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Abstract
This paper discusses the problem of visualizing data where there are underlying constraints that must be preserved.
For example, we may know that the data is inherently positive. We show how the Modified Quadratic Shepard
method, which interpolates scattered data of any dimensionality, can be constrained to preserve positivity. We do
this by forcing the quadratic basis functions to be positive. The method can be extended to handle other types of
constraints, including lower bound of 0 and upper bound of 1 -as occurs with fractional data. A further extension
allows general range restrictions, creating an interpolant that lies between any two specified functions as the
lower and upper bounds.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling G.1.1 [Numerical Analysis]: Interpolation G.1.6 [Numerical Analysis]: Optimization

1. Introduction

Visualization can be seen as a process of visual reconstruc-
tion. We create a representation of the overall behaviour of
the entity we are interested in, from a limited set of sam-
pled information. This reconstruction is achieved by inter-
polation. However we often have some additional informa-
tion that we wish to build into the reconstruction: the entity
may be subject to certain physical laws which constrain its
behaviour - for example, we know densities are always posi-
tive and any credible visualization must honour this. Another
common constraint occurs with data values that are speci-
fied as fractions of a whole - here the reconstruction must
lie within the range [0,1] to be realistic. In this paper we
examine one particular interpolation approach - the Shepard
family of interpolants - and show how this can be adapted to
handle constraints on the range of the interpolant.

The problem we are addressing is the interpolation of
scattered data. This problem occurs in very many practical
situations where data is gathered experimentally (for exam-
ple, we shall look later at rainfall measurements gathered at a
set of recording stations) or is computed in a simulation pro-
cess using an unstructured grid. There are many approaches

to this general problem - a good review of the whole area is
given by Lodha and Franke [LF00].

Some methods are based on an initial triangulation of the
data points (or equivalent in higher dimensions), followed
by a piecewise construction of the interpolant - one piece
per triangle. A very simple technique of this type is piece-
wise linear interpolation. This has a nice property of remain-
ing within the bounds of the data, and thus preserving for
example positivity in the data. However it is onlyC0 con-
tinuous. Smoother interpolants over triangulations will typi-
cally fail to remain within the bounds of the data, but several
have been modified to incorporate constraints. For example,
Asim [Asi00] modifies the Barnhillet al [BBG73] blend-
ing method (constrained cubics as suggested by Asim and
Brodlie [AB03] are created along triangle edges and blended
in the interior); Ong and Wong [OW96] create aC1 inter-
polant by blending constrained rational cubics along triangle
edges using the Nielson [Nie79] side-vertex method. Mulan-
sky and Schmidt [MS94] construct a constrainedC1 inter-
polant using quadratic splines on a Powell-Sabin refinement
of the original triangulation. Chan and Ong [CO01] create a
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constrainedC1 interpolant as a combination of cubic Bezier
triangles.

All these approaches, however, require the points to be
triangulated. Another major class of methods for scattered
data interpolation do not involve any prior triangulation step,
and can be thought of as ‘meshless’. The two main types are
radial basis functions (RBFs), which include multiquadrics
and thin-plate splines, and Shepard-type methods, which in-
clude the modified quadratic Shepard approach and also the
moving least squares technique. Both types, RBFs and Shep-
ard, are widely used in practice.

However there has been relatively little work done on the
imposition of constraints for these meshless methods. For
RBFs, in the special case of thin-plate splines for 2D data,
Utreras [Utr85] has shown how positivity can be imposed as
a constraint, but the computational cost is rather high, requir-
ing a global optimization problem to be solved at each step
of an iteration. Xiao and Woodbury [XW99] look at a num-
ber of meshless methods for constrained scattered data inter-
polation for 3D data. In areas where the entity is known to
have a particular value, say, zero, extra data points are added
in order to ‘encourage’ the interpolant to take values close
to zero in these areas. If a physical constraint additionally
tells us that the entity is non-negative, then the interpolant
is simply clamped at zero. A difficulty with this approach
is that the resulting interpolant will have derivative disconti-
nuity where the clamping is applied. Our aim is to generate
a constrained interpolant which is computationally efficient,
and which incorporates the constraint as part of the interpo-
lation process, rather than as ana posterioriprocess such as
clamping.

