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Abstract 10 

Techniques to predict temporal variations in concentrations and loads of suspended solids from 11 

highway runoff are required to estimate impacts on receiving water ecology and to inform the design 12 

of interception/treatment devices.  A recent UK study included the collection of rainfall, highway runoff 13 

rates and sediment load and quality data from six different sites where motorway runoff drained 14 

directly into a receiving watercourse.  This data set is used to critically evaluate a previously-published 15 

model (Kim et al, 2005) aimed at predicting temporal variations in runoff quality.  The comparisons, 16 

based on discrete samples collected during 21 storm events, suggest that a simplification of the 17 

model, requiring just two parameters, provides a robust estimate of temporal variations in TSS.  18 

The model 19 

captures first flush effects well, but the identified generic parameters fail to fully-predict the variation in 20 

absolute TSS values that are observed in practice. 21 

1 INTRODUCTION 22 

1.1 Background 23 

An integrated hydrological and biological research programme was jointly funded by the UK Highways 24 

Agency (HA) and the Environment Agency (EA) to provide authoritative advice on the circumstances 25 

in which highway runoff is likely to have a significant ecological effect on receiving waters, aimed at 26 

ensuring that the Highways Agency will meet the requirements of the EU Water Framework Directive.  27 

The research programme comprised 3 projects.  Two of the projects aimed to develop ecologically-28 

based receiving water standards for: i) soluble pollutants (via Runoff Specific Thresholds); and 29 
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ii) sediment bound pollutants, including an estimate of the likelihood for sediment deposition within the 30 

receiving water (Guymer et al, 2010).   31 

The third project was intended to identify key pollutants and develop a predictive model for pollutant 32 

concentrations and loads in highway runoff.  Predictive relationships for both soluble and sediment-33 

derived Event Mean Concentrations (EMCs) were derived using multiple linear regression analysis 34 

(Crabtree et al., 2009).  The factors which were found to have a significant influence on pollutant 35 

concentrations were: climatic region, Annual Average Daily Traffic (AADT), month, maximum hourly 36 

rainfall intensity and antecedent dry weather period.  However, the best degree of explanation, which 37 

was for dissolved copper, was only 38%.  For some determinands, such as total cadmium and PAHs, 38 

multiple linear regression could not be used, so stochastic, Monte Carlo, simulation models were 39 

employed instead.   40 

This research programme resulted in the development of a Highways Agency Water Risk Assessment 41 

Tool (HAWRAT) which is now the focus of the revised HD45/09 Guidance (HMSO, 2009).  The 42 

spreadsheet-based tool employs a statistical approach to predicts EMCs throughout a 10 year rainfall 43 

time series for a local site, and compares the predicted concentration statistics with the derived Runoff 44 

Specific Thresholds to advise on the level of ecological impact.  However, it does not attempt to 45 

describe the temporal variations in concentration or load during individual events, or relate this to the 46 

receiving water hydrological response. 47 

As part of the second UKHA/EA project, which focused on sediment impacts, detailed studies were 48 

performed in six rivers in the UK that receive untreated highway drainage.  At least 10 storm events 49 

were sampled at each site, and the amount of particulate material discharged during each event and 50 

its associated metal and PAH contaminants measured (Gaskell et. al., 2004).  Importantly, the 51 

sampling programme for this project included the collection of discrete  rather than composite  52 

samples of highway runoff.  More than 97% of particulate material discharged during storm events 53 

was found to be less than 63 m in size and particle-associated contaminants were detected in all 54 

storm samples at all sites.  In-situ deployments of invertebrates were performed on four occasions to 55 

assess the potential bioaccumulation of particle-associated contaminants in highway drainage.  The 56 

results (Gaskell et. al., 2007) showed that stream organisms were detrimentally impacted when 57 

sediments in the highway runoff deposited on the stream bed close to the outfall.  This implies that the 58 

timing of sediment discharges needs to be considered alongside the hydrological response in the 59 
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receiving water course in order to assess the risk of ecological impacts.  In addition, the impacts of 60 

contaminants in runoff on the biota of receiving watercourses depend on the magnitude, duration and 61 

frequency of exposure (e.g. US EPA, 2000).  Sediment in highway runoff has been shown to correlate 62 

strongly with individual pollutant loads (Sansalone et al., 1998; Zanders, 2004).  Luker and Montague 63 

(1994) suggest that up to 85% of pollutants are to be found as, adsorbed on, or absorbed by 64 

sedimentary particles.  65 

The UKHA/EA sediment impacts project focused on assessing the quantity and quality of 66 

(representative) highway-derived Total Suspended Solids (TSS) and their impacts on stream ecology 67 

for a range of different receiving waters.  It did not specifically set out to generate data that would 68 

enable TSS concentrations and loads to be predicted for unmonitored outfalls, although it is clear that 69 

this predictive capability is critical for the development of robust impact assessment tools.  This paper 70 

therefore takes the opportunity to explore the previously-acquired data and seeks to identify a 71 

modelling approach that is capable of identifying temporal trends in TSS. 72 

1.2 Previous research on highway runoff TSS 73 

Many researchers have tried to develop useful models for predicting the quantity and quality of runoff 74 

from highways.  These have ranged in scope from site-specific regression-based studies focusing on 75 

the prediction of EMCs from storm event parameters, to more complex, physically-based, models 76 

aimed at generating temporal variations in TSS through a more complete understanding of the 77 

influence of catchment characteristics and rainfall-runoff processes.  However, the complexity of the 78 

underlying processes, and the unique characteristics of different locations and different rainfall events, 79 

means that there is no single widely-accepted robust, universal, modelling approach.  Indeed, in a 80 

recently reported study measuring and predicting pollutant runoff from roads and parking lots in 81 

