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RESEARCH ARTICLE Open Access

The statistical interpretation of pilot trials: should
significance thresholds be reconsidered?
Ellen C Lee†, Amy L Whitehead†, Richard M Jacques† and Steven A Julious*†

Abstract

Background: In an evaluation of a new health technology, a pilot trial may be undertaken prior to a trial that

makes a definitive assessment of benefit. The objective of pilot studies is to provide sufficient evidence that a larger

definitive trial can be undertaken and, at times, to provide a preliminary assessment of benefit.

Methods: We describe significance thresholds, confidence intervals and surrogate markers in the context of pilot

studies and how Bayesian methods can be used in pilot trials. We use a worked example to illustrate the issues raised.

Results: We show how significance levels other than the traditional 5% should be considered to provide preliminary

evidence for efficacy and how estimation and confidence intervals should be the focus to provide an estimated range

of possible treatment effects. We also illustrate how Bayesian methods could also assist in the early assessment of a

health technology.

Conclusions: We recommend that in pilot trials the focus should be on descriptive statistics and estimation, using

confidence intervals, rather than formal hypothesis testing and that confidence intervals other than 95% confidence

intervals, such as 85% or 75%, be used for the estimation. The confidence interval should then be interpreted with

regards to the minimum clinically important difference. We also recommend that Bayesian methods be used to assist

in the interpretation of pilot trials. Surrogate endpoints can also be used in pilot trials but they must reliably predict the

overall effect on the clinical outcome.

Keywords: Pilot trial, Power, Type I error, Confidence interval, Significance, Bayesian methods

Background
In an evaluation of a new health technology, a pilot trial

may be undertaken prior to a definitive trial that makes

a definitive assessment of benefit. The main objective of

a pilot trial is to provide sufficient assurance to enable a

larger definitive trial to be undertaken. For example, they

may assess aspects such as recruitment rates or whether

the technologies can be implemented.

Pilot studies are more about learning than confirming:

they are not designed to formally assess evidence of

benefit. As such, for clinical endpoints, rather than for-

mal hypothesis testing to prove definitively there is a re-

sponse, it is usually more informative to provide an

estimate of the range of possible responses [1,2]. This es-

timation may not be around the primary endpoint for

the definitive study but could be on a surrogate or an

early assessment of an endpoint which may be assessed

at a later time point in the definitive study [3].

In this paper we present and discuss approaches to-

wards significance thresholds and confidence interval

levels in pilot studies. The methods are divided into

three main sections. In the first, we provide alternatives

to hypothesis testing using the conventional 5% signifi-

cance level. We then discuss the use of surrogate out-

comes in pilot studies. Finally, a Bayesian approach to

significant thresholds is introduced. Throughout the

paper we use a worked example to provide illustration

to the methods discussed.

Methods and results
Significance and confidence levels

Pilot studies are not formally powered to assess effect.

However, it may be of interest to calculate confidence

intervals to describe the range of effects, even if this is

not a conventional 95% confidence interval. In this
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section we give a rational for confidence interval estima-

tion and “hypothesis testing” in pilot studies.

Significance levels and power calculations

Pilot studies are usually underpowered to achieve statis-

tical significance at the commonly used 5% level. Despite

recommendations that formal significance levels are not

provided for pilot studies, [4,5] many still quote and in-

terpret P-values. In a survey of pilot studies published in

2007–8, Arain et al. [6] found that 81% (21/26) of pilot

studies performed hypothesis tests in order to comment

on the statistical significance of results. If the primary

purpose of a pilot study is to provide preliminary evi-

dence of the efficacy of an intervention, then the signifi-

cance level can be increased for hypothesis testing [7].

Stallard [8] recommends that the design for a phase II

trial is based on a one sided Type I error rate of α = 0.2.

