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Configuring maximum entropy deconvolution for the identification
of residence time distributions in solute transport applications

F. Sonnenwald!, V. Stovin?, I. Guymer?

ABSTRACT

The advection-dispersion equation (ADE) or aggregated dead zone (ADZ) models and
their derivatives are frequently used to describe mixing processes within rivers, channels,
pipes, and urban drainage structures. The residence time distribution (RTD) provides a
non-parametric model that may describe mixing effects in complex mixing contexts more
completely. Identifying an RTD from laboratory data requires deconvolution. Previous
studies have successfully applied maximum entropy deconvolution to solute transport data,
with RTD sub-sampling used for computational simplification. However, this requires a
number of configuration settings which have to date not been rigorously investigated. Four
settings are investigated here: the number and distribution of sample points, the constraint
function, and the maximum number of iterations. Configuration options for each setting
have been systematically assessed with reference to representative solute transport data
by comparing the goodness-of-fit of recorded and predicted downstream profiles using the
Nash-Sutcliffe Efficiency Index, evaluating RTD smoothness with a measure of entropy, and
through consideration of the mass-balance of the RTD. New methods for defining sample
point distribution are proposed. The results indicate that goodness-of-fit is most sensitive to
constraint function and that smoothness is most sensitive to the number and distribution of

sample points. A set of configuration options that includes a new sample point distribution
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is shown to perform robustly for a representative range of laboratory solute transport data.

Keywords: Solutes, Dispersion, Mixing, Hydraulic models, Transfer functions

INTRODUCTION

Background

Solute transport is affected by mixing processes. As such, improved understanding of
solute transport can lead to both new applications in water quality modelling and to improved
understanding of the underlying processes that affect mixing. This applies to processes in
natural rivers and channels as well as man-made structures such as pipes and manholes.

The advection-dispersion equation (ADE) or aggregated dead zone (ADZ) models have
traditionally been used to evaluate or model solute transport (Rutherford 1994). Both are
parametric models that apply an understanding of the processes involved to derive a system
of equations. They include assumptions and, provided they are met, the models can perform
extremely well, e.g. in pipe flow (Taylor 1954). Model performance degrades when the
underlying assumptions are not met (Davis et al. 2000; Rieckermann et al. 2005).

In chemical engineering, the residence time distribution (RTD) is frequently used to
describe mixing within reactors in response to a Dirac pulse (an instantaneous input) (Lev-
enspiel 1972). Equation 1 shows the relationship between upstream y(¢) and downstream
u(t) temporal concentration data through convolution with the RTD A(¢). The RTD is also
known as a transfer function. In hydrology the RTD is analogous to the unit hydrograph
(Sherman 1932).

oo

v = [ hryult - 7)dr &)

—0

Recent research has used the RTD to describe solute transport in urban drainage systems,
e.g. Guymer and Stovin (2011). The particular benefit of an RTD is that, as a non-
parametric model, no assumptions are made on how the system operates. Therefore, the

RTD can exactly describe complex mixing processes in a reach or structure, such as dead-zone
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short-circuiting (Stovin et al. 2010a). Unfortunately this benefit incurs a cost, as identifying
an RTD is significantly more complex than identifying the parameters of traditional models.
The general method of identifying an RTD from recorded laboratory data is deconvo-
lution. There are many methods and applications for deconvolution. An overview of some
common methods is given by Madden et al. (1996). Other applications include noise cancel-
lation (Pandolfi 2010) and gas chromatography (Zhong et al. 2011). Within solute transport
research, deconvolution techniques have been used to examine soil transfer functions (Skaggs
et al. 1998), bank filtration (Cirpka et al. 2007), and transient storage (Gooseff et al. 2011).
We have previously used maximum entropy deconvolution to investigate solute transport in
manholes (Stovin et al. 2010b; Sonnenwald et al. 2011; Guymer and Stovin 2011).
Although maximum entropy deconvolution has previously been successfully applied to
solute transport data, no rigorous investigation into how the configuration settings affect
the quality of the results obtained has been reported. Four maximum entropy deconvolution
settings impact on the quality of the deconvolved RTD: the number of sample points; sample
point distribution; constraint function; and the maximum number of iterations. Inappro-
priate configuration options for any of the settings may result in a poor quality RTD. This
paper aims to systematically identify a robust set of options that can be used to deconvolve
the RTD from typical solute transport data. To this end, a sensitivity analysis has been

carried out with a range of data and options.