Korea, Maniquiz et al. (2010) presented results from over 40 events.  For TSS they reported mean 82 

EMCs as 76 ± 95 mg/l and mean loads as 1.56 ± 2.42 kg, illustrating the large variability in values.  83 

This data was evaluated using multiple linear regression as a function of rainfall variables: total rain, 84 

antecedent dry days, rainfall duration and average rainfall intensity.  Pearson correlation coefficients 85 

for EMCs were all negative, whilst for event loads the antecedent dry days counter-intuitively exhibited 86 

negative correlations.  the high uncertainties water quality sampling or long 87 
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term monitoring is needed to gather more data that can be used for the development of estimation 88 

models  89 

The following paragraphs cite some representative examples to provide a brief overview of the scope 90 

and limitations of the different types of research that has been undertaken. 91 

Irish et al. (1998) developed a regression model for predicting total storm loads of constituents from 92 

highway run-off based on storm-water data collected from an expressway in Austin, Texas, USA.   93 

TSS was positively correlated with storm event characteristics (discharge, rainfall intensity and the 94 

antecedent dry period), whilst the intensity of the preceding storm showed a negative correlation.  For 95 

a small event, preceded by a high-intensity event, the multiple regression relationship predicts a 96 

negative TSS load. This highlights one of the limitations of regression analysis, especially when 97 

predictions are made outside the range of the original variables.  Overall the regression equations 98 

developed were able to describe over 90% of the observed loads in highway storm water runoff, but it 99 

should be noted that these are limited to total storm loads. 100 

Opher and Friedler (2009) used data driven techniques (genetic algorithms) to develop and calibrate 101 

a predictive model for EMC of highway runoff pollutants.  The models were trained and verified using 102 

68 runoff events monitored in 92 highway sites in California between 1998 and 2004 and it is reported 103 

that the correlation between predicted and measured values of both training and verification data was 104 

mostly higher than previously-reported values.  However, the approach is limited to a single, lumped, 105 

EMC prediction, and does not provide a basis for predicting temporal variations in TSS 106 

concentrations. 107 

The model proposed by Massoudieh et al. (2008) considered both mobile and attached sediments 108 

were considered, together with the build-up during dry periods.  Genetic algorithms were employed to 109 

calibrate the best-fit model parameters from field observations.  However, in some cases the 110 

predicted and measured temporal variations did not closely match and no explanation was offered.  111 

They concluded that the technique lacked generalization, requiring site data for calibration and so 112 

could not be used in a predictive capacity. 113 

Aryal et al. (2005) present data from long term monitoring in a highway drainage system in 114 

Switzerland.  Suspended solids samples were taken at intervals corresponding to 0.12 mm rainfall in 115 

the 8.4 ha drainage area.  Additionally, the drainage network, comprising 67 manholes and 280 gully 116 
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pots, was simulated using general-purpose, deterministic drainage modelling software, InfoWorks-CS.  117 

A summary of the runoff simulation, comparing measured and predicted total outflow and peak 118 

discharge, was given for 11 storms, with 6 of the storm predictions categorized as good.  The 119 

suspended solids concentrations were predicted based on an initial amount on the surface (maximum 120 

initial deposit of 12.5 kg/ha), sediment erosion and wash-off.  In all predictions of a single discharge 121 

event the suspended solids load was significantly underestimated and this was attributed to the 122 

inadequate consideration of pipe sediment conditions.  Long term simulations that permitted the 123 

consideration of initial surface and pipe conditions gave good agreement to measurements. 124 

For the UKHA/EA data, information describing the components of the drainage system between 125 

carriageway and outfall was unavailable, and it may be argued that the effort involved in collecting the 126 

relevant data and generating a detailed hydraulic model for each individual outfall may be unjustifiably 127 

high.  As a result several authors have considered simpler, semi-empirical, approaches which aim to 128 

predict runoff quality directly from either the rainfall or a measured or modelled runoff profile. 129 

Kim et al. (2005) used data from a 3 year study to develop a new four parameter runoff quality model 130 

to describe temporal concentration variations for a suite of parameters.  The general form of the 131 

equation, written in normalized time, i.e. as a proportion of storm duration, is: 132 

    -    (Eq. 1) 133 

where c(t) is the pollutant concentration, v(t) is the normalized cumulative volume (between 0 and 1) 134 