Whilst Schoenfeld [9] proposed a higher type I error rate

for preliminary testing in pilot trials; up to a (one sided)

α = 0.25. In studies other than drug trials, setting and

personnel may not be representative of a future main

trial: A pilot trial might see a greater treatment differ-

ence due to protocol adherence and enthusiasm in the

pilot centre, which might not be replicated in a multi-

centre trial. Nevertheless, the pilot may still be under-

powered for a traditional 5% significance threshold.

It should be noted that in the context of a pilot study a

Type I error would have a different impact. For a defini-

tive study, a Type I error would mean therapies or health

technologies falsely being concluded as beneficial. As

such, in this context they would be referred to as societies

risk – such that the wish is to have a Type I error as low

as possible. For a pilot study the impact of a Type I error

is that a definitive study may falsely be undertaken.

Although there is a consequence for patients in the trial –

being randomised to therapies when there is equipoise –

the impact of this false positive error could be in the main

on the sponsor or funder i.e. sponsors spend more money

and resources on the ‘wrong’ study that will not result in a

true effect/benefit from the new technology.

The aim of a pilot study, therefore, is to inform both

the decision whether to conduct a confirmatory study

and the design of the larger confirmatory trial. Any

interpreted P-values in a pilot study should be with a

disclaimer that the study is not adequately powered

[10,11]; and while post hoc power calculations are pos-

sible [11] they are generally not advisable [12]. Instead,

estimation and confidence intervals should be used to

infer the size and direction of treatment effect.

Confidence intervals

It is recommended in pilot trials that the focus is on

descriptive statistics and estimation rather than formal

hypothesis testing [4]. A confidence interval for the

treatment effect will inform the decision, amongst other

factors, whether or not to perform a confirmatory trial.

The confidence interval should be interpreted with

regards to the minimum clinically important difference

(MCID) [12]; this is the difference between treatment

groups that is considered to be clinically meaningful,

specified a priori. If a confidence interval for the treat-

ment difference crosses zero and the MCID, then the re-

sults of the pilot study could be considered to be

equivocal. There could be no difference between treat-

ments, or there could be a difference larger than the

MCID; the results would not preclude either possibility.

This approach is superior to formal hypothesis testing as

there is insufficient power to test hypotheses, and its

focus on the MCID will help inform the main confirma-

tory trial. Interpreting confidence intervals this way also

helps investigators visualise the evidence of effect from

the pilot trial.

It is common to report the 95% confidence interval

which corresponds to a 5% significance level. In a pilot

study, without adequate power, we can consider investi-

gating confidence intervals of different widths to help in-

form our decision making, these can then be displayed

alongside each other to illustrate the strength of prelim-

inary evidence. We suggest setting minimum prior re-

quirement; that the mean treatment difference is above

zero, and that a CI of a certain length includes (or is

above) the MCID.

Worked example

The Leg Ulcer Study was a randomised controlled trial

designed to investigate the relative cost effectiveness of

community leg ulcer clinics that use four layer com-

pression bandaging versus usual care provided by dis-

trict nurses [13,14]. In the trial 233 patients with

venous leg ulcers were allocated at random to the inter-

vention (120) or control (113) group. The SF-36 ques-

tionnaire was completed at baseline, three and twelve

months post randomisation. For this example we inves-

tigate the SF-36 General Health (GH) dimension score.

The GH dimension is scored on a 0 (poor) to 100 (good

health) scale.

We assume that 3 month data for the first 40 patients

is the pilot study data. There were 31 individuals with

complete 3 month SF-36 GH dimension data (17 in

treatment group and 14 in control group).

Note missing data on 22.5% (9/40) patients is quite

high and may be considered unacceptable for a main

study. In actuality for this trial there was just 14% (29/

230) of missing data for the SF-36 data [15]. For our

data we may well have observed a randomly high num-

ber. If this was a true pilot study then a missing data rate

of 22.5% may need some investigation. There are statis-

tical methods for accounting for missing data [16].
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However, the only solution to missing data is not to have

any. After a pilot study, measures to ensure complete

data would need to be investigated to bring the level of

missing data to an acceptable level.

