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Abstract

The Carleman linearization and Lie series techniques are generalized to nonlin-
ear PDEs and applied to nonlinear optimal control theory.
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1 Introduction

In this paper we shall generalize the Carleman linearization and Lie series tech-
niques ([1],{2],[3]) for nonlinear differential equations to nonlinear partial dif-
ferential (evolution) equations and we shall show that the two methods are

essentially equivalent. In the finite-dimensional case of an equation of the form
&= f(z) (11)
we linearize the system by introducing the Taylor polynomials
Boiy = 22l 2y (1)
and writing (1.1) in the form
® = Ad (1.3)

where @ is the tensor (¢y,..;,) and A is a tensor operator (see [5]). In the
distributed case we introduce a graded tensor algebra which is formed from the
prolongation spaces of the dependent variable in a similar way to (1.2). It is

shown that a partial differential equation of the form

8 _
5 = (8,62, 6:2) (1.4)

can be written in the form (1.3) in this tensor space.
In section 3 we obtain a similar equation to (1.3) using Lie series methods,
but this time A is the left-shift operator (on a certain space) which is indepen-

dent of the dynamics of (1.4); all the dynamics are transformed into the initial




condition for (1.3). In section 4 this will enable us to obtain explicit solutions

for the optimal control of nonlinear PDEs.

2 Infinite-Dimensional Tensor Representation

Consider the partial differential equation

8 16,60 0e)z €[0,1], 120 (21)

¢(O’t) = ¢(1»t) =0, d?(:l‘:,O) = QSU("T) € P[Ov 1]

where f : R3 — R is analytic. We shall generalize the well-known Carleman
linearization technique for finite-dimensional systems. In order to do this we

introduce the ‘variables ’

Tin = 670265 87 2 (2.2)
S

Then ¥} . ; € ®ji(n)C=[0,1] , the |i(n)|**- order tensor product of C*[0,1]

(li(n)] = 3)—q iz » where i(n) = (ig,...,in) ). Let
C(io,-- - tn) = Qi) C*[0,1] , in >0
and consider the graded tensor algebra
ce Bt Bia,.in Clios o 058a)

where multiplication is defined in the obvious way and the inner sum is over all

(ioy---yin) With i, > 0. Then we shall write

¥ = (v v, 9% .. ) €C,



where ¥" = (Y1 . ) € ®i,,..i,C(i0,---,in). Clearly, for k > £, we have
VE Wi g, € Clio+ o, - yie + Jeyiegn, - -, dk)
so that
C(io, ... ix) ® C(do, .- -, J2) C Clio + Jos- - it + ey ft41,- - k)

Now, from (2.2) we have

8 o o ;
gilhein = fodTielel e,

+ 01g0gr T g, (g—f)

+ ingeabet ot ()

= Zik¢iﬂ.--¢§;._.l.m" Lo fx x(¢ ¢Z}¢ZI) (2'3)
k=0

k k

Since f is analytic we can write

(== « T - o)

f(¢ ¢z, qb::) = ZZ Z ﬂ’rpq¢‘ ¢p¢:z
r=0p=0¢=0
for some constants ayp,. In order to evaluate fr ...z (¢, ¢z, #zz) we first state
the following simple lemma:

Lemma 2.1 If gi(z),...,g¢(z) are differentiable functions and & C R? is

the set {o!,--., o'} where

o’ =(0,0,---,



i.e. o7 is the j** unit vector of Rf, then

d* i : doi(1) ... geilk),.
prl USRI P H( g:)

o(1)eS  o(k)eSi=1

= ¥ .. % f‘[(dz:ﬂ”’(")g;) (24)

o(1)es  a(k)esSi=1

where d = d/dz. &

Remark For k = 1 this is merely the formula for differentiation by parts;

thus

J 4
L) = Y[

cESi=1
' T .
= > ()
j=li=1
L
- ;Ql...%...gl

Note that we could also use Leibnitz’ formula
(019 =3 (*) 01010
o<p M
recursively to find d*(g;g2---g,). However, the resulting expression is much
more complex than (2.4). m]
Corollary 2.2 (8;)*(¢"¢2¢3.) =
r+p k i F4 k ;
oy ’ i +1 i o +2
5 e 3 H( i), ) i (6§,=1om ¢)‘ 1 (a;m () ¢).