135 

were shown 136 

between predictions and measurements for a few storms and it was concluded that individual storm 137 

event calibrations of the four parameter model could be used to fit to approximately 70% of the 138 

events.  Event-specific calibrations were less good for TSS (R2 = 0.84) than for some of the other 139 

pollutants that they considered.  To use Equation 1 for predictions, the model parameters were 140 

related to storm characteristics.  For TSS, Kim et al. (2005) correlated the parameters with the causal 141 

variables available within the database and obtained: 142 

     = 0.007(Trun) + 3.83     (Eq. 2) 143 

    * = -1475logn(ARV) - 9539    (Eq. 3) 144 

    * = -83.74logn(Trun) + 489.1    (Eq. 4) 145 
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     = 240.8logn(ADD) - 164.8    (Eq. 5) 146 

where Trun is the total runoff volume (m3), ARV the average runoff velocity (m/hr) and ADD the 147 

antecedent dry days (days).  The average runoff velocity (ARV) is defined as total rainfall (i.e. rainfall 148 

depth x catchment area) divided by catchment area and storm duration; it is therefore equivalent to 149 

mean rainfall intensity for the storm event. 150 

The Kim et al. (2005) model was developed from a well-established US highway runoff database, its 151 

underlying structure appears to have been developed from a good understanding of the key 152 

controlling physical processes, and the authors provided formulae that enable parameter values to be 153 

estimated given only the catchment area and the storm event characteristics.  For these reasons, 154 

there appeared to be a benefit in evaluating its ability to predict the observed TSS concentrations 155 

throughout a storm event in the context of the UKHA/EA sediment project data set. 156 

2 METHODOLOGY 157 

2.1 Field Data Collection 158 

Six motorway/trunk road catchments in England were identified for data collection.  The sites cover a 159 

range of geological, climatic, traffic flow, water chemistry and sediment characteristics (Gaskell et al, 160 

2004).  Surface runoff was carried from each highway catchment via a combination of gullies and/or 161 

filter drains.  One of the major limitations of the UKHA/EA study data set is the lack of clear and 162 

reliable information regarding the as-built construction details of each of the sites.  This includes a 163 

lack of specific information about the engineering detail of the drainage system.  Similarly, verified 164 

drainage areas for the six highway sites were not available.  Detailed survey work to obtain this 165 

information  for example via dye tracing  would likely have involved road and carriageway closures, 166 

and could not be supported by the project sponsors at the time.  Best estimates of the catchment area 167 

(based on available drawings and/or site reconnaissance) for each outfall are provided in Table 1.  168 

Based on a mass-169 

which are also shown in Table 1.  The effective 170 

catchment area is defined as the average area required to produce the measured runoff from the 171 

monitored rainfall, assuming that there was 100% runoff (i.e. 100% impermeable with no initial 172 

losses).  The latter approach is limited in that it ignores initial losses, but the lack of any consistent 173 
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agreement between the engineering best estimates and the mass-balance calculations suggests that 174 

catchment area should not be employed for model development.  The lack of detailed information 175 

regarding highway catchments and drainage design is an acknowledged limitation and the HA are 176 

undertaking a detailed survey of all their assets. 177 

A typical small scale receiving water, HA37, is shown in Figure 1a, while Figure 1b shows the highway 178 

and drain at HA12.  At each of the sites, a tipping-bucket rain gauge measured the variation in rainfall 179 

intensity with time.  Sensors installed in the highway drain (Figure 1c), just upstream of the outfall, 180 

recorded temporal variations in the turbidity, depth and velocity of the highway runoff. 181 

In addition, 24 x 1-litre samples were taken from the drain by an automatic sampler for each storm at 182 

each site.  Over a 125 minute period during a storm, 10 samples were taken at 2 minute intervals, 183 

followed by 5 samples at 5 minute intervals and 8 at 10 minute intervals, with a final sample 24 h later.  184 

This pre-determined sampling pattern did not always cover entire storm events.  The sampler was 185 

triggered when the discharge, related to the depth above the temporary installed weir (Figure 1c), and 186 

turbidity of the water exceeded certain limits, so the sampled events are inherently biased towards 187 

 188 

The runoff samples were centrifuged at 3000 rpm for 15 minutes, and the retained solids weighed to 189 

determine the sediment concentration.  Centrifuging was adopted rather than the British Standard 190 

(BS) filtration method owing to the difficulty in retrieving the particulates from filter papers to perform 191 

chemical analysis.  Additionally, the majority of the particles in the runoff were less than 45 µm in 192 

diameter and would not be retained by BS filtration. 193 

Storm events were isolated from the continuously recorded raw data if the discharge and turbidity 194 

readings exceeded set values.  The antecedent dry weather period was defined for each storm as the 195 

time from the end of the last rainfall event. 196 

Although a minimum of 10 events was sampled from each of the six sites, only 21 storms were judged 197 

suitable for the present purpose.  Reasons for the rejection of specific events mainly related to 198 

equipment failures (e.g. drifting or erratic depth sensor data, missing rainfall data (due to damaged or 199 

stolen rain gauges)) or poorly-timed runoff sampling.  The 21 events encompass five out of the six 200 

sites; no records from HA12 were included.  A summary of the events is provided in Table 2.  Event 201 

notation is in the form of Site Name (e.g. HA01), followed by the date in yymmdd format.  The 202 
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estimated storm load was determined from the discrete sample load multiplied by the instantaneous 203 

flow rate, integrated for the 23 discrete samples taken over 125 minutes after the first sample. 204 

The rainfall depths and durations for the 21 storms have been compared with the long-term data 205 

record for the relevant locations (FEH CD-ROM, NERC, 1999).  The events range in depth from 1.2 to 206 

