z2 = −r2

x = (r sinu sinh v, r cosu sinh v, r cosh v)T (14)

This space is called hyperbolic and is Riemannian. Distances

measured on the surface are metric, even though the embed-

ding pE space is non-Riemannian.

We can extend this hyperbolic space to more dimensions in

a straightforward way:
∑

i+

x2i − z2 = −r2 (15)

If there is more than one negative dimension, the surface

is no longer Riemannian. The hyperbolic space is therefore

restricted to any number of positive dimensions but just one

negative dimension. Finally, the sectional curvature of this

space, as with the hypersphere, is constant everywhere. In this

case, the curvature is negative and given by K = −1/r2.

For the hyperbolic space, the geodesic is the analogue of a

great circle. While the notion of angle in Euclidean space is

geometrically intuitive, it is less so in pE space. However, we

can define a notion of angle from the inner product. The inner

product is defined as

〈xi,xj〉 =
∑

k+

xikxjk − zizj (16)

= −|xi||xj | cosh θij . (17)

In four dimensions this is the familiar Minkowski inner prod-

uct with signature (+,+,+,−). This inner product defines

the notion of hyperbolic angle. From this angle, the distance

between two points in the space is dij = rθij . With the

coordinate origin at the centre of the hypersphere, we can

represent a point by a position vector xi of length r. Since

the inner product is 〈xi,xj〉 = −r2 cosh θij we can also write

dij = r cosh−1(−〈xi,xj〉 /r
2) (18)

V. EMBEDDING

A. Embedding in spherical space

Given a distance matrix D, we wish to find the set of

points on a hypersphere which produce the same distance

matrix. Since the curvature of the space is unknown, we must

additionally find the radius of the hypersphere. We have n
objects of interest, and therefore we would normally look for

an n-1 dimensional Euclidean space. Since we have freedom to

set the curvature, we must instead seek a (n− 2)-dimensional

spherical space embedded in the (n−1)-dimensional Euclidean

space.

We begin by constructing a space with the coordinate origin

at the centre of the hypersphere. If the point position-vectors

are given by xi, i = 1 . . . n, then we have

〈xi,xj〉 = r2 cos θij = r2 cos(dij/r) (19)

Next, we construct the matrix of point position-vectors X,

with each position-vector as a row. Then we have

XXT = Z (20)

where Zij = r2 cos(dij/r). Since the embedding space has

dimension n− 1, X consists of n points which lie in a space

of dimension n − 1 and Z should then be an n by n matrix

which is positive semi-definite with rank n−1. In other words,

Z should have a single zero eigenvalue, with the rest positive

[27]. We can use this observation to determine the radius

of curvature. Given a radius r and a distance matrix D, we

can construct Z(r) and find the smallest eigenvalue λ1. By

minimising the magnitude of this eigenvalue, we can find the

correct radius of the hypersphere.

r∗ = argmin
r

|λ1 [Z(r)] | (21)

In practice we locate the optimal radius via multisection

search. The search is lower-bounded by the fact that the

largest distance on the sphere is πr and therefore r ≥ dmin/π,

and upper-bounded by r ≤ 3dmin as the data is essentially

Euclidean for such large radius (this is discussed below in

more detail in Section V-B1). The smallest eigenvalue can

be determined efficiently using the power method without

the expense of performing the full eigendecompositon. After
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the radius is determined, the embedding positions may be

determined using the full eigendecomposition:

Z(r∗) = UZΛZU
T
Z (22)

X = UZΛ
1
2

Z (23)

This procedure can also be used to locate a subspace

embedding with dimension less than n − 1. If we wish to

find an embedding space of dimension m, then we can try

to minimise the remaining n − m eigenvalues by finding

r∗ = argminr
∑

i≤n−m |λi [Z(r)] |.
If the points truly lie on a hypersphere, then this procedure

is sufficient to correctly locate them. However, in general this

is not the case. The optimal smallest eigenvalue λ1 will be

less than zero, and there will be residual negative eigenvalues.

The embedding is then onto a ‘hypersphere’ of radius r, but

embedded in a pseudo-Euclidean space. In order to obtain

points on the hypersphere, we must correct the recovered

points. The magnitude of the residual negative eigenvalues can

be used to gauge how well the data conforms to spherical

geometry; a small residual indicates the data is close to

spherical.

The traditional method in kernel embedding is to discard

the negative eigenvalues. Unfortunately, this will not suffice

since this will change the length of the vectors and therefore

the points will no longer lie on the hypersphere (constraint

11 will be violated). Although we can subsequently project

the points back onto the hypersphere, in many cases this

procedure proves unsatisfactory. In the next section we present

an analysis of this problem and propose a solution.

B. Approximation of the points in spherical space

For a general set of dissimilarities, the points do not lie

on a hypersphere, and their positions require correction to

place them on the manifold. The conventional correction for

a kernel embedding is to drop the negative eigenvalues with

the corresponding dimensions. We show in the next section

that this process is only justified for the spherical embedding

in the case of a large radius of curvature. For more highly

curved spaces, we propose a different approximation.