We shall adapt the Shepard family of interpolants. Sec-
tion 2 describes these in detail - a Shepard interpolant is es-
sentially a weighted mean of basis functions. By constrain-
ing each basis function to be positive, we immediately ob-
tain a positive interpolant. Section 3 explains how we can
impose the positivity constraint in an efficient manner, while
section 4 generalises the work from simple positivity to arbi-
trary upper and lower bound constraints. Section 5 discusses
the quality of the constrained interpolant, and finally sec-
tion 6 concludes and suggests further work.

There is one important word to add on terminology. We
shall use the term ‘positivity’ to refer to ‘greater than or
equal to zero’, rather than the more rigorous but some-
what awkward ‘non-negativity’. When we mean ‘greater
than zero’, we use the term ‘strictly positive’.

2. Shepard Family of Interpolants

The general problem we are addressing is the following.
Given a set ofN data pointsxi , i = 1,2, . . . ,N, wherex =
(x,y,z, . . .), with associated data valuesfi , we seek an inter-
polating functionF(x) such thatF(xi) = fi . Later we shall

be concerned with imposing constraints on the behaviour of
F(x), but to start with we consider the unconstrained case.

A popular approach to the problem emerged in the 1960s
amongst the contour plotting community, and is now as-
sociated with the name of one of its proponents, Shepard
[She68]. In its basic form, it involves an inverse distance-
weighted average of the data values, constructingF(x) as:

F(x) =
N

∑
i=1

wi(x) fi (1)

where the normalised weight functionwi(x) has the form:

wi(x) =
σi(x)

∑N
j=1 σ j(x)

(2)

whereσi(x) = 1
d2

i (x)
with di = ‖x− xi‖2

The weightswi(x) satisfy:

1. ∑N
i=1 wi(x) = 1

2. wi(x) ≥ 0
3. wi(x j ) = δi j .

Notice that we have been able to specify the method for
arbitrary dimension of the space; we have not had to specify
any connectivity between data points; and we have not had
to solve any linear system of equations (as is needed in the
radial basis function approach).

In practice however this method does not work particu-
larly well, for two reasons:

1. The functionF(x) has zero derivative at the data points,
exhibiting as ‘flat spots’ in the interpolating curve or sur-
face in 1D or 2D respectively. This led to the suggestion
by Franke and Nielson [FN80] of replacing the constant
fi in the averaging process by a local best-fit quadratic
approximationQi(x).

2. The method is global in the sense that any interpolation
involves a computation involving all data points. This is
computationally inefficient. This led to the suggestion by
Franke and Little (reported in [Bar77]) that the weighting
functionsσi be subjected to a damping factorλ to reduce
them to zero outside a certain radius of the data point.

When these two modifications are taken together, we have
the modified quadratic Shepard method (as proposed by
Franke and Nielson [FN80] and further discussed by Niel-
son [Nie93]). We create an interpolantF(x) as:

F(x) =
N

∑
i=1

wi(x)Qi(x) (3)

where the normalised weight functionwi(x) has the form:
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wi(x) =
σi(x)

∑N
j=1 σ j (x)

(4)

where σi(x) = 1
d2

i (x)
(1−

di(x)
rw

)2
+ with di = ‖x − xi‖, and

whererw is a constant defining an area of interest around
the interpolation pointx, outside of which basis functions
have zero weight.

Qi(x) is the best inverse distance weighted least squares
approximation by a quadratic function to the data points.
The least-squares calculation is again restricted to thosedata
points within a specified radius, sayrq, of xi , in order that
the method is local. We writeQi as:

Qi(x) =
1
2
(x− xi)

TA(x− xi)+gT(x− xi)+ fi (5)

(For simplicity of notation, the subscripti is omitted from
the termsA,g on the RHS.)

The modified quadratic Shepard method is now widely
used, and an implementation of the ACM algorithm of
Renka [Ren88a],[Ren88b] is available in the NAG Li-
brary [NAG05]. The original Shepard method of equa-
tion (1) is rarely, if ever, seen in practice. However the orig-
inal method does have one useful property which we lose in
the modified quadratic version. As explained by Gordon and
Wixom [GW78], the original Shepard method satisfies the
following Maximum Principle:

Theorem 1 (Maximum Principle for Shepard’s Method)
Let M = max{ fi} andm= min{ fi}. ThenF(x) satisfies:

m≤ F(x) ≤ M (6)

Thus the interpolant lies within the range of the data, and
one consequence for example is that a positive interpolant is
guaranteed if the data values are positive.