15.4 mm, and in duration from 0.4 to 20.2 hrs.  Rainfall depths correspond to between 12.5 and 139% 207 

of the expected 1 yr return period event, with the mean value being 58% (median 56%).  Events 208 

sampled at sites HA01, HA08 and HA37 include events larger and smaller than the 1 yr return period 209 

event, whereas the data for HA09 and HA11 corresponds only to small (i.e. return period < 1 yr) 210 

events.  It may be concluded that the data set provides a reasonable representative sample of rainfall 211 

events for river impact (water quality) applications. 212 

The 21 storms included several multi-peaked events.  As the TSS samples typically corresponded to 213 

one specific peak only, the relevant sub-event was isolated from the complete storm and the partial 214 

storm data (see Table 2) was employed in the model development.  This is consistent with the 215 

ultimate aim of identifying a methodology that can be applied to predict TSS concentrations and loads 216 

associated with design (i.e. single peaked) rainfall events.    217 

2.2 An assessment of modelling approaches 218 

The model development comprised four phases.  Phases 1 and 2 focused on the Kim et al. (2005) 219 

model.  Phase 1 220 

inherent response to modifications to its four parameters.  In Phase 2, a direct evaluation against the 221 

UKHA/EA dataset was undertaken.  Preliminary findings from Phases 1 and 2 were reported by 222 

Stovin et al. (2010), and a summary of key conclusions is reproduced here.   223 

The Stovin et al. (2010) study suggested that the Kim et al. (2005) model might usefully be reduced to 224 

a simpler two-parameter form, in which TSS is dependent upon the normalised cumulative proportion 225 

of total runoff volume, TSS(t)=f{v(t)}: 226 

    TSS(t) = v(t) * Exp[- v(t)]    (Eq. 6) 227 

Phase 3 of the modelling work therefore focused on the systematic identification of the two 228 

parameters,  and *.  The lsqcurvefit function in MATLAB (2007) was utilised to identify the best-fit 229 

parameter values, based on the monitored Q and TSS time-series data.  This was done 230 
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independently for each monitored storm event.  For generic and practical model applications, it is 231 

necessary to identify suitable parameter values for application to unmonitored catchments.  232 

Regression analyses were therefore undertaken to establish potential mechanisms for estimating the 233 

parameter values from catchment and/or storm event characteristics.  Scatter plots were generated to 234 

explore any potential dependencies of  and * on the storm event characteristics identified in Table 235 

2.  However, these failed to reveal any clear dependencies; therefore further comprehensive 236 

statistical analysis was not felt to be justified.  Peak TSS concentration,  and * were examined for 237 

evidence of site-specific variations, but similarly this did not provide strong support for the inclusion of 238 

site-specific parameters within the model.  The limited number of storm events also cautions against 239 

too much parameter fitting.  Instead, a single set of generic values for  and * was obtained by 240 

applying the lsqcurvefit function in MATLAB (2007) to the combined data set (all events).  The validity 241 

and usefulness of this generic model is discussed in section 3.3. 242 

One potential limitation of the (simplified) Kim et al. (2005) approach is that, mathematically, it can 243 

only predict a single peak in TSS.  However, real runoff data often include complex temporal 244 

variations with multiple peaks in both discharge (Q) and turbidity (and TSS where available).  Indeed, 245 

preliminary visual inspection of the UKHA/EA storm event data set suggested that in many cases TSS 246 

varied systematically in proportion to the measured flowrate.  Therefore, an alternative TSS modelling 247 

approach was evaluated, in which TSS is dependent simply upon Q, TSS(t)=f{Q(t)}: 248 

    TSS(t) = kQ(t)n    (Eq. 7) 249 

lsqcurvefit function was utilized to identify the best-fit values of k and n.  In this case 250 

the identified parameters varied widely, and no systematic dependencies with the obvious candidate 251 

variables emerged.  This approach is therefore not discussed further.  252 

All the modelling approaches described above require an accurate temporal runoff (Q(t)) profile as 253 

input.    Although the TSS model development work made use of measured runoff profiles, it would be 254 

beneficial to provide a modelling approach that may be utilised to evaluate TSS load profiles (i.e. Q x 255 

TSS) for completely unmonitored catchments.  Phase 4 therefore focused on the potential to develop 256 

a suitable rainfall-runoff model.  Jones et al. (2008) showed that a reasonable estimate of runoff for 257 

these systems could be generated from the rainfall record via a storage routing approach.  However, 258 

the method was reliant on the use of catchment area data, which  as described above for this study 259 
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 cannot be relied upon.  The application of the modelling approach described here is therefore 260 

limited by the requirement that runoff data is available, either from field monitoring or as a result of 261 

hydraulic modelling undertaken during the drainage design.  Although all the analysis presented here 262 

was based on measured runoff data, there are many commercial drainage design tools in existence 263 

that could be deployed to estimate the temporal runoff profile from a highway outfall in response to 264 

design rainfall event. 265 

3 RESULTS AND DISCUSSION 266 

3.1 Sensitivity analysis of the Kim et al. (2005) model 267 

concentration profiles from UK 268 

highways, it is important to check that the fundamental characteristics of the two datasets are 269 

comparable.  Figure 2 compares the ranges of TSS EMC and mass loading values between the two 270 

data sets.  The UKHA/EA data presented here is taken directly from the original UKHA/EA study 271 

report (Gaskell et al., 2007), and therefore includes events that were subsequently removed or 272 

trimmed to generate the subset of 21 storms considered in the present context.   273 