1) Limits of large radius: When the radius of curvature is

large, clearly the manifold is nearly flat, and we might hope

to recover the standard kernel embedding of the data. In fact

we can write

Z = r2 cos(D/r) ≃ r2J−
1

2
D′ (r >> 1) (24)

As before, J is the matrix of all-ones. The squared distance

matrix D′ is related to the kernel matrix by

D′ = 2K′ − 2K (25)

where K ′
ij = (Kii +Kjj)/2 is constructed from the diagonal

elements of the kernel (Eqn 3), giving

Z ≃ r2J+K−K′ (26)

Since K is small compared to r2J we can use degenerate

eigenperturbation theory to show that Z and K have the same

eigenvectors and eigenvalues. The exception is the leading

eigenvalue of Z, which is λ0 = nr2 − Tr(K), but the

corresponding eigenvalue is zero for K. As a result, we recover

the kernel embedding for large r. This motivates us to use

the standard approach of neglecting negative eigenvalues when

embeddings onto the hypersphere with large radius(r >> 1).

As the resulting points no longer lie on the hypersphere, the

final step is to renormalise the lengths of the position vectors

to r.

2) Small radius approximation: We pose the problem as

follows: The task is to find a point-position matrix X on the

spherical manifold which minimises the Frobenius distance to

the Euclidean-equivalent matrix Z. Given the manifold radius

r, determined by the method in the previous section, we begin

with the normalised matrix Ẑ = Z/r2. The problem is then

min
X

|XXT − Ẑ|

xT
i xi = 1 (27)

This can be simplified in the usual way by observing that

the Frobenius norm is invariant under an orthogonal similarity

transform. Given Ẑ = UΛUT , we apply the matrix U as

an orthogonal similarity transform to obtain the equivalent

minimisation problem

min
X

|UTXXTU−Λ| (28)

which has then solution X = UB where B is some diagonal

matrix. The minimisation problem then becomes.

min
B

|B2 −Λ| (29)

Of course, B2 = Λ is an exact solution if all the eigen-

values are non-negative, and this is the case if the points

lie precisely on a hypersphere. In the general case, there

will be negative eigenvalues and we must find a minimum

of the constrained optimisation problem. In the constrained

setting, we are no longer guaranteed that B should be a

diagonal matrix. Nevertheless, here we make the simplifying

approximation that we can find a diagonal matrix which gives

a suitable approximate solution. This will be true if the points

lie close to a hypersphere.

Let b be the vector of squared diagonal elements of B, i.e.

bi = B2
ii, and λ be the vector of eigenvalues. Finally Us is

the matrix of squared elements of U, Usij = U2
ij . Then we

can write the constrained minimisation problem as

min
b

(b− λ)T (b− λ) (30)

bi > 0 ∀i (31)

Usb = 1 (32)

While this is a quadratic problem, which can be solved

by quadratic programming, the solution actually has a simple

form which can be found by noting that the matrix Us should

have rank n − 1 and hence one singular value equal to

zero. To proceed we make the following observations: The

vector of eigenvalues λ is an unconstrained minimiser of this

problem, i.e. b = λ minimises the Frobenius norm (and

satisfies constraint (32)), but not constraint (31). Secondly,

b = 1 satisfies both constraints since
∑

i U
2
ij = 1 (as U

is orthogonal). These observations, together with the fact that
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Us is rank n−1, means that the general solution to the second

constraint is

b = 1+ α(λ− 1) (33)

It only remains then to find the value of α which satisfies

constraint (31) and minimises the criterion. Since the criterion

is quadratic, the solution is simply given by the largest value

of α for which constraint (31) is satisfied. Given the optimal

value α∗ we can find b∗ and

X∗ = UB∗ (34)

C. Embedding in Hyperbolic space

In hyperbolic space, we have

〈xi,xj〉 = −r2 cosh θij = −r2 cosh(dij/r) (35)

with the inner product defined by Eqn 6. Constructing Z as

before, we get

XMXT = Z (36)

Again we have an embedding space of dimension n − 1,

but Z is no longer positive semi-definite. In fact, Z should

have precisely one negative eigenvalue (since the hyperbolic

space has just one negative dimension) and again a single

zero eigenvalue. We must now minimise the magnitude of the

second smallest eigenvalue to find the radius:

r∗ = argmin
r

|λ2 [Z(r)] | (37)

The embedded point positions are now given by

X = UZΛ
1
2

Z|| (38)

As with the spherical embedding, in general the points do

not lie on the embedding manifold and there will be resid-

ual negative eigenvalues, beyond the single allowed negative

eigenvalue.

D. Approximation of the points in hyperbolic space

A similar procedure to that used for the spherical space may

also applied for hyperbolic space, but the optimisation problem

is modified by the indefinite inner product. As with the spheri-

cal embedding, we may drop residual negative eigenvalues for

large r. For small radius, the equivalent analysis is as follows.