Maximum entropy deconvolution

Maximum entropy deconvolution is a discrete computational technique that uses regularly
sampled paired upstream and downstream temporal concentration profiles to deconvolve the
RTD. An estimate of the RTD, h = {h1,...,hx} where N is the number of data points,
is to be made as flat as possible with the only exceptions being those implied by the up-
stream and downstream data (Skilling and Bryan 1984). Flatness of h is measured by an
entropy function S, Equation 2, which also enforces non-negativity. A constraint function C,

Equation 3, ensures that the RTD is valid by comparing the goodness-of-fit of the predicted
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downstream concentration profile § against the recorded profile y, where ¢ is calculated as
the convolution of & and u. C is typically, as presented here, the chi-squared function, where
o is an error estimate. The RTD is identified by combining both equations in a Lagrangian
function L, Equation 4, and maximizing. A is the Lagrange multiplier determined during

the maximization process. Sub-scripts denote specific points in discrete time.

S(h):—;< f.élih-)ln( Ifh) )

€ = 0= )/ (3)
L(h,\) = S(h) — \C (4)

The software and methodology used for maximum entropy deconvolution of solute trans-
port data is an evolution of a pharmacokinetics application (Hattersley et al. 2008). In
pharmacokinetics, data points are often collected at uneven time intervals, e.g. by a nurse
making rounds. As a result, the entropy function was modified for piecewise data, where
the value between points is assumed to vary linearly, and Equation 5 was developed. The
r term is added as a base-line prediction of the RTD in the absence of other data. r takes
the form of a nearest neighbour moving average where r; = ((hi_y + hiz1)/2) and at i = 0
and i = N the value of the two nearest points, e.g. ry = (iLN,l + EN)/Q. The inclusion of r
results in an entropy value that evaluates smoothness; entropy values closer to zero indicate

a smoother function.

S(f}):—z( th )m (wz_m> (5)

i=1 j=1"% T
To obtain h, Hattersley et al. (2008) converted Equation 4 into an equivalent minimisation

problem. This was solved using a Sequential Quadratic Programming (SQP) technique
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implemented in Matlab, fmincon (The MathWorks Inc. 2011). SQP is an optimisation
algorithm that works by minimising a quadratic model of the problem to find the next step
towards the solution (The Morgridge Institute for Research 2012).

Maximum entropy deconvolution was further modified for application to solute transport
data by Stovin et al. (2010b). The piecewise capability previously introduced was modified
to create a simplified deconvolution problem where the RTD is sub-sampled. This reduces
computational expense and the impact of noisy data while maintaining the benefits of a
non-parametric model. The sub-sampled RTD is defined only at n sample points, spread
between the start and end of the concentration data, as the length of the RTD is unknown.
Sample points are otherwise placed where more variation is expected in the RTD. A full

RTD is reconstructed from the sub-sampled RTD using linear interpolation.

METHODOLOGY

Configuration settings for maximum entropy deconvolution

The first two configuration settings are number and positioning of sample points. As
linear interpolation is used to reconstruct the RTD, each sample point defines a change in
the slope of the RTD. Therefore, changing the position and number of points is expected to
have a high impact on the identified RTD.

Skilling and Bryan (1984) suggest that alternative constraint functions may be prefer-
able to x2, hence this configuration setting is also examined here. As C effectively evaluates
goodness-of-fit, correlation measures form suitable alternatives. Different correlation mea-
sures may place different emphasis on matching the shape, scale, or noise (Sonnenwald et al.
2013).

fmincon introduces the fourth configuration setting, maximum number of iterations,
which imposes an upper limit on fmincon so that it does not enter an infinite loop. Too
few iterations, however, will stop the deconvolution process before convergence is achieved,

i.e. before the RTD is identified. fmincon also introduces convergence criteria to determine
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when optimisation stops and an ‘initial guess’ that is the start point of the optimisation

process.