In Figure 2 a high degree of comparability in EMC values is observable, and this suggests that it is not 274 

unreasonable to attempt to apply the Californian model in a different regional context.  The mass 275 

loading values are consistently around one order of magnitude lower in the UKHA/EA data set 276 

compared with the Kim et al. (2005) data set.  This may reflect the fact that their data was collected in 277 

highly urbanized catchments, whereas the UKHA/EA data was collected in rural sections of trunk 278 

roads.  It may also reflect uncertainties in the calculation of both total sediment mass and  certainly 279 

in the case of the UK data  catchment area.  The UKHA/EA values were determined from a 280 

maximum of 24 flow samples, integrated with the runoff flow record; the Kim et al. (2005) data 281 

appears to have been predicted via use of their model fitted to observed sample values to enable 282 

interpolation and integration.  Differences may also indicate sediment deposition in the UKHA/EA 283 

system at some point between the carriageway and the outfall/monitoring location. 284 

In the model, the four parameters ( , , and ) are determined via regression-based relationships.  285 

Figure 3 shows, for each of the Kim et al. (2005) four model coefficients, how they vary in relation to 286 

the storm characteristics ADD, Trun and ARV.  The figure also shows the range of the relevant storm 287 
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characteristics experienced in both the Kim et al. (2005) study (open circles) and the present 288 

UKHA/EA study (+ symbols).  In most cases there is a good range of overlap between the two data 289 

sets, although the Kim et al. (2005) data show fewer short ADD events and a significant number of 290 

long (>20 day) ADD events (which are not included in the graph for clarity).  This is significant 291 

because for ADDs of less than 1.98 days it may be seen that the value of , which describes the initial 292 

TSS concentration, is negative.  This is concerning, as negative TSS concentrations are physically not 293 

possible.  At the other extreme, values of  in excess of 400 mg/l (10 days ADD) seem high for a 294 

 TSS concentration.  Two of the remaining three parameters (  and ) show both positive 295 

and negative values for the recorded ranges of storm data;  is always positive. 296 

Figure 4 shows how selected combinations of these parameter values impact on the form of the 297 

predicted temporal concentration profile.  The profiles are shown as a function of proportional storm 298 

runoff (v(t) with  = 10, * = 1500,  = 25 and * = -5.  299 

These values were chosen on the basis that they generate a profile of the type typically monitored for 300 

TSS during storm events, i.e. with a rapid rise to a peak concentration during the early part of the 301 

storm (first flush), followed by an exponential-type decay as the easily-eroded surface sediments 302 

become exhausted.  These values are also typical of those used in Kim et al.303 

analysis (their Figure 3).  In each of the other profiles, just one of the parameters has been varied.  It 304 

may be seen that an increase in  produces a decrease in the peak (the opposite of what is shown in 305 

Figure 3 in Kim et al, 2005).  Use of a negative value of  causes the profile to be approximately 306 

reflected vertically about y = , with the profile exhibiting an initial dip (dilution effect).  Any alteration 307 

in  displaces the profile vertically, with the value  = -100 (which is possible for short ADD) 308 

generating a profile for which TSS is negative throughout the storm event.  Increasing  from its 309 

baseline value of -5 to 90 generates a profile in which TSS increases towards the end of the storm.  310 

This is not commonly observed in monitored TSS profiles.  A negative value of  (-90) results in a 311 

more rapid decline, with TSS predictions being negative for more than 50% of the total runoff volume. 312 

Kim et al. (2005) state that one of the benefits of their modelling approach is the flexibility inherent 313 

within the model to represent the wide range of temporal contaminant concentration profiles that are 314 

observed in reality.  However, the potential of the model to generate profiles that are entirely negative 315 

and/or showing increasing levels of TSS towards the end of the event must raise some doubts about 316 

its generic credibility. 317 
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3.2 Model Testing against the UKHA/EA Sediment Study Data Set 318 

For the preliminary evaluation described in Stovin et al. (2010), three storms were selected from the 319 

UKHA/EA data set.  The events correspond to the three largest drainage areas.  Event HA01-050724 320 

is representative of many of the medium to large long duration events, with multiple peaks in the 321 

rainfall and runoff response.  Events HA11-060420 and HA37-050811 were both short duration, with 322 

the latter event having an unusually 323 

design storm profile, whereas the HA37 event exhibits a double-peak in runoff.  None of the selected 324 

events has a particularly long antecedent dry period, although they are all typical for this data set (see 325 

Figure 3).  Initially TSS for each storm event was modelled using the parameter values derived from 326 

the relevant storm characteristics (Trun, ADD and ARV) according to the Kim et al. (2005) published 327 

relationships.  However, the predictions were generally quite poor.  TSS concentrations in the HA01 328 

event were generally over predicted, with unrealistic final concentration levels in excess of 200 mg/l, 329 

approximately an order of magnitude greater than the observed data.  Predictions for the HA11 and 330 

HA37 events, on the other hand, were both characterized by a fall in TSS at the start of the event, 331 

where the monitored data suggests a significant first flush. 332 

It is not clear in Kim et al. (2005) that validation of the model using the derived parameter estimation 333 

relationships was undertaken.  Their own storm characteristics would generate several storms for 334 

which the predicted values of TSS are negative and/or exhibit an initial drop to a minimum value at 335 

around v(t) = 0.2. 336 

3.3 Proposed simplified model 337 

Table 3 summarises the parameter values (  and *) that were identified as best fitting the model (Eq. 338 