The matrix M is defined by Eqn. (6), with q = 1.

min
X

|XMXT − Ẑ|

xT
i Mxi = −1 (39)

As before, we apply the orthogonal similarity transform given

by U, where Ẑ = UΛUT to obtain the equivalent minimisa-

tion problem

min
X

|UTXMXTU−Λ| (40)

which has a solution X = UB where D is some diagonal

matrix, giving the minimisation

min
B

|BMB−Λ| (41)

Now we have a vector of diagonal elements given by

bi = (BMB)ii. Exactly one of the bi’s must be negative

(the one corresponding to the most negative element of λ).

Let bn be the component of b corresponding to the negative

dimension. Finally, we then obtain a new constrained quadratic

minimisation problem of

min
b

(b− λ)T (b− λ) (42)

bn < 0

bi > 0, ∀i 6= n (43)

Usb = −1 (44)

The value of b = λ is global minimiser which satisfies

constraint (44) and a second solution of the constraint is given

by b = −1. We must therefore find the optimal value for α
in the solution

b = −1+ α(λ+ 1) (45)

The solution is more complicated than in the spherical case,

due to the constraint bn < 0. This means that it is possible

that there is no solution (a case which is easily detected). If

a solution exists, the optimal point will lie on one of the two

boundaries of the feasible region. Given the optimal solution

of α∗, we get b∗ and X∗ = UB∗.

If there is not a feasible solution, this means that we cannot

find a set of eigenvalues for the inner-product matrix Z∗ which

both satisfy the conditions that only one is negative and that

have unit length. We must abandon one of these properties -

in this case we return to our standard procedure of neglecting

negative eigenvalues.

VI. OPTIMISATION

The methods above provide the correct embeddings when

the points lie exactly on the surface of a constant-curvature

manifold, and a good approximation for points nearly on the

manifold. Although the embeddings become unsatisfactory for

larger approximations, they still provide a good initialisation

for optimisation-based approaches. In this section, we develop

an optimisation procedure based on the properties of the

manifold. This method involves the greedy optimisation of

a distance error function (essentially a stress-like measure).

We apply the exponential map to transfer the optimisation to

the tangent space where the updates are much more straight-

forward. This allows the method to extend elegantly to any

number of dimensions. Under this map, the tangent space and

manifold are locally isomorphic and so the computed gradients

are the same and local minima of the error on the manifold

are also local minima in the tangent space.

A. The Exponential Map

Non-Euclidean geometry can involve demanding calcula-

tions, and many problems are intractable on general Rie-

mannian manifolds. However, by choosing a simple non-

Euclidean manifold such as the hypersphere, we can hope to

simplify problems such as embedding. To do so, we require

one important tool of Riemannian geometry, which is the

exponential map. The exponential map has previous found use

in the statistical analysis of data on manifolds, for example

in Principal Geodesic Analysis [13] and in the analysis of

diffusion tensor data [23].
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The exponential map is a map from points on the manifold

to points on a tangent space of the manifold. The map has

an origin, which defines the point at which we construct the

tangent space of the manifold. The map has an important prop-

erty which simplifies geometric computations; the geodesic

distance between the origin of the map and a point on the

manifold is the same as the Euclidean distance between the

projections of the two points on the tangent space. As the

tangent space is a Euclidean space, we can compute various

geometric and statistical quantities in the tangent space in the

standard way. Formally, the definition of these properties as

follows: Let TM be the tangent space at some point M on the

manifold, P be a point on the manifold and X be a point on

the tangent space. We have

X = LogMP (46)

P = ExpMX (47)

dg(P,M) = de(X,M) (48)

where dg(., .) denotes the geodesic distance between the points

on the manifold, and de(., .) is the Euclidean distance between

the points on the tangent space.

The Log and Exp notation defines a log-map from the

manifold to the tangent space and an exp-map from the tangent

space to the manifold. This is a formal notation and does not

imply the familiar log and exp functions. Although they do

coincide for some types of data, they are not the same for the

spherical space. The origin of the map M and is mapped onto

the origin of the tangent space.

For the spherical manifold, the exponential map is as

follows. We represent a point P on our manifold as a position

vector p with fixed length |p| = r (the origin is at the centre

of the hypersphere). Similarly, the point M (corresponding to

the the origin of the map) is represented by the vector m. The

maps are then

x =
θ

sin θ
(p−m cos θ) (49)

p = m cos θ +
sin θ

θ
x (50)

dg(P,M) = rθ = |x| = de(X,M) (51)

where θ = cos−1
(

〈p,m〉/r2
)

. The vector x is the image of

P in the tangent space, and the image of M is at the origin

of the tangent space.