We take the minimum clinically important difference

to be a 5 point difference in SF-36 GH dimension scores

at 3 months post-randomisation; we assume a standard

deviation of 20 points. Without seeing the actual trial re-

sults, with 40 individuals, there would be 20% power to

detect a 5 point or more difference between the groups

if it truly existed which is clearly underpowered by con-

ventional standards. Thus, for such a trial it would be

more appropriate to estimate possible effects rather than

have formal hypothesis tests.

Table 1 displays the results comparing the mean SF-36

GH dimension scores between the home (control) and

clinic (intervention) group. The mean difference was

found to be 12.8, which is statistically significant at the

10% but not 5% level; there is some evidence of a differ-

ence in SF-36 GH dimension between groups. If the sig-

nificance level was set to 10%, there would be sufficient

preliminary evidence of a treatment difference and this

would lead onto a full-scale study.

The leg ulcer randomised controlled trial reported in

1998 obtained appropriate ethics committee approvals

[14]. The use of the data from this trial for the work pre-

sented in this paper has been approved by School of

Health and Related Research (University of Sheffield)

ethics as secondary analysis of anonymised data.

Figure 1 shows a range of confidence intervals for the

mean difference in SF-36 GH scores between the treat-

ment groups. The 95% CI crosses both 0 and the MCID,

this gives inconclusive evidence. The 80% and 90% con-

fidence intervals both exclude 0 and cross the MCID, at

these levels there is evidence of a treatment difference

which is potentially clinically important. A confidence

interval of 75% and smaller would be wholly above or

equal to the MCID, suggesting at this level that there is

a clinically meaningful difference in SF-36 General

Health between the groups.

Outcomes

The NIHR Evaluation, Trials and Studies Coordinating

Centre (NETSCC) describes a pilot study as a smaller

version of the main trial, designed to test whether com-

ponents of the main study can all work together as well

as a preliminary assessment of clinical efficacy. This

screening function of pilot studies requires a preliminary

evaluation of treatments. Therefore, using the definitive

clinical endpoint during a pilot trial may not always be

viable. There may be times when measuring the clinical

endpoint is not efficient [17]. For example, if the clinical

endpoint is the five year survival rate, then an assess-

ment of disease progression or tumour shrinkage may

be assessed in the pilot. Such endpoints would be used

as surrogates for the definitive endpoint. We will now

discuss surrogates in more detail [18].

Surrogate endpoints

In the situations described above an investigator may

consider using an endpoint other than the clinical end-

point; a surrogate endpoint. ICH E9 [19] defines a surro-

gate endpoint as

‘A variable that provides an indirect measurement of

effect in situations where direct measurement of

clinical effect is not feasible or practical’.

Using a surrogate endpoint can reduce the required

sample size or the duration of the trial compared to

using the clinical endpoint. This leads to cost reductions

which may be crucial for trial feasibility [18]. For an

endpoint to be considered a surrogate the relationship

between it and the clinical outcome must be biologically

plausible. In addition, the surrogate must have demon-

strable prognostic value for the clinical outcome and

there must be evidence from clinical trials that treatment

effects on the surrogate outcome correspond to treat-

ments effects on the clinical outcome [19].

The risks involved when using surrogate endpoints

When an aim of a pilot study is to estimate design pa-

rameters, using a surrogate endpoint may mean we do

not get precise estimates. For example, designing the

study based on the surrogate may mean having sub opti-

mal information to estimate the variance of the clinical

endpoint or an assessment at an earlier time point. This

may mean we do not get an accurate estimate of attri-

tion rates.

A surrogate endpoint must reliably predict the overall

effect on the clinical outcome [20]. Otherwise it would

be possible to wrongly reject effective treatments or

take ineffective treatments through to further testing. If

a surrogate does predict clinical benefit it could mean

treatment benefits can be brought to patients earlier

than if clinical outcomes were used and possibly at a

lower cost [21].