Number of sample points

Stovin et al. (2007) suggested that as few as 7 points are necessary to define an RTD. A
minimum of 10 sample points has therefore been used. 20, 40, 80, 120, 160, and 200 sample
points have also been evaluated. After 200 points we have observed computational cost to

increase significantly. Stovin et al. (2010b) used 40 sample points.

Sample point distributions
Sample points are placed where more variation in the RTD is anticipated by incorporating
basic assumptions of the expected RTD. Six sample point distributions have been developed

using varying amounts of prior knowledge, described below and shown in Figure 1.

¢ Equally spaced (ES): The sample points are evenly distributed across the input
data. This distribution assumes no knowledge of the RTD.

e Log from zero (LFZ): The interval between sample points increases logarithmically
from the start to the end of the data. This distribution assumes more variation earlier
in the RTD and less variation as time goes on, i.e. an exponential decay.

e Downstream log (DwL): First arrival time and end of event are defined as 1% of
peak concentration. Three sample points are evenly distributed from the start of the
data until the difference in first arrival times, after which the interval between sample
points increases logarithmically until the end of the downstream event. Three more
sample points are evenly distributed until the end of data. From Equation 1 it follows
that there must be some delay in the RTD if there is a delay between first arrival
times. This is the sample point distribution previously used by Stovin et al. (2010b).

e Double log (DuL): Half of the sample points are distributed logarithmically from
the start of the data to the difference in time to peak, which is used as an estimate

of delay. The other half of the sample points are logarithmically distributed away
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from the difference in time to peak to the end of the data. A greater concentration
of points around the time the RTD peak is expected allows for more uncertainty in
its location.

e Slope based (SB): This is a new development. An approximation of the RTD
is used to distribute the sample points where slope is expected to be greater. The
approximation is computed using Fast Fourier Transformation (FFT) deconvolution
(Madden et al. 1996) with Blackman-Tukey Windowing (Blackman and Tukey 1958;
Harris 1978) applied to the input data to improve accuracy. The absolute area of the
first derivative of the approximation is evenly divided and sample points placed at
the division points.

e Double cubic (DC): This is a new development. It is the same as the DuL distribu-
tion, but using cubic spacing. This results in a more spread out distribution, similar
to the log from zero and slope-based sample point distributions, which is expected to
allow greater flexibility in capturing complex profile characteristics, e.g. secondary

peaks.

Constraint functions

In a previous investigation carried out to identify potentially suitable correlation mea-
sures for solute transport model identification (Sonnenwald et al. 2013), twelve correlation
measures were examined. Eight measures were found to be sensitive to transformation and
transformation intensity while remaining insensitive to noise, and were therefore judged to
be suitable as constraint functions. These are: the Burnham-Liard Criterion (BLC) (George
et al. 1998); x?% Furthest Fitting Cost Based Similarity (FFCBS) (Ye et al. 2004); the
Nash-Sutcliffe Efficiency Index (R?) (Nash and Sutcliffe 1970); Root Mean Square Deviation
(RMSD) (Anderson and Woessner 1992); the Coefficient of Determination (R?) (Young et al.
1980); the Integral of Squared Error (ISE) (Ghosh 2007); and Average Percent Error (APE)
(Kashefipour and Falconer 2000). They have been converted into equivalent constraint func-

tions for inclusion in the present sensitivity analysis. The error estimate o of x? is taken
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from Stovin et al. (2010b) as 5% of recorded value.

Mazimum number of iterations

Maximum number of iterations in practice indicates a maximum amount of effort that
should be used in deconvolving the RTD should an optimum RTD not be found earlier
through convergence. 50, 100, 150, 200, 250, 300, and 350 iterations have been evaluated. A

maximum of 200 iterations was used by Stovin et al. (2010b).

Convergence criteria
Initial testing has indicated no sensitivity to convergence criteria. They have been left

at fmincon defaults as previous work has used them successfully.

Initial guess

Initial testing has indicated no sensitivity to the initial guess. As the optimisation starting
point it does not change the minimization problem, but an initial guess that is closer to the
final solution is a ‘warm start’ and has been shown to reduce the amount of time necessary
to reach convergence in SQP algorithms (Fan et al. 1988). Therefore the initial guess is fixed
as the result of a FFT deconvolution with Blackman-Tukey windowing (as used in the SB

distribution). Stovin et al. (2010b) used a flat line guess based on [ h(t)dt = 1.