For the hyperbolic manifold, the exponential map simply

becomes

x =
θ

sinh θ
(p−m cosh θ) (52)

p = m cosh θ +
sinh θ

θ
x (53)

where θ = cosh−1
(

〈p,m〉/r2
)

. The required lengths and

inner-products are calculated in the pseudo-Euclidean space

(section IV-B).

B. Spherical Optimisation

Given a dissimilarity matrix D, we want to find the embed-

ding of a set of points on the surface of a hypersphere of radius

r, such that the geodesic distances are as similar as possible

to D. Unfortunately, this is a difficult problem and requires

an approximate optimisation-based approach. We simplify the

problem by considering an incremental approach using just the

distances to a single point at a time. Let the point of interest

be pi; we then want to find a new position for this point on the

hypersphere such that the geodesic distance to point j is d∗ij
where ∗ denotes that this is the target distance. We formulate

the estimation of position as a least-squares problem which

minimises the square error

E =
∑

j 6=i

(d2ij − d∗2ij )
2 (54)

where dij is the actual distance between the points. Direct

optimisation on the sphere is complicated by the need to

restrict points to the manifold. However, as we are considering

a single point at a time, we can construct a linear embedding

onto tangent space using the log-map and then optimise the

positions in the Euclidean tangent space. If the current point-

positions on the hypersphere are pj , ∀j, we can use the log-

map to obtain point-positions xj for each object j in the

tangent space as follows:

xj =
θij

sin θij
(pj − pi cos θij) (55)

with xi = 0.

We have found standard optimisation schemes to be infea-

sible on larger datasets, so here we propose a gradient descent

scheme with optimal step-size determined by line-search. In

this iterative scheme, we update the position of the point xi

in the tangent space so as to obtain a better fit to the given

distances. At iteration k, the point is at position x
(k)
i . Initially,

the point is at the origin, so x
(0)
i = 0. Since the points lie in

tangent space, which is Euclidean, we then have

d2ij = (xj − xi)
T (xj − xi) (56)

The gradient of the square-error function (Eqn. 54) is

∇E = 4
∑

j 6=i

(d2ij − d∗2ij )(xi − xj) (57)

and our iterative update procedure is

x
(k+1)
i = x

(k)
i + η∇E (58)

Finally, we can determine the optimal step size as follows:

let ∆j = d2ij −d
∗2
ij and αj = ∇ET (xi−xj), then the optimal

step size is the smallest root of the cubic

n|∇E|4η3 + 3|∇E|2(
∑

j

αj)η
2

+(2
∑

j α
2
j + |∇E|2

∑

j ∆j)η +
∑

j αj∆j (59)

After finding a new point position xi, we apply the exp-map

to locate the new point position on the spherical manifold.

p′
i = pi cos θ +

sin θ

θ
xi (60)

The optimisation proceeds on a point-by-point basis until a

stationary point of the squared-error E is reached.



8

C. Hyperbolic Optimisation

Optimisation on the hyperbolic manifold proceeds in a very

similar way. However, in the hyperbolic case, we need to use

the hyperbolic exponential map

xj =
θij

sinh θij
(pj − pi cosh θij) (61)

with xi = 0. and bear in mind the inner product is modified

by the pseudo-Euclidean embedding space. As a result, the

squared distance is

d2ij = (xj − xi)
TM(xj − xi) (62)

The gradient of the square-error function (Eqn. 54) is therefore

∇E = 4
∑

j 6=i

(d2ij − d∗2ij )M(xi − xj) (63)

which gives αj = ∇ETM(xi−xj). Additionally, the squared

length of the gradient is |∇E|2 = ∇ETM∇E. With these

ingredients, Equation (59) can be used without change to

determine the optimal step size.

VII. EXPERIMENTS

We investigate the efficacy of constant curvature embed-

dings using a variety of datasets including synthetic and real-

world distances. Since scaling distances by a constant factor

does not alter the geometry of the points, we first rescale the

distance matrix so that the mean distance between points is

1. By doing this, we ensure that radii and distance errors are

directly comparable between different datasets.

Our baseline comparison is with the kernel embedding (or

classical MDS). For Euclidean distances, where the similar-

ity matrix is positive semidefinite, this embedding is exact.

For non-Euclidean distances, this is given by kernalising the

similarity matrix (by eliminating negative eigenvalues):

S = USΛUT
S

XK = USΛ
1/2
+ (64)

For experiments involving the surface of a sphere (S2) we also

compare our results to the spherical embedding method of Elad

et al [12], which typifies the stress-minimising approach.

We use two measures of distortion for the embedded points.

The first is the RMS difference between the distance matrix

and the distances between the embedded points (in the embed-

ding space). This measures the overall distortion introduced by

the embedding and is a standard measurement. We have found

in practice that although the RMS error measures embedding

distortion, it does not reveal everything about the quality of

the embedding for certain tasks such as classification and

clustering. This is because there could be a local distortion

which alters the local position of points close to each other,

but which is small when measured over the whole space. This

is essentially the motivation behind Locally Linear Embedding

(LLE) [25] which embeds each local neighborhood in a linear

space.