Worked example revisited

Using the same data set as in the previous example we

now look at the 12 month SF-36 general health (GH)

Table 1 Results from the pilot study comparing 3-month

SF-36 GH dimension scores

Mean SF-36 GH dimension score

Clinic (n = 17) Home (n = 14) Difference (95% CI) P-value

68.0 (sd = 17.6) 55.1 (sd = 19.8) 12.8 (−0.8 to 26.6) 0.065
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dimension data for the main trial. There were 233

people in the study in total, 155 with complete SF-36

GH dimension data and 78 observations were recorded

as missing. From the 155 observed outcomes 80 were in

the clinic group and 75 were in the home or control

group – note we had 23% attrition at 3 months com-

pared to 31% at 12 months. Such considerations may be

important when trying to design a definitive trial.

Table 2 presents the results from comparing the mean

SF-36 GH dimension scores between home and clinic

groups. The mean difference was 3.33 which is not sig-

nificant at the 5% level. The original presentation of

these results in 1998 stated that they observed a general

deterioration of health status over time, with no differ-

ence between the two groups [14].

In the previous worked example we envisaged that the

pilot trial had 40 patients and measured the 3-month

GH dimension score. Using a significance level of

10% we would have proceeded to the main trial. The

3-month GH dimension score is now considered as a

surrogate endpoint to the clinical outcome of 12-month

GH dimension score. If we used a significance level of

5% to assess the clinical outcome, the difference be-

tween the groups is not statistically significant. Using

the 3-month endpoint in the pilot study and a lower sig-

nificance level would cause us to proceed to the main

trial after the pilot study only to observe no significant

difference between the two groups in the main study. It

could be a Type I error which would lead us to the main

study or it could be due to the treatment having no long

term efficacy – for example the intervention may have a

short term benefit which does not last for 12 months.

The ‘large’ effect of 12.8 points in the first 40 patients at

3 months has not been replicated at 12 months in the

full study.

Bayesian methods

The Bayesian framework offers an alternative approach

to the Frequentist significance levels and confidence in-

tervals discussed in the previous section. It allows prior

beliefs about the intervention to be combined with the

observed data to form posterior responses about the

Figure 1 Mean difference in SF-36 GH dimension scores between treatment and control with confidence intervals (based on

n = 31 patients).

Table 2 Results from main trial comparing 12-month GH

dimension scores

Clinic (n = 80) Home (n = 75) Difference (95% CI) P-value

56.0 (sd = 22.8) 52.7 (sd = 23.9) 3.3 (−4.1 to 10.8) 0.377

Mean SF-36 GH dimension score.
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outcome of interest. These posterior responses can then

be used to inform decisions about whether a larger de-

finitive trial should be undertaken. One approach to

making a decision about the intervention is to use a pre-

specified Go/No-Go criteria.

Go/No-Go criteria

Julious et al. [22] define a Go/No-Go decision as a hur-

dle in a clinical development path to necessitate further

progression or otherwise of a health technology. These

hurdles can be set low or high depending on the stage of

development of the intervention.

At the planning stage of a pilot study there are a num-

ber of decisions that need to be made about how Go/No-

Go criteria are defined. The first concerns the metric that

is going to measure success or failure. Julious and Swank

[23] suggest a method of calculating a probability of suc-

cess for different development plans based on decision

trees and Bayes’ Theorem. They take into account the

study team’s confidence (expressed as a probability) that

the intervention will meet the safety and efficacy targets

for success, and then calculate the probability that each

part of the clinical assessment will correctly indicate that

the health technology works or does not work.

Chuang-Stein et al. [24] suggest that a good metric is

the probability that there will be a successful confirmatory

trial outcome. This is also called assurance by O’Hagan

et al. [25] or average power by Chuang-Stein [26] and is

used in Bayesian sample size calculations for confirmatory

trials. The method that we describe here in detail uses

prior beliefs and the data collected from the pilot study to

calculate the probability of detecting a clinically meaning-

ful difference. This method has previously been described

by Julious et al. [22] for binary and Normal outcomes, and

Parmar et al. [27] for survival outcomes.