We illustrate this with a very simple example, in 1D. The
data set in Table 1 shows the percentage of oxygen in the flue
gas, as coal burns in a furnace. The oxygen percentage is in-
herently positive, and we therefore require the interpolant
to preserve this property (we have used this data set previ-
ously to demonstrate positive curve drawing by piecewise
cubics - see [AB03]). Figure 1 shows the original Shepard
interpolant - the ‘flat spots’ are very evident, and indeed the
appearance is in general unsatisfactory. However note that
the curve does remain positive. As we extrapolate to infinity,
the value of the curve tends to the average of the data values.

Time (mins) 0 2 4 10 28 30 32

oxygen (%) 20.8 8.8 4.2 0.5 3.9 6.2 9.6

Table 1: Percentage of oxygen in flue gas

Figure 2 shows the modified quadratic Shepard inter-
polant, applied to the same data set. Generally the behaviour
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Figure 1: One-dimensional coal burning data - Flat-spots
from the Original Shepard Method
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Figure 2: One-dimensional coal burning data - Modified
Quadratic Shepard Method loses positivity

is far superior, but the curve now goes beyond the range of
the data values and indeed the positivity constraint is vio-
lated. We see the same behaviour when the method is applied
to surface interpolation in 2D, or volumetric interpolation in
3D, or indeed higher dimensions.

This motivates our work. We would like to retain the im-
proved interpolation behaviour of the modified quadratic ap-
proach, but we would like to be able to impose constraints.
Rather than the Maximum Principle of Theorem 1 and the
original Shepard method, we would like to express the con-
straint in a way which is detached from the data. In the first
instance we shall consider positivity, and so we seek an in-
terpolantF(x) which will satisfy the constraint
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Figure 3: Quadratic basis function Q3 has negative values
while the constrained basis function R3 (discussed in sec-
tion 3.2) is entirely positive.

F(x) ≥ 0 (7)

3. Constrained Modified Quadratic Shepard Method

3.1. How Positivity is Lost

We can gain useful insight into the problem through examin-
ing the 1D example of the previous section. In Figure 3, we
show the quadratic basis functionQ3(x) that is generated,
interpolating at(x3,y3) = (4.0,4.2) and approximating the
other data in a weighted least-squares sense. It clearly goes
negative within the range of interpolation, and contributes
to the loss of positivity exhibited in the overall modified
quadratic Shepard, or MQS, interpolant shown in Figure 2.

Remember thatF is a positive linear combination of the
Qi values atx. Therefore, we can ensure positivity if we can
constrain each basis function to be positive within the range
of the interpolation. This sufficient condition is a key point
of our approach.

3.2. Positive Quadratic Basis Functions

Our objective then is to constrain the quadratic basis func-
tions to be positive within the region where they are active.
For the modified quadratic version, this means that theith
basis function must be positive within a region:

‖x− xi‖2 ≤ rw (8)

We are therefore interested in solving the problem: mini-
mize

Qi(x) =
1
2
(x− xi)

TA(x− xi)+gT(x− xi)+ fi (9)

subject to the constraint (8).

If the minimum is positive, then obviouslyQi(x) is pos-
itive everywhere it is active in the interpolation calculation
and no action need be taken. If the minimum is negative,
however, then it is possible that the basis function could con-
tribute a negative component in the evaluation ofF(x) in
equation (3). In this case we modifyQi .

Inspection of Figure 3 lets us motivate the modification.
The range ofQ3 is too great, and thus we are led to apply
a positive scaling factor,α say, whereα < 1. The factorα
must compress the range of data values[Qmin

3 , f3] (where
Qmin

3 is the minimum ofQ3) to the range[0, f3]. This scal-
ing will destroy the interpolation condition,Q3 = f3, and so
we also apply a shift,β = (1−α) f3, in order to retain in-
terpolation. In this way we construct a constrained quadratic
basis function,R3, which is a scaled and shifted transform of
Q3, compressing the range ofQ3, while making sure it still
passes through the data point. The constrainedR3 is shown
alongside the unconstrainedQ3 in Figure 3.