Since local configuration is important in some applications

we have also used a measure of the change in neighbourhood

order. This is achieved first choosing a central point and then

ordering the points by distance away from the center and

measuring the distortion in the ranked list using Spearman’s

rank correlation coefficient ρ. The structural error is 1 − ρ.

This measure is then averaged over the choice of all points as

the central point to obtain a structural error measure. This is

zero if there is no changing is the distance-ranking of points,

and one if the order is completely reversed.

A. Texture mapping

Fig. 1. Texture mapping of the sphere. Top: using our method, middle: the
method of Elad et al, and bottom: kernel embedding. Both spherical methods
produce virtually perfect embeddings, whereas the expected distortion is
evident in the kernel embedding.

As an initial evaluation and comparison to the literature,

we begin with a set of texture mapping experiments, similar

to those conducted by Elad et al [12]. which involve a

triangulated mesh describing the 3D surface of an object.

Such mappings have been used by Bronstein et al [4] for

representing face textures in a way that is more robust to

expression changes. We then compute the geodesic distances

across the mesh [20]. These distances between the vertices

form the starting point for our algorithm. We then ‘unwrap’

the geodesic distances onto a two dimensional surface; the
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Points Radius RMS err Struct. err Time

Our method 642 1.00 0.0030 9× 10
−6 7.2s

Elad et al - 0.0029 3× 10
−5 26.9s

Kernel - 0.39 1× 10
−5 0.8s

TABLE I
THE PERFORMANCE OF EMBEDDING METHODS ON THE SPHERE

TEXTURING PROBLEM.

Points Radius RMS err Struct. err Time

Our method 1016 0.78 0.21 0.11 31s
Elad et al - 0.21 0.11 206s
Kernel - 0.24 0.14 4.3s

TABLE II
THE PERFORMANCE OF EMBEDDING METHODS ON THE STANFORD BUNNY

TEXTURING PROBLEM.

sphere S2 for the spherical embeddings and the plane R2 for

the kernel embedding. This embedding is used to map a texture

back onto the surface of the object. The texture is defined on

the surface of a sphere for the spherical embeddings and on

the plane for kernel embedding. For visualization purposes

only, we subdivide the mesh after embedding to enable us

to view the texture in high resolution. Any distortions in the

embedding are revealed as distortions in the surface texture

map.

The first model is a simple test case of the sphere. Figure

1 shows the results of texture-mapping the surface with a

triangular texture. These results are summarized in Table

I. Both spherical embedding methods produce near-perfect

embeddings of the surface. Since our method is not based

on optimization, it is considerably quicker than the method

of Elad et al [12]. However, these times are only indicative

as neither algorithm was optimized for speed1. While the

kernel method is much quicker, there is naturally considerable

distortion in mapping the sphere to a plane.

The second model is the Stanford bunny. This model is

subsampled to 1016 vertices and 2000 faces. The embedding

results are shown in Figure 2 and Table II. Again, the spherical

embedding methods produce very similar results. However,

our method finds a radius of curvature of 0.78 which is

considerably different from 1. Note the distortion of the texture

around the ears for the kernel methods, which is not present

in the other methods.

B. Embedding Time-Warping Functions

We now turn our attention to a computer vision problem

to assess the ability of our spherical embedding method to

discover low-dimensional embeddings. As we discussed in

Section II, there are a wide range of problems where data

exists on a spherical manifold. Examples include document

analysis, comparison of spectra, histogram distances and time-

warping functions. Here we take an example from Veeraragha-

van et al [33] based on sets of time-warping functions γ(t).

1The methods were implemented in Matlab on a Intel Core2 Duo 3GHz
machine
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Fig. 3. The two classes and distributions of time-warp functions.

Under the reparameterisation ψ(t) =
√

γ̇(t) the square-root

density form lies on a hypersphere of dimension equal to

the number of time-samples of ψ(t). Veeraraghavan et al

demonstrate the advantage of modelling the prior distributions

on a hypersphere.

We generate some time-warping functions in two classes.

Each class also has one free parameter which we vary to

generate different examples, and a small amount of uniform

noise on the class parameters. We sample 50 points from each

time warping function γ(t) and re-parameterize it into the form

ψ(t). The data therefore lies on a 50-dimensional hypersphere,

but the underlying structure is approximately two-dimensional.

Samples of the time-warping functions for the two classes are

shown in Figure 3.

Using spherical embedding we can recover a two-

dimensional embedding of the points. We begin by computing

a distance matrix for the points and rescaling so that the mean

distance is one. This step is not strictly necessary for this

problem as we can directly compute the matrix Z, but we use

this method for consistency with the other experiments. Using

the embedding procedure described in Section V, we recover a

2-dimensional spherical embedding as expected. This is shown

in Figure 4 and clearly shows the structure of the data. The

embedding radius is r = 1.96, the RMS embedding error is

4× 10−3 and the structural error is 10−4, illustrating that the

method accurately recovers the low-dimensional embedding.