The second decision concerns the cut-off or level of

the criteria. For example, do we want to be 70% or 80%

sure that a confirmatory trial will show a minimum clin-

ically meaningful difference? With a pilot study, criteria

could be set to minimise the probability of a false posi-

tive, (i.e. minimising the probability of progressing an

intervention that will fail in a confirmatory trial) but if

the goal is set too high then this will increase the prob-

ability of a false negative (i.e. stopping an intervention

that works from going to a confirmatory trial) [22].

Other factors may also influence the choice of criteria,

for example, the sponsor of a drug trial may be more

willing to accept an incorrect go decision rather than an

incorrect no-go decision if the new treatment is the first

in class rather than one of several drugs in class [24].

Prior distributions

As with all Bayesian methods, prior distributions have to

be specified for the parameters that we are interested in

making inference about and this leads to the question of

how these distributions are defined. The simplest ap-

proach is to use a non-informative prior. In this case the

results will be similar to the Frequentist analysis because

all of the information is coming from the observed re-

sponse. Alternatively, a prior can be elicited based on ex-

pert knowledge of the intervention. This may, for

example, be based on the synthesis of evidence from

previous studies of the same or similar interventions as

suggested by Chuang-Stein et al. [24]. Other elicitation

techniques including the elicitation from multiple ex-

perts are discussed in Spiegelhalter et al. [28].

With a large sample size for the pilot study the poster-

ior distribution will be robust to changes in the prior

[29]. However, sample sizes in pilot studies are typically

small - in a literature survey by Arain et al. [6] the me-

dian number of participants was 76 - and therefore an

informative prior distribution may have a large influence

on the posterior distribution. We illustrate in our ex-

ample that caution should be taken when specifying a

prior distribution for a pilot study, as different priors

may lead to different interpretations of the results.

Probability of detecting a clinically meaningful difference

We now outline one possible method for calculating the

probability of detecting a clinically meaningful difference

for data that are anticipated to take a Normal form. In

the context of a Go/No-Go criteria we need to deter-

mine the probability of observing a difference, di, or

greater given that dpilot has already been observed, i.e.

prob(θ > di | dpilot) where θ is the mean difference.

For Normal data of the form X1,X2,…,Xn ~N(θ, σ2) we

wish to make inference about θ for given σ2. In this case

the Normal family is conjugate and we have the follow-

ing prior θ ~N(μprior, σprior
2 ). Note that other distribu-

tions may be used for the prior. The Bayesian updating

rules can then be defined as follows.

Prior values for the mean difference and population

standard deviation are defined as dprior and sprior respect-

ively. The observed mean difference and population

standard deviation from the pilot data are defined as

dpilot and spilot respectively. Hence S1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r þ 1ð Þ=rn
p

is an

estimate of the standard deviation around the mean

where r is the allocation ratio between groups and n is

the number of individuals per arm.

The posterior distribution is calculated through a

weighted sum of the prior and observed responses. The

posterior estimate of the mean difference, dpost, is de-

fined as

dpost ¼ s2post
dprior

s2prior
þ

dpilotrn

s2pilot r þ 1ð Þ

 !
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and the posterior estimate of the variance around the

mean, s2post , is defined as

S2post ¼
rn

s2pilot r þ 1ð Þ
þ

1

s2prior

 !

−1

:

From these posterior values a density distribution for

prob(θ > di | dpilot) can be defined so that the probability

of observing a difference, di, or greater, for a given dpost
would be

prob θ > di dpilot

�

�

�

¼ Φ
di−dpost

spost

� �

:

�

Worked example revisited with bayesian approach

Using the same leg ulcer data as described previously,

we demonstrate how to calculate the probability that the

mean difference in SF-36 GH dimension scores at

3 months post randomisation is greater than the mini-

mum clinically important difference of five points. This

question may also be stated in terms of a ‘Go’ criteria,

for example:

Are we at least 75% sure of having a mean difference

in SF-36 GH dimension that is greater than the mini-

mum clinically meaningful difference of five points at

3 months post randomisation.