Selection of data for sensitivity analysis

We have several datasets from previously published laboratory studies available. Within
these, five mixing scenarios are represented; pipe flow (Hart et al. 2013), open channel flow
(Guymer 1998), storage tank mixing (Guymer et al. 2002), below-threshold (BT) surcharged
manholes, and above-threshold (AT) surcharged manholes (Guymer et al. 2005; Guymer
and Stovin 2011). The threshold is the surcharge depth at which hydraulic regime within a
manhole switches from a fully-mixed (BT) to a short-circuiting (AT) system.

Two sets of typical solute transport concentration data from each of the five mixing sce-
narios were selected to ensure that conclusions would not be unduly influenced by a single

test within each mixing scenario. The 10 paired upstream and downstream concentration
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profiles (henceforth referred to as ‘experiments’) are outlined in Table 1 and shown in Fig-
ure 2. In all cases pre-processing of the raw data (i.e. calibration, smoothing, background

removal) applied in the previous studies has been retained.

Analyzing RTD performance

As previously stated, the full RTD is generated from the sample points via linear inter-
polation. A complete predicted downstream profile can then be generated by convolving the
upstream profile with the full deconvolved RTD. A successful deconvolution is defined as
one with high goodness-of-fit between the predicted and recorded downstream profiles, as
measured by a relevant correlation measure. Sonnenwald et al. (2013) suggested RZ, R? and
APE as suitable for this application. The R? correlation measure has been chosen here for
its high sensitivity to overall profile shape. With a perfect match, R? = 1, and for R? < 0
there is no correlation.

We have observed that RTD shape can vary significantly when the difference in R? values
between RTDs is very small. As a result the entropy function (Equation 5) has been applied
to the deconvolved RTD to evaluate smoothness. A smoother RTD is assumed to better
represent a natural turbulent system, and therefore entropy values closer to zero are desired.

Mass-balance of the RTDs has also been used for evaluation. Normally [ h(t)dt = 1.
When mass recovery is not perfect, e.g. due to calibration error, then instead [ ﬁ(t)dt =
2o y(t)dt/) [25, u(t)dt. RTD quality can also be evaluated as the ratio between the expected

and actual sum of the RTD.

RESULTS AND DISCUSSION

The combination of configuration options and experiments resulted in 23,520 deconvolu-
tions. These were carried out using batch processing on the Intel Xeon X5650 nodes of the
Iceberg parallel high-performance computing cluster at The University of Sheffield. Process-
ing took approximately 187 days of CPU time. 61.4% of the predicted downstream profiles
in comparison to the recorded downstream profiles exceed an R? value of 0.95 and 34.6%

exceed 0.99 indicating that many combinations of configuration options are acceptable.
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Mean and standard deviation of R? values

The mean (p) and standard deviation (o) of R? with respect to each configuration option
are shown in Figure 3. Options that result in low mean R? values like BLC, 2, ISE, and
FFCBS, should not generally be used. They have therefore been eliminated from further
consideration as robust deconvolution configuration options. The remaining options are
evaluated across only the R?, RMSD, R?, and APE constraints.

Figure 4 illustrates the poor performance of the y? and ISE constraints in contrast to
RZ, before solution convergence. x? roughly matches the shape but not scale and ISE only
roughly matches shape. The performance of these two constraints does not improve with
more iterations while the performance of the R? constraint does, which is typical of the other
remaining constraints, RZ, RMSD, and APE.

Figure 3 also suggests that the DwL and ES sample point distributions perform poorly,
and therefore these two distributions were eliminated from further consideration. Figure 5
confirms the elimination of DwL and ES by comparison to the SB distribution. Only the SB
distribution fits the data for both Experiments 2 and 7. The other two distributions result
in approximate fits for Experiment 7 only. For Experiment 2, DwL is mostly flat and ES is
almost entirely coincident with the x-axis. This highlights the impact of poor sample point
distribution choice.