6) to the observed TSS data for each of the 21 storm events.  The 2
tR  parameter (Eq. 8, Young et al., 339 

1980) provides a measure of the goodness of fit of the predicted temporal concentration profile )(tp  340 

to the measured data )(tc . 341 

n

1=t

n

1=t

2

2
t

))(c(

)p( - )c(t
 - 1 R

2t

t
 (Eq. 8) 



13 

 

A value of Rt
2 of 1.0 indicates a model that explains the data perfectly; values less than 1.0 indicate 342 

weaker explanatory (or predictive) capability.  However, there are no absolute criteria for determining 343 

whether a model is sufficiently accurate for a specific application, and Rt
2 is more often used as a 344 

comparative measure of accuracy.  In practical engineering terms different application-specific criteria 345 

may also be applied to -for-purpose.  346 

Experience with the types of data sets being considered here suggests that Rt
2 values in excess of 347 

t
2 values below 0.6 tend to indicate a model with 348 

weaknesses in terms of its practical predictive capability.  This would correspond to models that over- 349 

or under-predict the peak concentration or timing by more than 50%, or significantly misrepresent the 350 

shape of the concentration profile.  It may be seen that the TSS = f{v(t)} modelling framework 351 

generates an acceptable model (Rt
2  0.6) in 95% (20 out of 21) of the events. 352 

An understanding of the physical process underpinning the observed TSS profiles would suggest that 353 

the parameter values for  and * might be dependent to some extent on key event variables, 354 

including the Antecedent Dry Weather Period (ADWP), storm depth, duration and intensity.  However, 355 

preliminary explorations using scatter plots (Figure 5) failed to reveal any strong dependencies, and it 356 

was felt that the limitations of the data set did not justify further or more statistically rigorous 357 

exploration.   358 

The values of  and * presented in Table 3 do not suggest any strong dependency on site 359 

characteristics, with considerable overlap between optimised parameter ranges at all five sites.  There 360 

is some indication that both values are typically higher at HA37 when compared with the other four 361 

sites, but the sample size is too small to justify further statistical exploration of these differences.  362 

Similarly, Figure 6 presents the maximum monitored TSS value for each of the sampled storm events 363 

(prior to the data set being filtered for problematic rainfall or runoff data).  Also indicated (solid square 364 

symbol) is the median value for each site.  Considerable variation in the peak TSS concentration is 365 

observed between individual events.  In comparison, the variation between sites is limited, with 366 

considerable overlap in observed peak TSS values.  Again, there is some evidence of elevated TSS 367 

concentration levels at HA37.   368 

Given the limited size of the data set, and the lack of any clear links between the model parameters 369 

and either rainfall event or site-specific characteristics, a lumped optimisation exercise was 370 

undertaken to identify the single generic values of  and * that best fitted the complete data set.  This 371 
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identified  = 7.254 and * = 5940.  Rt
2 values associated with the generic model are included in the 372 

final column of Table 3.     373 

Figure 7 illustrates the measured and predicted temporal TSS profiles for over one third of the 374 

monitored events.  The event-specific (i.e. fitted) and generic parameter values have been used to 375 

provide two alternative model profiles.  In general these plots provide confidence that the single (fixed 376 

parameter) functional relationship between TSS and v(t) provides a useful mechanism for capturing 377 

both the magnitude and temporal profile of TSS concentrations in highway runoff.  The model may be 378 

considered to be robust in that the timing of the peak in TSS is generally well-predicted, and the TSS 379 

concentrations are always physically plausible (never negative) and generally reasonably accurate 380 

(Rt
2  0.6 for 67% (14 out of 21) of the events). 381 

The model performs particularly well for relatively-simple, single-peaked, rainfall events.  This is to be 382 

expected, as it is inherently limited to predicting a single peak in the TSS profile.  Figure 7d 383 

demonstrates that in a more complex event, with three rainfall peaks, each of which generates 384 

corresponding peaks in the runoff and TSS profiles, the effects of sediment supply exhaustion are 385 

such that the decay in predicted TSS following the first peak provides a reasonable match to the 386 

observed data. 387 

Although the timing of the peak TSS appears to be consistently good, the generic model parameters 388 

tend to generate a peak TSS concentration that is invariant at around 300 mg/l.  This is an inevitable 389 

consequence of adopting a fixed value for The model may be observed to under and over-predict 390 

TSS values in some cases (e.g. Figures 7b, g and h).  For most sites both over- and under-predictions 391 

are observed, but for HA37 the peak TSS concentrations in all events are consistently 392 

underpredicted.  Of all the sites HA37 is the only trunk road, not having a hard shoulder or breakdown 393 

lane, all the others are motorways.  Although the traffic loading is relatively low compared with the 394 

other sites, higher levels of vehicular acceleration, deceleration, stopping and starting may well lead 395 

to higher levels of TSS accumulation on trunk routes compared with motorways.  This particular 396 

section of road is a major link to ferry terminals, and has a higher than normal Heavy Goods Vehicles 397 