C. Robustness to Noise

We now turn our attention to more challenging problems,

where the embedding manifold is more than two-dimensional

and noise and distortions are present. The methods based on

spherical-polar coordinates are difficult to use in this situation

[12], [7] as it becomes increasingly complex to model the

coordinate system in a larger number of dimensions. Although

our method finds the embedding exactly when the points

lie on the hypothesised surface, in realistic situations there

is invariably noise in the measurements. In order to assess

the performance of our methods on noisy data, we generate

synthetic data with controlled levels of noise as follows. We

begin by generating points on the surface of a sphere (or

hyperboloid). In this experiment the sphere is embedded in

50-dimensional space and 50 points are generated. We then

construct the distance matrix for the points using the geodesic

distance on the sphere. These distances are then perturbed by

chi-squared noise on the squared distances of varying amounts;

this preserves the positivity of the distances, which would
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Fig. 2. Texture mapping of the Stanford bunny. Left: using our method, middle: the method of Elad et al, and right: kernel embedding. The spherical
embeddings produce similar results. Note the distortion around the ears in the kernel embedding.
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Fig. 4. Spherical embedding of the time-warp functions in two dimension,
when encoded in square-root density form.

not be true of Gaussian noise. The same noise is applied

symmetrically to D to maintain symmetry of the distances. We

finally apply our embedding methods to the noisy distances.

The results are shown in Figure 5 for the spherical space and

Figure 6 for the hyperbolic space. The errors are computed

between the noisy distance matrix and its embedding (i.e.

they are the errors cause by the embedding process only).

For comparison, we include the difference between the noisy

distance matrix and the original(with no noise).

It is clear from Figure 5 that the spherical embedding is

effective even in the presence of large amounts of noise. At

all noise levels, the distortion of the spherical embedding is

less than that caused by the kernel embedding. The spherical

embedding also shows a remarkable ability to preserve the

neighborhood order (structural error). This is also apparent,

although to a lesser extent, in real-world datasets (section

VII-D. Optimization of the spherical embedding produces

good embedding results but increases the structural error

significantly.

The hyperbolic embedding (Figure 6) is affected more

significantly by noise - the performance is good for low noise

levels but at moderate to high noise the errors are similar

to that of the kernel embedding. Optimization does give a

significant improvement in embedding accuracy. It appears to

be more difficult to accurately locate the correct radius of

curvature for the hyperbolic space in the presence of noise.

D. Dissimilarity-based datasets

Finally, we use some data from a selection of similarity-

based pattern recognition problems [22], [1], [34], [18]. These

are a subset of the data analyzed under the SIMBAD project

(simbad-fp7.eu), and more details of the datasets are available

in the relevant project report [11]. They are selected on the

basis that they have small radius-of-curvature under the spheri-

cal model, and therefore are significantly non-Euclidean under

those models. The data is based on classification problems, and

so as well as showing measurements of distortion, we also

calculate the k-nearest-neighbour classification error rate. We

choose this classifier as it can be operated in both Euclidean

and non-Euclidean spaces as it uses only dissimilarity data.

Information about the datasets is given in Table III. Here we

provide a brief description of each data set.

DelftGestures: This dataset consists of the dissimilarities

computed from a set of gestures in a sign-language study. They

are measured by two video cameras observing the positions

the two hands in 75 repetitions of 20 different signs. The

dissimilarities result from a dynamic time warping procedure

[18].

FlowCyto-1: This dissimilarity dataset is based on 612 FL3-

A DNA flowcytometer histograms from breast cancer tissues

in 256-bin resolution. The initial data were acquired by M.

Nap and N. van Rodijnen of the Atrium Medical Center
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Fig. 5. Reconstruction of noisy distances via a range of different embedding
methods.

in Heerlen, The Netherlands, during 2000-2004. Histograms

are labeled in 3 classes: aneu- ploid (335 patients), diploid

(131) and tetraploid (146). Dissimilarities between normalized

histograms are computed using the L1 norm, correcting for

possible different calibration factors.

Chickenpieces-25-45: This is one of the chickenpieces

dissimilarity matrices as made available by Bunke et.al. [5]

Every entry is a weighted string edit distance between two

strings representing the contours of 2D blobs. Contours are

approximated by vectors of length 25. Angles between vectors

are used as replacement costs. The costs for insertion and

deletion are 45.

Catcortex: The cat-cortex data set is provided as a 65x65

dissimilarity matrix describing the connection strengths be-

tween 65 cortical areas of a cat from four regions (classes):

auditory (A), frontolimbic (F), somatosensory (S) and visual

(V). The data was collected by Scannell et al [26]. The

dissimilarity values are measured on an ordinal scale.
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Fig. 6. Reconstruction of noisy distances via a range of different embedding
methods.