The difference in DwL performance between Experiment 2 and 7 highlights the potential
unreliability of sample point distributions when assumptions made in developing the dis-
tribution are not met. For DwL at low numbers of sample points, the 6 fixed points leave
too few (only 4) points to characterize the curve. Additionally, due to the lower limits of
detection and the effects of noise, the first arrival time identified from the concentration
data will be coincident or later than the actual RTD peak. This results in too few points to
correctly capture the rising limb of the RTD, leading to the observed poor performance.

After eliminating BLC, x?, ISE, FFCBS, DwL, and ES as configuration options, the

mean R? values indicate improving goodness-of-fit for maximum number of iterations up to
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150 iterations and near constant performance thereafter. As such, 50 and 100 iterations were
also eliminated, at which point it was observed that mean R? also tended to increase with
number of sample points. Although this is not evident in Figure 3, R? increases until 80
sample points, then remains close to constant. Due to their low mean R?, 10 and 20 sample
points have been eliminated as well.

All 4,000 remaining R? values exceed 0.95, and 68.6% exceed 0.99. Differences in mean R?
value are less than 0.002, and as such there is very little sensitivity of goodness-of-fit to the
remaining options. This demonstrates the robustness of maximum entropy deconvolution
for most combinations of 40-200 sample points, the LFZ, DuL, SB, and DC distributions,

the R?, RMSD, RZ, and APE constraints, and 150-350 iterations.

Entropy values

Entropy values have been examined to further evaluate RTD sensitivity to configuration
option. Mean entropy values for each experiment with respect to each option are shown in
Figure 6. These are plotted individually as entropy is a dimensional measure. The figure
provides insight into the sensitivity of the deconvolved RTD to the different options the
configuration settings can take.

40 sample points results in the entropy closest to zero for 9 of 10 experiments, which
clearly recommends 40 sample points and therefore other numbers of sample points can be
eliminated from consideration. The general trend of entropy values further from zero for
increased number of sample points is consistently observed independently of dataset. A
greater number of sample points provides increased potential for entropy as each sample
point represents a possible change in the slope of the RTD.

The LFZ and SB distributions appear to perform almost identically across all experi-
ments, with entropy values significantly closer to zero than the DulL and DC distributions
for almost all experiments. The entropy values further from zero indicate that, although the
DuL and DC distributions will generate RTDs with high goodness-of-fit, the shape of the

RTDs is less smooth. They are indicated to be less robust and can therefore be eliminated
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from consideration.

Number and distribution of sample points have the highest impact on entropy and there-
fore on the quality of the deconvolved RTD. This is consistent with the problem formulation,
i.e. changes in sample point position affect the numerical problem being solved. Although
there are multiple RTD solutions for each experiment, improved sample point positioning
(and lower numbers of sample points) limits variation and results in smoother RTDs. That
R? values remain high in these cases demonstrates the robustness of maximum entropy de-
convolution as applied to solute transport.

There is no clear trend in constraint function, with high variation between experiments.
The smaller changes in entropy with respect to constraint are reasonable considering that
constraints are interchangeable measures of error. As all of the constraint functions, R2,
RMSD, RZ, and APE, are indicated to be perform similarly they are retained for further
examination.

Entropy values are closer to zero as the maximum number of iterations increases for
Experiments 2, 5, and 6. The opposite trend is shown by Experiments 7, 9, and 10. Exper-
iments 1, 3, 4, and 8 show no clear trend. Typically, however, more iterations allows for a
better solution to be reached, with either entropy closer to zero or increased goodness-of-fit.
Therefore, 350 iterations can be recommended and lower maximum numbers of iterations
eliminated from consideration. Higher numbers of sample points require comparatively more
iterations to reach entropy values closer to zero. Maximum number of iterations has the low-

est impact on entropy performance, which indicates that most RTDs reach convergence.

Mass-balance performance

Performance has been further examined by comparing the mass-balance of the remaining
deconvolved RTDs. The LFZ and SB distributions have been compared, using 40 sample
points, the remaining four constraint functions, and 350 iterations. The SB distribution
performs better, with all values close to 1, and therefore LFZ has been eliminated from

consideration. The mass-balance performance shows no systematic variation with respect to
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constraint function.