o(1)eS o(k)es i=1 i=r41 i=r+p+1

where f=r+p+gq. ]

Let the component of (8z)*(¢"#2 ¢4, ) in C(ip, -~ -,4z) be denoted by c" k'p 3




Then

[= ol = = * =]

f.’r---z(¢;¢.—,,¢== E Z Zzzachthp’:}n‘#uén_” 'afz

* £=01ig, - i, r=0p=0¢=0 5

Hence, from (2.3) we have

n oo oo oo
6¢lg t,,

P> ZZZZaw“‘TﬁW‘W“--- ST AR SRRt 3

£=04f, i, k=0 r=0p=0¢=0

2 k
o0
- ¥ 5 g
A=n |"'°,-—-,|"x
where
n (==l - « BN « o]
A ipeeiy Ak
" agp..in = ZZZ“rpszc;;,-:?--s;‘—n-r--s';.—.'..---iA,
k=0r=0p=0g¢=0
Let A :C — C denote the operator defined by
0 1 2 )" Agtoria A
(AW P, )0 Z Z Mal vl
A=ni |
Then equation (2.1) can be written in the form
dv
- = A¥ (2.5)
where
= (woa ’lbl, "1!’21 & )

Remark For computation, it is convenient to use the infinite product

ighytasn= 1'[ ¢

k=0

Then w?ﬂ""‘n = 'lbl'o---l'.DD---'




Remark 2 In the finite-dimensional case

z = f(z)
we use the functions

"ll

. s — ‘.1 DRy
Pigoin = 27 o

(see [5]), based on the Taylor polynomials in R™. The expression (2.2) is es-
sentially the same, but based on the n'® prolongation space ([3]) of ¢, namely
(8,62, ¢z..2)-

Ezample 2.1 As an illustrative example of the above technique we shall

consider the lineqar heat equation

2
%—f = % , ¢(0,) =¢(1,1) =0, ¢(z,0) = &o(2)

Then, with
Vigoig = $0@1GI2 .. gln ...
(sunig the convention in the above remark), we have

dbig iy - _ — . io ix—1 in
di - é'k‘b b7 .z TR P

k k42

[= o]

- . d)io___ ip—1 fk41 tegatl

= % r-2Pr..-2Pr... 1 .
k=0 ¥ .

k k41 k432
o0
= E :k¢§u,"'|‘l-1.il+l.ik+2+1,‘h+5,"'
k=0
Thus,
o0
(A‘Il)l'nill'r" = E:tkw"m"',"k—l,“k-ﬂ:ik+2+1|ik+3|"'
k=0




= Zikss'ﬂbio,---,i,‘,--- (2.6)

k=0

where S;, is the operator

Si'h'lbl'oml'k = 'ibin,"'.l'k-l.l'i+1 Ardatlipgs,
Similarly,
oo o
(Az‘ll)l'ahl'z"- = Z Z ihikzsl'k,ka,'lbio"'[ik,"'l'k;]"'
k1=0ky=0

where ep .
'j’io-"hl---l‘k,--- if i, < 1,

1,!'),'0...[,'*1_.,,"‘2]___ = ‘I,!J,'c...,'il... if Uy = 1,

1,[),'0...,"‘:...,',‘1... if ih > ikg

In general,
o oo
(Anw)iohl':“' = Z - Z i, - .ik“S‘.'rl — S‘hn¢fn"'[ik."'fkg"'fka]"'
k=0  kn.=0
where the ‘time-ordered ’product 1/);0...[;k1...;*2],.. is defined in the obvious way.
Since the solution of (2.1) is ¥100... = ¢ we have
=]

> S (AMH(O))oo..

n=0

¢(1)

2

5(3) t t&:z(z) + !szz.rx(z) e s (27)

2!