In general, then, we construct for anyQi which goes neg-
ative, a revised basis functionRi , which is a linear transfor-
mation ofQi :

Ri(x) = αQi(x)+β (10)

where we apply a scale factorα ∈ [0,1] to reduce the range
of Qi and a shift factorβ to maintain interpolation. Specifi-
cally,

α =
fi

fi −Qmin
i

, β = (1−α) fi (11)

whereQmin
i is the minimum ofQi within the region it is ac-

tive.

There are two points to note at this stage:

• If fi = 0 for any i, that is, the data value equals the con-
straint, then we haveα = 0 andβ = fi . ThusRi(x) = fi ,
and the basis function reverts to the constant value used in
the original Shepard method 1.

• If we want to construct an interpolant that is strictly posi-
tive, then we need to chooseα such that:

0 < α <
fi

fi −Qmin
i

The smaller the value ofα, the less is the range ofRi .

This simple ‘scale-then-shift’ operation has some nice
properties in addition to raising the minimum to zero, and
preserving the interpolation condition. First we rewrite equa-
tion (9) in terms of the unique stationary point ofQi , sayxs,
as:

Qi(x) =
1
2
(x− xs)

TA(x− xs)+Qs (12)

whereQs is the value ofQi at xs. Then we have:

Ri(x) = αQi(x)+β

=
1
2
(x− xs)

T(αA)(x− xs)+ γ (13)
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whereγ = β + αQs. From equation (13), it is clear thatRi
has the same stationary point,xs, asQi and moreover, since
the Hessian matrixA is scaled byα ∈ [0,1], the eigenvectors
of the new Hessian are unchanged, and the eigenvalues are
scaled by a uniform positive constantα. This implies that
the essential nature of the function, in terms of convex and
concave regions, is unchanged by the linear transformation
to Ri .

Specifically, we have the following property:

Property 1 SupposexA andxB are any two points such that

Qi(xA) ≤ Qi(xB) (14)

Then it follows from equation (10) that

Ri(xA) ≤ Ri(xB) (15)

In the next subsection, we look at how this works for the
one-dimensional case, as a simple illustration of the method.
For higher dimensions, the solution of the constrained min-
imization problem (given by (9)) requires some discussion,
as the approach will only be feasible if this can be solved
efficiently - so this is described in the following subsec-
tion (3.4). We then show how the method works in practice
on 2D and 3D interpolation problems.

3.3. One-dimensional Positive MQS

In the one-dimensional case, the problem (9) reduces to:
minimize

Qi(x) =
1
2

a(x− xi)
2 +g(x− xi)+ fi (16)

subject to the constraint|x− xi | ≤ rw.

If a ≤ 0, that is,Qi is concave, then the minimum,xmin,
will lie at an end-point of the interval; ifa > 0, thenQi is
convex andxmin may lie in the interior (ifxmin = xi −

g
a ∈

[xi − rw,xi + rw]) or at an end-point otherwise. Whatever the
case, it is straightforward to calculate the linear transforma-
tion:

Ri(x) = αQi(x)+β (17)

with α andβ chosen according to equation (11).

As mentioned earlier, Figure 3 shows the revised
quadratic basis functionR3 for our simple example, with
the originalQ3 alongside. Notice how the new basis func-
tion is positive, and retains the same shape except for being
‘squashed’. In Figure 4, we show the resulting ‘constrained
MQS’ interpolant when the revised basis functions are com-
bined in the style of equation (1).

3.4. Solving the Constrained Minimization Problem

In the one-dimensional case, the constrained minimization
problem (9) was easy to solve. For higher dimensions the
situation is less trivial, and the success of the constrained
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Figure 4: One-dimensional coal burning data - Constrained
Modified Quadratic Shepard Method

interpolant depends on being able to solve this efficiently.
Fortunately, just such an efficient solution is provided by the
Levenberg-Marquardt algorithm.