Recommended configuration options

There is some evidence in the entropy data presented in Figure 6 that the paired ex-
periments from each of the five datasets responded similarly to the four different constraint
functions; this suggests that the optimal constraint function may be linked to dataset char-
acteristics. However, general investigation and consideration of all results suggests that the
R? constraint may perform slightly better. An additional argument in favour of R? would
be that it is already a well used and understood measure in the field of solute transport.
Therefore the new SB sample point distribution, 40 sample points, 350 iterations, and the

R? constraint function have been identified as a robust set of configuration options.

VALIDATION

Predicted downstream profiles and CRTDs generated with the robust configuration op-
tions (40 sample points, the new SB distribution, the R? constraint, and 350 iterations) are
shown in Figure 7. The lower than expected final value of the CRTD for Experiment 1 is
the result of the poor mass-recovery of the laboratory concentration data (Table 1). The
predicted profiles give confidence that the identified configuration options are fit for use in

deconvolution, with mean R? = 0.994.

CONCLUSIONS

Maximum entropy deconvolution has previously been successfully applied to laboratory
solute transport data to identify the residence time distribution from laboratory data. Here,
we have used laboratory data to evaluate the impact of four different configuration settings
on the deconvolved RTD. These settings are the number and distribution of sample points,
the constraint function, and the maximum number of iterations.

The smoothness of the deconvolved RTD, evaluated by entropy, is particularly sensitive
to number and distribution of sample points. A greater number of sample points provides

increased potential for noise as each point is a possible change in slope of the RTD. Smaller
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numbers of sample points therefore tend to result in a smoother RTD, as well as reduced
computational expense. However, too few or poorly positioned sample points will result
in a poor quality RTD. A new slope-based sample point distribution, where sample points
are positioned based on an Fast-Fourier Transform deconvolution approximation, has been
proposed and shown to perform best out of the 6 tested sample point distributions.

The constraint function affects the overall goodness-of-fit between the recorded down-
stream concentration profile and a predicted profile generated using the deconvolved RTD,
here evaluated by R?. While maximum entropy deconvolution has typically utilized x? as
the constraint function, alternative correlation measures place different emphasis on match-
ing profile shape, scale, or noise. The present analysis suggests that x? does not provide a
robust constraint for solute transport data, but that the R?, RMSD, R2, and APE constraint
functions do. There is some evidence that the optimal constraint function may be linked to
specific data set characteristics, but as it is well understood in the field of solute transport,
RZ has been recommended as the most generically applicable constraint function.

Finally, we have shown that a maximum number iterations greater than 200 has a min-
imal impact on either the R? value or RTD smoothness. However, performance in some
cases continues to increase maximum number of iterations and so 350 iterations has been
recommended here. RTD smoothness results imply that the vast majority of deconvolutions
reach convergence before the maximum number of iterations is reached.

Across ten representative laboratory solute transport data, the recommended configu-
ration options — 40 sample points, the new slope-based sample point distribution, the R?
constraint function, and a maximum of 350 iterations — result in a mean R? value for the
predicted downstream profiles of 0.994. This confirms that maximum entropy deconvolution
with the options recommended here provides a robust and effective means of identifying the

RTD from laboratory solute transport data.
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TABLE 1. Summary of laboratory solute transport concentration data used.

Experiment Description Flow (I/s)” Duration (s) Mass recovery
1 24 mm Pipe! 1.084 150.0 84.42%
2 24 mm Pipe! 0.221 150.0 98.45%
3 Storage Tank? 6.9 240.2 100.00%
4 Storage Tank? 6 371.6 100.00%
5 Natural Channel? 13.7 157.3 101.96%
6 Trapezoidal Channel3 46.1 73.7 105.60%
7 400 mm BT Manhole* 1 117.3 100.00%
8 400 mm AT Manhole? 1 91.0 100.00%
9 800 mm BT Manhole® 1 186.0 100.00%
10 800 mm AT Manhole® 1 116.7 100.00%
'Hart et al. (2013), 2Guymer et al. (2002), 3Guymer (1998)
4Guymer et al. (2005), *Guymer and Stovin (2011) *As reported
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