Ezample 2.2 Consider the nonlinear reaction-diffusion equation

8¢ _ 8¢ _ _ _
at ~ 6z ¢? , 4(0,t)=¢(1,t) =0, ¢(z,0) = £(z)

This equation has a solution for all t (see [4]). As before, if ¥0,4,... = ¢0@i1 2 ...,




we have

dw‘.o"liz“' = . : =1 . i
——in :Hﬁm"'iﬁ”‘... o
7 ; ¥ 2(4) it
- k k k41
However,
£ k+2 X
= \x---:,_ ¢I'--:¢x-..m
¢ % —— N —
k42 = i i
and so
digiyise. =
:;;'2 = Ei“’binu'".iu—l,i;.+1,i,,+,+1,...
k=0
oo
+ Eik Vo, deb 1o dum g 1, =1 g1 0
k=0 ¢<k

As in example 2.1 we see that the first few terms of the series expansion of the

solution are given by

B(0) = E(2) = H2(2) +16ex(2) + S (Enren(z) = 262(2) = 46(@)6eu(2) + 26%(2)) + - (28)

3 The Lie Series

In this section we shall generalize the Lie series ([2], [3]) to partial differential
equations. Recall that, if v is a vector field defined on a finite-dimensional

manifold, then the Lie series is an expression for the flow of v, namely,

[==]

tk
FFNE)

k=0




In local x-coordinates we can write this in the form

z(t,zp) = {ezp (tz_f,-(::)z,g:) :z:}

=1

(3.1)

r=rg

where f is a local expression for v and z(t, zp) is the local flow of v through z,.
Equation (3.1) can be derived simply in the following way (which will gen-
eralize easily to partial differential equations):

Define
ga(z)=z€R"
and
Ogx—
0(e) = 52D f(2) , k22

Then we have
@) = L@ =261
= gr41(2)
Hence the local differential equation
z = f(z)

is equivalent to the infinite-dimensional system

G = AG, G(0) = Go
where A is the left-shift operator, G = (91,92, ---)T and

Go = (2o, f(20), (8(£)f)(20), (B(B(f) ) f)(z0), - )T

10




(see [6]).

Now consider the partial differential equation

o0 _
d_t = f(¢s¢:1¢z':)

where

¢(0,1)

l
©
—_~

—

-
N

]

o

¢(z,0)

]
I
)

2
~—

defined on the one-dimensional spatial interval [0,1]. We shall seek solutions in
D([0,1]) , the space of infinitely differentiable functions with compact support;

f will be assumed to be analytic.

Define
n=¢
and for k > 2,
Te = 7k—1,1(¢a¢r,'":¢I-‘-Z)f(¢1¢z:¢:z)
3(k—1)
af
+ 7k—1,2(¢)¢:: * a¢I s -I)a(‘i’;(ﬁr,qﬁz:)
3(k—1)
+
H2(k-1)
+ Te-120k-1)41(8, bz, -, 0z .. z)mf(gﬁ, ¢z, Pzz)

2(k—1)

where 1k(¢, ¢z, -+, @z .--2) is a function of ¢, ¢z, -+ ,@z...z) and 74 is the

2k ak
partial derivative of v with respect to its i** argument. Then, we have

dyy _ 04 _ _
-Cit— — '8_t"‘f(¢l¢za¢rx)_72

11



d 8 8¢, Ods...
% = 7k,1£+7k,2; + At YE 2841 d’a

Yeaf+ve2fe+-F 21 fz- oz

2k

Tk+1

Hence, equation (3.2) is equivalent to the infinite-dimensional system

dl
— =AT, T(0)=To

where A is again the left-shift operator on the space A = @D([0,1]) (an infinite
number of copies of D[0, 1]).
Ezample 3.1 As a simple illustration of the above technique, consider the
heat equation
06 _ 0%
ot~ Oz?
¢(0,1) = ¢(1,1) =0, ¢(z,0) = £(z) € D0, 1]