Recall that the problem to be solved is the following: min-
imize

Qi(x) =
1
2
(x− xi)

TA(x− xi)+gT(x− xi)+ fi (18)

subject to the constraint (8). The following theorem (see
Theorem 5.2.1 of Fletcher [Fle87] for proof) gives the so-
lution to minimizing a quadratic function within a sphere of
given radius,rw, about a given pointxi :

Theorem 2 (Levenberg-Marquardt) The point

x(ν) = xi − (A+νI)−1(−g) (19)

is the solution of the problem (18), if and only if there exists
ν ≥ 0 such that

• A+νI is positive semi-definite
• if ν > 0, then‖x− xi‖2 = rw

If such aν exists, it is unique.

Levenberg-Marquardt algorithms typically proceed as fol-
lows. Equation (19) defines a trajectoryx(ν), and we seek
the value ofν such that

‖x(ν)− xi‖2 = rw (20)

This is a nonlinear equation in one variable,ν, and is rela-
tively straightforward to solve.

Insight into the calculation is provided in Figure 5. Here
we see the contours of a two-dimensional quadratic,Qi , as-
sociated with data pointxi . The unconstrained minimum of
Qi is shown, and this is the solution of the problem (19), for
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6 Brodlie et al / Constrained Visualization

Figure 5: Levenberg-Marquardt algorithm: The dotted line
shows the trajectory ofx(ν) asν varies. Each point on this
trajectory is the solution of a constrained minimization ofQi
for some value of rw. One instance of rw is shown in the di-
agram. For rw = 0, the minimum is atxi and as rw increases
the minimum follows the trajectory shown, until eventually
the unconstrained minimum is reached. Increasing rw fur-
ther does not alter the minimum.

sufficiently largerw. However as we reducerw, the trajec-
tory x(ν) follows the path shown in the dotted line towards
xi , which it reaches asrw tends to zero. For any givenrw, the
point where the trajectory intersects the circle‖x−xi‖2 = rw

is the required minimum point.

This example also gives us insight into what happens
when we replaceQi by its modified formRi . Figure 6 shows
the contours ofRi corresponding to theQi of Figure 5. No-
tice that the contours are identical in shape, in fact it is only
the values attached to contours that change. The contour line
throughxi is unique in being unchanged, those below are in-
creased, those above are decreased. The zero contour goes
through the intersection between the trajectory and the con-
straining circle.

Although the figures describe the two-dimensional case,
note that the Levenberg-Marquardt algorithm applies to any
dimensionality.

3.5. Practical Examples in 2D and 3D

As noted earlier, there are many examples where positive in-
terpolants are important. The case we use here to illustrate
the method is rainfall data from sites in New Zealand, sup-
plied by the New Zealand National Institute of Water and
Atmospheric Research [NIW05]. The data was collected at
some 133 stations throughout New Zealand, and represents
the measurement of total rainfall in millimetres, for 2nd May
2002. Figure 7 shows interpolation using the normal, uncon-
strained MQS method, using all the data for the interpolation

Figure 6: Transformation from Qi to Ri : The diagram shows
the contours for Ri which is a scaled and shifted transform
of the Qi of Figure 5, the factorsα,β chosen to achieve
positivity using equation (11). Notice that the contours are
unchanged in shape. Their values however are transformed:
those above fi are reduced in value; those below fi are in-
creased in value; the fi contour line is unchanged in value.
The dotted line shows the zero value contour of Ri : this line,
which passes through the constrained minimum point of Ri ,
has had its value increased from Qmin

i to zero.

but zooming in on a region at the north part of New Zealand’s
South Island, Farewell Spit. The contour map shows the in-
terpolant generating negative values, which are clearly un-
real. By contrast, Figure 8 shows the constrained method,
with all areas showing positive rainfall values. The small cir-
cles indicate data points.

Figures 9 and 10 show similar contrasting behaviour in a
region near Arthur’s Pass on South Island.

These examples are both two-dimensional. In order to il-
lustrate the method in 3D, we included the heights of the
weather stations as well as the latitude and longitude, and
created a 3D Shepard interpolant. To display the rainfall in
the Arthur’s Pass region, we used the unconstrained MQS to
create a surface approximating the terrain, and then evalu-
ated the 3D rainfall interpolant over this surface - first using
the 3D unconstrained interpolant (shown in Figure 11) and
second using the 3D constrained interpolant (shown in Fig-
ure 12). As expected, negative rainfall values occur with the
unconstrained, but not the constrained version.