(HGV) loading (Table 1), although the higher TSS levels may also reflect differences in the level of 398 

treatment occurring in   It is believed that, in contrast to the 399 

motorway sites, HA37 does not include filter drains.  For several storms, the monitored data for HA37 400 
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reveals a double-peak behaviour that does not seem to relate to rainfall.  This probably relates some 401 

complexity in the drainage system. 402 

Of the seven unsatisfactory (Rt
2 < 0.6) predictions using the generic model indicated in Table 3, three 403 

were for HA37.  For the remaining four events, visual inspection of the predictions suggests that the 404 

model provides a reasonable estimate of the temporal profile shape and the timing of the peak.  The 405 

main problem with the prediction is that, in all four cases, the model overpredicts the TSS 406 

concentration values.  Measured peaks of approximately 100 mg/l are predicted to be close to 300 407 

mg/l.  Although it may be argued that such an estimate would be conservative for the planning of 408 

ecological impact mitigation measures, this is acknowledged as a limitation.  Three of the four events 409 

were characterised by complex multi-period rainfalls. 410 

As indicated in Table 3, there are a number of events for which the event-specific model and/or the 411 

generic model did not provide a good fit to the observed TSS data.  412 

limitations with respect to particularly high or low TSS values, other cases of poor fits were 413 

predominantly related to multi-peaked, complex rainfall events and/or events in which the TSS 414 

samples failed to coincide in time with either the start or the peak of the event. 415 

It may be concluded that the generic two-parameter TSS=f{v(t)} model provides a practical tool for the 416 

estimation of TSS temporal profiles in UK Highway drainage outfalls without the requirement for 417 

excessive levels of input data or modelling complexity.  For single-peak (design-type) rainfall events, 418 

the timing of the peak TSS concentration is consistently predicted with a good level of accuracy.  The 419 

identified generic model parameters result in a peak TSS concentration of approximately 300 mg/l.  420 

Although representative of the bulk of the data considered here, it must be appreciated that this value 421 

both under- and over-estimates actual monitored peak values.  There is clearly scope for further work 422 

to improve upon this aspect. 423 

4 MODEL APPLICATION 424 

The present model is not intended to substitute for sophisticated deterministic modelling tools.  425 

However, the complex interactions between site and weather characteristics mean that a highly robust 426 

and accurate highway runoff prediction tool is not currently available to practitioners in the UK 427 

required to assess the potential ecological impacts of highway drainage design options on receiving 428 

watercourses.  There remains a need for practical estimation methods with limited input data 429 
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requirements.  The proposed model improves upon existing EMC-based tools by providing a plausible 430 

estimate of the likely patterns of temporal variation in TSS concentration that will occur.  Where 431 

practitioners in the field have local site knowledge and experience or other modelling tools at their 432 

disposal to predict peak TSS or EMC, it would be perfectly feasible to scale the temporal profile 433 

proposed here accordingly.  Where no additional information is available, the current model may be 434 

considered to provide a plausible approximation to expected temporal variations in TSS. 435 

The following section makes use of a synthetic rainfall profile, both to demonstrate why the temporal 436 

variation in TSS might be important for highway runoff impact assessment, and to outline a potential 437 

framework that might be adopted to undertake such assessments. 438 

Figure 8 demonstrates the application of the modelling framework to a sample design storm.  The 439 

storm corresponds to 10 mm rainfall distributed according to a UK symmetrical summer 75% 440 

peakedness profile (Flood Studies Report (NERC, 1975)).  The catchment area was assumed to be 441 

10,000 m2.  The catchment runoff has been generated assuming no initial losses, using a Muskingum 442 

storage routing model, as described in Jones et al. (2008) (K = 10 minutes, X = 0).  The value of the 443 

reach time delay (K = 10 mins) was estimated as being typical of the delay between rainfall and runoff 444 

peaks evident in the field data (Figure 7).  TSS concentration has been generated using the two-445 

parameter v(t)-based model (Eq. 6), with  = 7.254 and * = 5,940.  The sediment load profile is the 446 

product of runoff and TSS.  The total load delivered to the stream during this event is estimated to be 447 

10.9 kg, which  when distributed evenly across the total runoff volume of 1 x 106 litres  corresponds 448 

to an EMC of 108.6 mg/l.  The equivalent EMC-based (constant) concentration profile is also shown, 449 

together with the corresponding temporal load profile.  Because the peak TSS on the v(t)-based TSS 450 

model coincides with the rising limb and the peak of the runoff hydrograph, the total load conveyed to 451 

the stream rises sharply, such that at peak loading rate the outfall discharges 5.8 kg (53% of the total 452 

storm load) within a 10-minute period.  The EMC-based model generates a significantly-reduced peak 453 

10-minute load of 3.5 kg (33% of total storm load).  These differences may prove to be critical when 454 

the impacts of highway outfalls on small streams are being considered.  The peak load may well occur 455 

early on the rising limb of the stream hydrograph, when dilution/conveyance potential may be quite 456 

low.  This may lead to problematic sediment deposits accumulating on the stream bed.  Conversely, 457 

depending on stream hydrology and hydromorphology, this may mean that the contaminated 458 

sediments will be flushed from the immediate vicinity of the outfall as the stream discharge increases, 459 
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reducing the potential contact time with sediment-based macro-invertebrates.  Corresponding 460 

streamflow data recorded as part of the UKHA/EA monitoring suggests that, apart from HA01 where 461 

the discharge was into a stationary channel which only flowed when there was an overflow event, for 462 

all the other sites, the bulk of the sediment was discharged on the rising limb of the hydrograph. 463 