, z€[0,1], (3.3)

As above, define

n o= ¢
32
T = P
§2k-1)
Tk m,kzl
Then,
on _ 09 _ 0% _
o — Bt Bz 1%
Oy, _ 080% _ 0% 8¢ _ 0% _
8t ~ Otoz?  fz2 ot Bzt °

12




8ys _ 808% _ 0%

&t~ 8tozt T 9z
(3.4)
This gives the system
dr’
5= AT, (3.5)

with initial condition

F(O) = (E(z):Exa:(z)’E::z:(z)! i )

Since £(z) € L?[0,1] and £(0) = £(1) = 0, we can write

&(z) = Z‘E“ sin(nmz)

where
1
=2 i dz.
i3 /0 é(z)sin(nrz)dz
Thus,
En voglr) = Efn(—l)k(nw)u sin(nwz).
Also,

= =]
-tk
= Sotoest

where (.);; isthe i j** element of an infinite matrix. It follows that the solution

of (3.3) is given by

¢(t,z) = m(z) =T1=(e*'T(0))

13



oo 0o 1k
= Zz&,j—kﬁfx-nz(l‘)

= Z ﬁr ifﬂ(ul)k(nﬂ')zk sin(nmz)
= EEne‘":'zt sin(nwz)

This is the usual expression for the semigroup T'(t) generated by the operator

A = 8?/5z® with domain
D(A) = {¢ € H*[0,1] : ¢(0) = ¢(1) = 0}

(see [T]).

Ezample 3.2 Consider the scalar reaction-diffusion equation

ge _0¢ g
gt 0z? ¢
where f 1is analytic. Then
n o= ¢
%¢ 2
T2 = 632 - ¢
- n
73 _— Bt

_ O (8% . ¢ _ .
- sz(axz_(ﬁ)_zqs(ﬁ_qﬁ)

L S0 (06Y s
= G- o2(ge) v

leading to the solution which was obtained in (2.7).

14




4 Application to Control Theory

In this section we shall study the nonlinear optimal control problem

%t_‘i’ = f(¢| ¢:s ¢.r.r) o o u(t)g(z! ¢'! d’-‘h ¢-‘f~‘=) (4'1)

where

#(0,t) = ¢(1,1) =0, ¢(z,0) = £(z)

with cost functional

I =(¢(s15), (111 )) Lapo) + J {{e(-11), Q8. )) Lajo, 1 + ru®(2) } dt
0

where F,Q € £(L?[0,1]) , F,Q are nonnegative and r > 0.
We have shown that the Carleman linearization and Lie series techniques are
essentially the same and so we shall apply the latter method here. Therefore,

as in section 3, put

m o= ¢

Yi = 71'/2,1(‘?51 Pz, P - z2)f(, b=, Gzz)

s,
S CLPRRt .I)a—ﬁ(gﬁ,qsz,%)

Bl'
Hhaena(ér e g 2) 2L (6,62, 22) , if i even

Yioo= 7(i—l)f2,l(¢:¢z:"'1‘?52"-2)9(95145:; ¢I=)

i a
+'T(i—1)/2,2(¢s d’s: Tty ¢I v )ﬁ((ﬁ: éz‘y ¢J:x)

15



“4 ..

ik s
+T(l'—1)l2,l'+1(¢! ¢xa e :¢x =% I)a_wgf(¢’¢"—" d’.r:r:) ) :f i odd
Thus,
di

Tft_ = 7i.1(¢: 2 ey ¢:---=)(.f(¢:¢z| ¢:z) + ug(.":, &, 0z, '35.1::))