4. General Constraints

Once we know how to achieve a positivity constraint, we are
able to applyany constraint on the value of the interpolant,
provided the constraint is satisfied by the data. We considera
variety of cases in turn, and then illustrate with an example.
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Figure 7: Unconstrained MQS Interpolation of Rainfall
Levels near Farewell Spit, New Zealand
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Figure 8: Constrained MQS Interpolation of Rainfall Levels
near Farewell Spit, New Zealand

4.1. Arbitrary Lower Bound

Suppose we wish to construct an interpolantF(x) such that

F(x) ≥ B(x) (21)

whereB(x) is any function ofx. Suppose the data valuesfi
satisfy the constraints

fi ≥ B(xi), i = 1,2, . . .N. (22)

A simple approach (as suggested by Chan and Ong
[CO01] and Asim and Brodlie [AB03]) is to convert this into
an equivalent positivity problem. Using the techniques just
described, we construct a positive interpolantT(x) to the
positive data valuesti = fi −B(xi), and form the required
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Figure 9: Unconstrained MQS Interpolation of Rainfall
Levels near Arthur’s Pass, New Zealand.
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Figure 10: Constrained MQS Interpolation of Rainfall Lev-
els near Arthur’s Pass, New Zealand

interpolantF(x) as:

F(x) = T(x)+B(x) (23)

This has important applications where one wants to con-
struct one surface above another. This would occur for exam-
ple with borehole measurements, where one wanted to show
one strata of rock above another. The case of an arbitrary
upper bound follows similarly.

4.2. Upper and Lower Bounds - the[0,1]-constraint
problem

Suppose we want to constrain the interpolant to the range
[0,1] - for example, the data might be expressed as fractions.
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Figure 11: Unconstrained MQS Rainfall Draped over Un-
constrained MQS Terrain. Note the white area indicates neg-
ative values of rainfall.
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Figure 12: Constrained MQS Rainfall Draped over Uncon-
strained MQS Terrain

We apply exactly the same approach as for positivity, scaling
Qi to make its range fit within[0,1], and then shifting so that
interpolation is preserved. Specifically, we construct a new
basis functionRi as:

Ri(x) = αQi(x)+β (24)

where we apply a scale factorα ∈ [0,1] to reduce the range
of Qi and a shift factorβ to maintain interpolation. The re-
quired scale factorα is the smaller of the scale factors re-
quired to achieve lower bound of 0 and upper bound of 1,
namely

α = min{αlower,αupper}

where

αlower =
fi

fi −Qmin
i

,αupper=
1− fi

Qmax
i − fi

where Qmax
i ,Qmin

i are the maximum and minimum of
Qi within the region it is active. Again the Levenberg-
Marquardt method is used to identify the maximum and min-
imum values. Note that using the smaller of the twoα values
means thatbothconstraints are satisfied: choosing a lowerα
than required to satisfy a constraint will simply ‘flatten’ the
function Ri more than is actually required, andRi will lie
well within the corresponding bound. As in section 3.2, if
any fi equals 0 or 1, the correspondingRi(x) will be a con-
stant (0 or 1 respectively). As before,β = (1−α) fi.

We illustrate this technique on a test example from Lan-
caster and Salkauskas [LS86]. A functionS(x,y) is defined
as:

S(x,y) =















1.0 if (y− x) ≥ 0.5
2(y− x) if 0.5≥ (y− x) ≥ 0.0
cos(4πr)+1

2 if r ≤ 1
4

0 otherwise

wherer =
√

(x−1.5)2 +(y−0.5)2.

The functionS(x,y) is shown in Figure 13. Notice that it
has areas where it is exactly zero, and a peak and upper shelf
where it has a value of 1.0. A contour representation is also
shown, as Figure 14, where we additionally show the 40 data
points that were used to construct the test data.

We construct a[0,1]-constraint test problem by evaluating
S(x,y) at a random set of 40 points, and requiring the inter-
polation scheme to reconstruct the function in such a way
that it remains within the[0,1] limits. A sequence of figures
shows how the new method performs. In Figure 15, we show
the surface recreated by the unconstrained MQS technique.
It is clear that it goes below zero and above one, and this is
confirmed very clearly in the contour representation, shown
in Figure 16.