Analysis was undertaken to evaluate the sensitivity of predicted  464 

and *.  They were each varied by +/- 20%, and the resulting TSS predictions are plotted as a 465 

function of v(t) in Figure 9.  It may be seen that the basic shape of the distribution is relatively 466 

insensitive to either parameter, with the peak TSS occurring at a v(t) of 0.15.  Increasing  or 467 

decreasing * results in a decrease in the peak TSS and also in the total load.  An increase in  468 

results in a slightly earlier peak.  The peak 10-minute load accounts for a high proportion of the total 469 

load (67-73%) in all cases. 470 

The model generates a clear first flush effect.  For the model application described above, more than 471 

50% of the sediment load is delivered to the stream within the first 25% of the runoff volume.  For all 472 

the scenarios considered in the sensitivity analysis a minimum of 44% of the total load is associated 473 

with the first 25% of the storm runoff and more than 80% of the storm load is delivered with the first 474 

50% of the runoff volume. 475 

It may be argued that, when combined with a suitable design rainfall and hydraulic modelling tool 476 

capable of routing highway runoff to the outfall, the simplified 2-parameter v(t)-based model provides 477 

a useful framework for estimating TSS concentrations, and hence temporal load profiles, for use in 478 

receiving water ecological impact assessment procedures. 479 

5 CONCLUSIONS 480 

The UKHA/EA highway runoff sediments study TSS data set has been used to evaluate a model that 481 

was established from a USA database.  The UKHA/EA data comprises rainfall, runoff, turbidity and 482 

suspended sediment concentrations for 10 storms recorded at each of 6 sites.  Complete datasets 483 

were available from 21 storms and were judged suitable for the development of a TSS temporal 484 

modelling approach. 485 

The Kim et al. (2005) model uses four parameters (derived from storm runoff characteristics) to 486 

predict TSS as a function of the cumulative proportion of total runoff.  This general approach appears 487 
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to be valid and useful in the present context.  However, the previously published model shows some 488 

questionable behaviour, including negative TSS values and initial dips.  Preliminary comparisons with 489 

the observed UKHA/EA data suggest that the calibrated model does not fit well. 490 

A simplified, two-parameter, variant of the model has been shown to provide a practical means of 491 

modelling TSS profiles from UK highway outfalls, and generic parameter values have been identified.  492 

The model is reliable for timing of the peak, though further work is required to improve the accuracy 493 

with which absolute TSS concentration values are predicted. 494 
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Figure 2   Comparison of TSS Concentration and Load Characteristics 
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Figure 3   Sensitivity of the Kim et al. (2005) Model Parameters to Storm Characteristics 

 

 

 

Fig. 4 Sensitivity of the Kim et al. (2005) Model to Parameter Values 

  



  

  

  

  

  
 

Figure 5   Scatter-plot assessment of potential determinants of model parameters  and * 
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Figure 6   Maximum TSS values for all sampled storm events.  Median values are indicated by the 
solid square 
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Figure 7   Predicted TSS temporal concentration profiles for selected monitored events 



 

Figure 8   Application of the new TSS model to a design storm 

 

 

 

Figure 9   Sensitivity of the proposed TSS model to the parameters  and * 
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Site name HA01 HA08 HA09 HA11 HA12 HA37 

Highway 
M1 

Sheffield 

M5 

Birmingham 

M42 

Birmingham 

M6 

Penrith 

A1  

Newton 
Aycliffe 

A14 

Newmarket 

AADT 108500 94000 92000 44800 35981 43954 

%HGV 19 20 19 22.5 - 27 

Estimated catchment 
areas (m2)a 

19,000 19,500 12,780 >11,000 12,780 Unavailable 

Effective Catchment 
Area (m2)b 23,132 2,556 1,415 48,711 5,054 18,521 

 

aEstimated from engineering drawings (where available) and/or site reconnaissance 
bEstimated from the rainfall and runoff records, assuming no initial losses 
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Storm Optimised values Generic model 
=7.25, *=5940) 

Site * Rt
2 Rt

2 
HA01_050724 13.04 2775 1.00 -12.78 
HA01_050812 6.02 5225 0.98 0.95 
HA01_050822 7.25 7891 0.92 0.87 
HA01_060111 4.54 7807 0.99 0.65 
HA08_050724 13.85 2849 0.82 -6.76 
HA08_050813 12.63 11693 0.97 0.80 
HA08_050915 8.44 13166 0.99 0.87 
HA08_050929 19.31 2797 0.76 -53.33 
HA08_051021 6.93 3728 0.98 0.74 
HA08_051106 4.59 2478 0.85 0.66 
HA09_051018 9.70 1031 0.73 -37.18 
HA09_051230 7.21 12171 0.94 0.69 
HA09_060214 7.61 12731 0.88 0.65 
HA11_060113 6.20 3108 0.90 0.60 
HA11_060211 5.98 4877 0.92 0.90 
HA11_060420 7.88 6499 0.72 0.72 
HA37_050811 8.36 14463 0.52 0.37 
HA37_050819 13.27 10699 0.82 0.72 
HA37_050910 19.42 86501 0.97 0.57 
HA37_050915 11.60 5449 0.60 0.02 
HA37_051012 12.02 21192 0.91 0.75 
Mean 9.80 11387 0.87 -4.69 
Median 8.36 6499 0.91 0.66 
No.  20 [95%] 14 [67%] 
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