‘fl',?(‘?"s * y¢=---z)(fz(¢, ¢t:¢’z:) -+ qu(I: ¢, ¢z, Qsa:::))

71‘.3(¢: e :¢£-“:)(fz‘=(¢1 ¢:: 45:::) + ugt.‘t(:? ¢: ¢Il ¢:r.‘a:))

7i,i+1(¢‘:' . :¢z---x)(f.’!! . -Z(¢:¢::¢z:) + ugz . -z(ra¢=¢x,¢zx))

= Y2i + UY2i41

Hence we can write (4.1) in the form

I'= AT +uBTl', I(0) =T, (4.2)
where

A= (62i3) » B=(b2i41,5)
are the obvious matrix operators on ®§2,D[0, 1], and

To = (710,720,730, **)

with

¢(£,0) — 5(3)

Y10

Y20 f(&yfz, Ezz)

16




730 - g(xsfl‘st;&c:)

Define the operators 7 and @ on £L(&52,P[0,1],®52,D[0,1]) by
(T, FT) = (¢, F'¢)
and

(T, Qr) = (¢,Q¢)

Then J can be written in the form

iy

J(u) = (F(t:),fl“(ff))+f ((C(2), QT(1)) + ru’(t))dt (4.3)
0
Infinite-dimensional bilinear-quadratic problems have been completely solved

([8] and [9]) and we may write the optimal control in the form:

) = —%R‘l Y (®ig,(P:B) ®; g) (4.4)

i=1

where P; € L(®;H) is given recursively by

ty=—1
PA(t) = e.A,(t,-—!)}-eA;"(t,-t)_'_/! ALty =t=) g AT (ty=1=3) 5
0
r-1 ty=t T
Pa(t) = —-—- / eAn(=1=)p(t, — §)B @ Pj(t; — §)BeAn(tr=1=4)g;
itj=m Y0
B
1"_1

ty—1

S — E j e-Am{l‘J—t-l)Pi(tf - s)BT ® Pj(tj _ S)BTeAﬁ(:,_:_,)ds

itj=m Y0
321

(4.5)

Here, P is a tensor operator and if C is an infinite matrix, PC is defined by

i oo
(POl = (Z P::.:'I;‘...k.-Cz,rk,-)

i=1 \¢g=1

17



Furthermore, A; € L(L(®:;H)) is defined by
AP =FA
We have

lAillecee my < illAllecy »

F,eL(®H), i>1.

and so €4 is defined by the usual series. It can be shown ([8]) that e4:" is

given by

Q) =

k=1 k=1
for any Q. Now,we have
At Em t"
(E )U = 1’1‘62 L
n=0

and so

(e*QE =

™ g

(=) 00
p K1...Kg
s N w Y R R

where

00 o0
Z v Z Q:::.—:::(EAI)]C:M(eAt)k:l: 5% K (eAt)k.‘t.‘

i

1 mtrmk bkt Bamiy

and the sums in the last expression are over k’s for which each n, is a natural

number.

18




Now,

(Pi(ty — 8)B)5 %!

Mh

K1..Kq
E : Pk, < ..E,Bljkj
£i=1

2
(w

.
1]
-

K; K,
ky..t;. ..k.‘52£j+1.k:'

Mh

.
L}
-

;=1

M~

PEiafl
By (_"J_') by

L
1}
-

where the element of P in the last sum is zero if (kj — 1)/2 is not a nonnegative

integer. The above expressions for e41'Q and P;B are now sufficient to be able

to evaluate Pp,(t) from (4.4).

5 Conclusions

In this paper we have generalized the Carleman linearization and Lie series tech-

niques for the solution of nonlinear systems in terms of linear ones to distributed

systems, by means of a new infinite-dimensional representation defined in terms

of the prolongation space coordinates. Moreover, we have shown that the two

methods are essentially equivalent and have given two examples in each case

to illustrate the theory. Finally, it has been shown that explicit solutions to

nonlinear optimal control problems can be obtained by using these expansions.
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