By contrast, in Figure 17, we show the surface generated
by the constrained method. It lies within the[0,1] limits, as is
confirmed by the contour representation shown in Figure 18.
Notice that the flat plane with zero height, where many of the
data values equal the constraint, is reproduced quite well by
the algorithm. In this area, many of theRi functions will be
constant, equal to zero, and this enables a good reconstruc-
tion of the base plane.

4.3. Arbitrary Upper and Lower Bounds

Having solved the[0,1] constraint problem, it is then easy
to solve the general problem of constructing an interpolant
F(x) subject to upper and lower bounds, that is,

A(x) ≥ F(x) ≥ B(x). (25)

To achieve this we create a new set of data values
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Figure 13: Lancaster and Salkauskas function S(x,y) - Sur-
face View
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Figure 14: Lancaster and Salkauskas function S(x,y) - Con-
tour Map

ti =
fi −B(xi)

A(xi)−B(xi)
(26)

We construct a[0,1]-constrained interpolantT(x) to the
data points(xi , ti), and then constructF(x) as:

F(x) = T(x)(A(x)−B(x))+B(x) (27)

Note that everything in this constrained section would ap-
ply to any interpolation method for which positivity, or[0,1]
constraint, can be proved.

To illustrate the method we show a rather contrived ex-
ample where we have defined data values randomly between
upper and lower quadratic ‘bowls’, and required an inter-
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Figure 15: Unconstrained reconstruction of Lancaster and
Salkauskas function S(x,y) - Surface View
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Figure 16: Unconstrained reconstruction of Lancaster and
Salkauskas function S(x,y) - Contour Map

polant to be created that keeps within the limits imposed by
the bowls. The result is shown in Figure 19.

5. Interpolation Quality

An important issue concerns the quality of the new inter-
polant, in comparison with the original, unconstrained inter-
polant. In the original method, a quadratic basis function is
computed as interpolating the associated data point, and as
the best weighted least-squares approximation to the other
data points. In the constrained interpolant, we keep the inter-
polation property, and we keep the same shape - but we lose
the best least-squares property when we apply the transfor-
mation. Moreover, in order to ensure positivity of the over-
all interpolant, we make sure each basis function is positive
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Figure 17: Constrained reconstruction of Lancaster and
Salkauskas function S(x,y) - Surface View
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Figure 18: Constrained reconstruction of Lancaster and
Salkauskas function S(x,y) - Contour Map

within its region of influence - a sufficient rather than neces-
sary condition. Thus we may modify basis functions, losing
the least-squares property, when it is not strictly necessary.
It is reasonable to ask therefore how much we sacrifice the
quality of interpolation in order to preserve positivity.

We evaluate the quality of the new interpolant by the fol-
lowing experiment. For the Lancaster and Salkauskas func-
tion we construct the unconstrained and constrained inter-
polants, based on a series of datasets where the number of
randomly chosen points progressively increases. We mea-
sure the quality by evaluating the interpolants on a 25x25
grid of points, and calculating the RMS error between the
exact and calculated values. The results are shown in Ta-
ble 2. The column headed ‘Uncon RMS (con fails)’ shows
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Figure 19: Surface between Surfaces. In this figure, we show
lower and upper bound quadratic surfaces as a wireframe
mesh, and the constructed interpolant as a shaded surface.
The interpolant is constructed from data that is randomly
located, with random values in the range between the lower
and upper bounds.

No of Uncon RMS Con RMS Blend RMS
Data Points (con fails)

20 1.04 (211) 0.90 0.82
40 1.53 (259) 0.35 0.50
60 0.40 (211) 0.41 0.40
80 0.90 (214) 0.39 0.38

100 0.34 (190) 0.35 0.30

150 0.37 (197) 0.20 0.18
200 0.13 (170) 0.19 0.13
250 0.09 (149) 0.14 0.10
300 0.08 (171) 0.12 0.09
350 0.08 (133) 0.10 0.08
400 0.07 (133) 0.11 0.08

Table 2: Interpolation Quality for Original Unconstrained
MQS, Constrained MQS and Blended MQS

the RMS error followed in parentheses by the number of
evaluated points which fail the[0,1] constraint out of a total
of 625. The column headed ‘Con RMS’ shows the RMS er-
ror for the constrained interpolant, where of course there are
no evaluated points which fail the constraint.