For the expository purpose of this exercise we will

consider the following three Normally distributed priors:

� Non-informative

� Pessimistic prior, with a mean difference of 4 and

90% certainty that the mean difference is within −1

and 9.

� Optimistic prior, with a mean difference of 7 and

90% certainty that the mean difference is within 4

and 10.

Table 3 displays the posterior mean, posterior standard

deviation, and the probability that the mean difference

in SF-36 GH dimension score is greater than the mini-

mum clinically meaningful difference of 5 points for our

examples of a non-informative, pessimistic and optimistic

prior distribution. When using both the non-informative

and the optimistic prior the probability of achieving a clin-

ically meaningful difference is greater than our pre-set

threshold of 75%.

Figure 2 shows the prior, observed, and posterior distribu-

tions for each of our three examples. The non-informative

prior has no influence on the posterior distribution and the

95% credibility interval for the posterior mean difference is

Table 3 Posterior means, standard deviations and the

probability of observing a clinically meaningful effect

size of greater than 5 for non-informative, pessimistic

and optimistic priors

Prior Posterior mean Posterior SD P(>5)

Non-Informative 12.9 6.7 0.88

Pessimistic 5.5 2.8 0.58

Optimistic 7.4 1.8 0.91

Figure 2 Prior, observed and posterior distributions for non-

informative, pessimistic and optimistic priors.
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the same as 95% confidence interval found previously (−0.8

to 26.6). In the case of the pessimistic and optimistic priors

the posterior distribution is heavily influenced by the choice

of prior because the observed data has such a small sample

size. This emphasises that caution is required when specify-

ing a prior distribution for pilot studies.

It could be argued that a Bayesian approach is appeal-

ing as it formally accounts for any related work (and/or

of beliefs held by investigators) by setting priors before

the start of a study [22]. Once the trial has been com-

pleted, the observed data are combined with the priors

to form a posterior distribution for the treatment re-

sponse. The interpretation is then through a measure

that is more easily understood – in our example what is

the probability that the response is greater than 5.

Discussion
This paper has demonstrated a variety of approaches to-

wards significance thresholds in pilot studies. When

undertaking a pilot investigation, it was shown how sig-

nificance levels other than the “traditional” 5% should be

considered to provide preliminary evidence for efficacy.

It was highlighted how estimation and confidence inter-

vals should be focused on in order to provide an esti-

mated range of possible treatment effects.

Interpreting confidence intervals with respect to the

minimum clinically important difference should be con-

sidered. Investigating several confidence intervals of dif-

ferent widths and displaying them as in Figure 1 can aid

decision making and is a helpful way of displaying evi-

dence in pilot studies. Minimum prior requirements

can be set and used in addition to the graphical display

to help illustrate the strength of preliminary evidence.

However, caution must be taken when using a surrogate

outcome in pilot studies as it must reliably predict the

clinical endpoint.

Bayesian methods could also assist in the early assess-

ment of a health technology. Pilot data can be combined

with prior beliefs in order to calculate the probability that

there will be a successful confirmatory trial outcome. This

can be framed into a Go/No-Go hurdle such as; are we at

least 75% sure of having a mean difference larger than the

minimum clinically meaningful difference. We demon-

strated how care must be taken when choosing a prior

distribution; the posterior distribution can be heavily

influenced by the choice of prior as pilot data usually

has a small sample size.

Conclusions
We recommend that in pilot trials the focus should be

on descriptive statistics and estimation, using confidence

intervals, rather than formal hypothesis testing. We fur-

ther recommend that confidence intervals in addition to

95% confidence intervals, such as 85% or 75%, be used

for the estimation. The confidence interval should then be

interpreted with regards to the minimum clinically im-

portant difference and we suggest setting minimum prior

requirements. Although Bayesian methods could assist in

the interpretation of pilot trials, we recommend that they

are used with caution due to small sample sizes.
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