CoilYork: These distances represent the approximate graph

edit distances between a set of graphs derived from views of

four objects in the COIL image database. The graphs are the

Delaunay graphs created from the corner feature points in the

images [35]. The distances are computed with the graduated

assignment method of Gold and Rangarajan [14].

Newsgroups: This is a small part of the commonly used 20

Newsgroups data. A non-metric correlation measure for mes-

sages from four classes of newsgroups, ’comp.*’, ’rec.*’,’sci.*’

and ’talk.*’ are computed on the occurrence for 100 words

across 16242 postings.

In a realistic scenario for such data, we might use a manifold

learning technique to embed the data into a small number of

dimensions. Here we use 10 embedding dimensions for all

our techniques. We compare the spherical embedding (with

and without optimization) to kernel embedding, ISOMAP [31]

and Laplacian Eigenmaps [2]. As well as the RMS embedding

error and structural error as described earlier, we also include

the k-NN leave-one-out cross-validation error for these classi-

fication problems. This is computed from the distances in the



12

Data (size) Radius RMS Err Struct. Err kNN Erate%(k) Optimal NG

DelftGestures spherical 0.661 0.102 0.051 8.5(5)± 0.7 –
(1500) optimized 0.745 0.078 0.030 8.7(5)± 0.7 –

kernel – 0.088 0.028 7.5(3)± 0.7 –
ISOMAP – 0.088 0.031 9.9(20)± 0.8 1320

Lap. Eigenmap – – 0.474 25(5)± 1.1 526

FlowCyto-1 spherical 0.847 0.085 0.031 33.0(28)± 1.9 –
(612) optimized 0.865 0.079 0.033 32.1(12)± 1.9 –

kernel – 0.156 0.054 32.0(11)± 1.9 –
ISOMAP – 0.089 0.032 31.8(13)± 1.9 600

Lap. Eigenmap – – 0.262 33.8(79)± 1.9 235

Chickenpieces-25-45 spherical 0.749 0.160 0.074 4.0(4)± 0.9 –
(446) optimized 0.792 0.117 0.073 3.8(1)± 0.9 –

kernel – 0.206 0.085 4.5(5)± 1.0 –
ISOMAP – 0.162 0.075 4.9(3)± 1.0 275

Lap. Eigenmap – – 0.413 14(3)± 1.6 189

Catcortex spherical 0.365 0.458 0.350 5.1(3)± 2.7 –
(65) optimized 0.702 0.128 0.245 3.1(8)± 2.1 –

kernel – 0.163 0.318 4.6(5)± 2.6 –
ISOMAP – 0.156 0.318 6.2(2)± 3.0 53

Lap. Eigenmap – – 0.411 18.5(7)± 4.8 20

CoilYork spherical 0.802 0.240 0.138 32.0(7)± 2.7 –
(288) optimized 0.900 0.146 0.163 36.8(8)± 2.8 –

kernel – 0.331 0.158 36.9(18)± 2.8 –
ISOMAP – 0.194 0.196 44.7(6)± 2.9 166

Lap. Eigenmap – – 0.531 44.3(9)± 2.9 128

Newsgroups spherical 0.331 0.503 0.633 20.8(35)± 1.7 –
(288) optimized 0.622 0.230 0.628 25.2(76)± 1.8 –

kernel – 0.474 0.663 26.0(31)± 1.8 –
ISOMAP – 0.243 0.571 21.9(3)± 1.7 130

Lap. Eigenmap – – 0.580 30.3(13)± 1.9 68

TABLE IV
SPHERICAL EMBEDDINGS OF SOME SIMILARITY-BASED DATASETS, COMPARED TO THE KERNEL EMBEDDING.

Dataset Size C NEF Asym TVF kNN(k)

DelftGestures 1500 20 0.308 0 4× 10
−6 3.1(29)

FlowCyto-1 612 3 0.275 0 1× 10
−3 32(30)

Chicken 446 5 0.320 0.063 2× 10
−5 4.3(3)

Catcortex 65 4 0.208 0 1× 10
−3 9(61)

CoilYork 288 4 0.027 0 0 23(13)

Newsgroups 600 4 0.202 0 2× 10
−5 22(1)

TABLE III
DATASETS USED IN THE SIMILARITY BASED EXPERIMENTS. SEE TEXT FOR

MORE DETAILS

embedding space. In all cases we choose k to achieve the best

classification performance. There is an uncertainty associated

with the LOO error-rate due to the limited number of testing

samples, which is given as one standard deviation errors in

the table.

Firstly we note that the kernel embedding has no free

parameters. Spherical embedding has one parameter, the ra-

dius, which is determined from the data as discussed earlier.

ISOMAP and Laplacian Eigenmap also have a free parameter,

the order of the nearest-neighbor graph to use. For ISOMAP,

we choose this parameter to achieve the lowest RMS embed-

ding error. Laplacian Eigenmap is not a distance preserving

embedding, and so it does not make sense to compare the

RMS embedding errors. For LEM, we choose the graph order

to minimize the structural error.