Consider the first three columns of the table. It is clear
that for a small number of points, that is, relatively sparse
data, the constrained interpolant is superior using RMS er-
ror as the criterion. We can see from the images in Figure 15
and Figure 17, that there are some points where the con-
straints are exceeded by a wide margin (these figures corre-
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spond to 40 data points). We find that for up to 150 points,
the gain in overall quality from imposing the constraints gen-
erally offsets the loss from transforming the basis functions.
However as the number of data points increases, then the
quality of the unconstrained interpolant is better, and we
can infer that the loss of the least squares property starts
to penalise the constrained version. (However note that the
unconstrained method still creates an unsatisfactory inter-
polant, in the sense that over 20% of evaluated points fail
the constraints, in all the experiments we ran.)

The above analysis motivates a modified approach in
which we retain more of the least-squares fitting property
of the basis functions. Consider the[0,1] constraint case
which we have here (the other constraint cases are handled
similarly). When the Levenberg-Marquardt algorithm deter-
mines that a basis function goes outside the[0,1] interval,
rather than use the transformed functionRi directly, we cre-
ate a basis function which is a blend of the unconstrained
Qi and the constrainedRi . The blend is computed as a linear
combination:

(1.0−θ)Qi(x)+θRi(x) (28)

Hereθ is chosen so that the unconstrained interpolantQi

is selected (θ = 0) for values ofx where 0.25≤ Qi ≤ 0.75
and the constrained interpolantRi is progressively blended
in (with θ increasing from 0 to 1) for 0.0 ≤ Qi ≤ 0.25 and
0.75 ≤ Qi ≤ 1.0, with finally θ = 1.0 for Qi ≤ 0.0 and
Qi ≥ 1.0. In this way we use the unconstrained basis function
in regions where it comfortably satisfies the constraints; we
use the constrained basis function where the unconstrained
one fails; and we blend smoothly in the intermediate re-
gion. The final column of the table shows the success of the
strategy: we achieve consistently good interpolation quality
while still maintaining the constraints. Visually there islittle
perceptible difference in the two interpolants.

6. Conclusions and Future Work

We have shown how the modified quadratic Shepard method
for interpolation of scattered data of any dimension, can be
constrained to preserve positivity of the data. This has been
demonstrated in examples in 1D, 2D and 3D. The method
has also been adapted in order to constrain the interpolant
within [0,1] limits, so that it can be used to interpolate frac-
tional data. We have shown how the positivity and the[0,1]
constraints can be generalised to any arbitrary functions as
lower and upper bounds.

We would like to be able to extend this work to cover other
approaches to data interpolation, such as RBFs, and to data
approximation where we do not require the function to pass
through the data points.

An interesting application of the work is to the visualiza-
tion of data subject to error, where we wish to show upper

and lower bound visualizations that lie entirely above and
entirely below the predicted ‘surface’. If the error boundsfor
each data point are uniform, that is, the value at each data
point xi , i = 1,2, . . . ,N is within the range[ fi − δ, fi + δ],
then for any interpolant we can form upper and lower er-
ror surfaces asF(x)±δ. A more interesting case, especially
relevant to this paper, is when the error is expressed as a rela-
tive quantity. Suppose for positive data,fi , there is a uniform
relative error bound, that is, the value is within the range
[(1.0− δ) fi , (1.0+ δ) fi ]. In this case the values always lie
in a positive range. If we use the methods described in this
paper to construct a positive interpolantF , then the ‘error’
surfaces(1± δ)F are also positive and lie entirely above
and belowF . In Figure 20, we show these surfaces for the
Arthur’s Pass rainfall data (shown earlier in Figure 10 as a
contour plot), where there is a 10% error bound associated
with the data values. Further work is needed to improve the
visual representation of error surfaces.
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Figure 20: Error Surfaces: Arthur’s Pass Rainfall Data with
10%Upper and Lower Error Bound Surfaces
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