The results are summarized in Table IV. The values are

shown in bold for the best result. The goal of the spherical

embedding is to minimise the embedding error of the points

and we can see that in every case the optimized spheri-

cal embedding achieves the lowest RMS embedding error.

The spherical embedding (either optimized or unoptimized)

achieves the lowest structural error in four out of the six

cases. The exceptions is the DelftGestures data where kernel

embedding is best, but very similar to optimized spherical

embedding (0.028 vs. 0.030) and the Newsgroups data, where

LEM performs better. The classification rates are best with

spherical embedding again in 4 out of 6 cases, the exceptions

being FlowCyto-1 where the results are all very similar, and

DelftGestures where kernel embedding performs particularly

well.

E. Hyperbolic Embedding of Trees

We also analyzed our similarity-based datasets (discussed in

the previous section) for hyperbolic-like examples by looking

for those with significant curvatures under the hyperbolic

model. When embedding in 10 dimensions, there were no such

examples. We believe that this is because hyperbolic space is

unbounded and the volume available increases exponentially,

as opposed to polynomially for Euclidean and spherical space.

Since (dis)similarities are usually bounded, the spherical space

is a more natural setting. However, hierarchical data such

as trees and complex networks may naturally be embedded

in hyperbolic spaces [8] when the number of elements at

each level of the hierarchy increases exponentially. From
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b(size) Radius RMS Err Str. Err Opt. NG

2(63) hyperbolic 0.998 0.0146 0.037 –
optimized 0.989 0.0041 0.012 –
kernel – 0.0581 0.032 –
ISOMAP – 0.0581 0.032 350
LapE – – 0.343 28

3(364) hyperbolic 0.657 0.0033 0.049 –
optimized 0.656 0.0010 0.049 –
kernel – 0.0354 0.050 –
ISOMAP – 0.0354 0.050 350
LapE – – 0.514 202

4(1365) hyperbolic 0.441 0.0032 0.097 –
optimized 0.441 0.0005 0.097 –
kernel – 0.0244 0.097 –
ISOMAP – 0.0244 0.097 1300
LapE – – 0.555 400

TABLE V
EMBEDDINGS OF TREES WITH DEPTH 5 AND VARIOUS BRANCHING

FACTORS.

the embedding method in Krioukov et al [8] we can derive

a simple distance heuristic for the nodes of a tree which

approximates the hyperbolic disk model.

We take a tree with branching factor b and place the root

node at the centre of the disk. The depth in the tree of node

i is ri. We define the angular distance between nodes i and j
as

∆θij =

{

π
4 b

−
ri+rj−pij

2 If i, j are directly related
2π(b+1)

3b b−
ri+rj−pij

2 If i, j otherwise

These distances are the expected angular separations of the

nodes. The hyperbolic distance dij between nodes is then

cosh(dij ln b) = cosh(ri ln b) + cosh(rj ln b)

− sinh(ri ln b) sinh(rj ln b) cos∆θij

Armed with these distances, we can use hyperbolic em-

bedding to recover an embedding of the tree. The results

are summarized in Table V for trees of depth 5 and varying

branching factors. In all cases, the hyperbolic embedding

gives excellent embeddings with low distortion and close to

the theoretical curvature ∝ ln b. Optimization gives near-

perfect embeddings in terms of the RMS error which are not

achievable by the other methods.

VIII. CONCLUSION

Spaces of constant-curvature offer a useful alternative for

the embedding of non-Euclidean datasets. This allows intrin-

sically non-flat geometry between objects and may be a better

description for many datasets.

In this paper we have presented efficient methods of em-

bedding points into spherical and hyperbolic spaces using

their distance matrices. This simple method is based on the

eigendecomposition of a similarity matrix which determines

the curvature, followed by a correction to project into constant-

curvature space. We also developed an optimization procedure

for improving the accuracy of the embedding for more difficult

datasets which utilized the exponential map to transform the

problem into an optimization in tangent space.

Our results on synthetic and real data show that the spherical

embedding performs well under noisy conditions and can de-

liver low-distortion embeddings for a wide variety of datasets.

Hyperbolic-like data seems to be much less common (at least

in our datasets) and is more difficult to accurately embed.

Nevertheless, in low-noise cases the hyperbolic space can also

be used to accurately embed non-Euclidean dissimilarity data.

In all the data tested here (with significant non-Euclidean

behaviour) the spherical embedding delivers the lowest RMS

distortion error.

While accurate embedding is our goal here, it is natural to

want to apply pattern recognition techniques to the embedded

data. In most cases, the spherical embeddings give a competi-

tive kNN classification error rate. However, the key advantage

of these spaces is that they are metric, and so it should be

possible to apply geometric techniques (such as LDA or the

SVM) in these spaces. However, many methods currently rely,

either explicitly or implicitly, on an underlying kernel space

which is Euclidean. We believe that much more work needs to

be done in the future on applying such techniques in non-flat

spaces.
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