The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of A Parallel Newton-Euler Formulation for Fast Dynamic
Simulation of Robot Manipulators.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78203/

Monograph:

Zomaya, A.Y. and Morris, A.S. (1989) A Parallel Newton-Euler Formulation for Fast
Dynamic Simulation of Robot Manipulators. Research Report. Acse Report 368 . Dept of
Automatic Control and System Engineering. University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Pomgy 2980)

A Parallel Newton-Euler Formulation for Fast
Dynamic Simulation of Robot Manipulators

by
A. Y. ZOMAYA
A. S. MORRIS

Deparmment of Control Engineering
University of Sheffield
Mappin Street
Sheffield S1 3JD
UK.

Research Report No. 368

July 1989

OO

Abstract

Advanced control strategies require the inclusion of the dynamical model of the
robot arm in the control law. However, the dynamics consist of a highly coupled and
non-linear set of equations. Thus, this complexity has always presented a major obsta-
cle in real-time dynamic control applications. The computationally efficient solution of
this problem will lead to a better comprehension of the key factors affecting robot
operations.

This work describes a solution of this problem by employing a parallel processing
approach. The dynamics are computed by using a semi-customised Newton-Euler for-
mulation. The algorithm is distributed over a highly-coupled multiple-instruction
multiple-data steram (MIMD) computer architecture. The computer system is con-
structed from general purpose (VLSI) building blocks called the (TRANSPUTER). The
cost-effectivness and speed of the scheme is demonstrated by a case study (PUMA 560
robot arm). The communication issues between the different processors are discussed.
Speed-up results are included to show the superiority and advantages of the parallel
approach.

Key words: robot dynamics, inverse dynamics, parallel processing, Transputer, Occam,
MIMD.

1. Introduction

Present day robot manipulators are generally implemented by simple and well
defined (PID) controllers. However, to allow these robots to operate under varying
conditions, advanced control algorithms are needed to counteract for different changes
and allow for wider diversity. This necessitates the inclusion of the system (robot)
dynamics in the controller design [46].

Nevertheless, the computation of the dynamics is a very intensive task. In addi-
tion, it must be computed within a sampling rate of 60 Hz or more to avoid poor per-
formance. This emphasise the fact that the efficient and inexpensive computation of the
dynamics enhances the feasibility of real-time robot controllers.

Previously, there have been two main approaches to tackle the problem of com-
puting the inverse dynamics. The first of these is to reduce the complexity of the
model, recognising that the robot performance suffers as a consequence. Bejczy [3]
proposed to neglect the coriolis and centripetal effects by assuming low speed operat-
ing conditions. Ignoring these terms will result in a notable "vibration" of the robot
arm at high speeds due to large errors in computing the forces and torques [51]. The
other alternative is to use a stand alone computer system, which might lead to an

-1-

increased development cost [34].

The dynamics provide an important tool for simulation and feedforward computa-
tions. Therefore, it can be used in testing and designing controllers without the expense
and hazards accompanied with actual systems. The formulation of computationally
efficient dynamic models has been an active area of research for the last two decades
and several methods have been developed. The Lagrange-Euler (LE) [3,41,45] has
high computational complexity but is a very well structured and systematic representa-
tion. The Recursive Lagrangian [15] gives good computational results but destroyes the
structure of the equations. The Newton-Euler (NE) [1, 34,39, 48] has the most efficient
computational formulation but with untidy recursive equations. Other approaches
include the tabulation techniques [43], Kane’s dynamic equations [23], the Generalized
D’Alembert [30]. and the use of dedicated microprocessor architectures [22,38]. The
most commonly used of these methods are the (LE) and (NE) which were shown to be
equivalent [44]. In this paper the (NE) is employed.

2. Robot Mechanism

An open chain robot mechanism consists of a chain of (N + 1) rigid links. The
links (Fig.1) are arranged such that link (i) is connected to a preceding link (~1) and a
following link (i+1). In robot manipulators, two types of joints exist, translational and
revolute joints. The translational joints are such that the adjacent links translate linearly
to each other along the joint axis, while the revolute joints allow adjacent links to
rotate with respect to each other about the joint axis. Therefore, the link (#) motion
with reference to the link (~1) depends only on one variable, rotation ®; or translation
d;. Generally, the robot base is considered to be link (0). The last link (V) carries a
gripper (hand) or a tool (drill, pincer) and is called the end effector of the robot. The
location of an object in space is determined by six degrees of freedom (dof), three of
which represent position and the other three orientation. If a task is performed in space
without constraints, 6 dof are necessary. But if the task is performed in a plane, only 3
dof are necessary. Usually, a typical robot manipulator arm consists of 6 dof.

2.1. Kinematic Description

The widely used conventions of Denavit and Hartenberg (DH) [10] are adopted in
this work. The main idea is to assign a coordinate frame to each link with the z-axis
along the joint axis. This gives rise to four transformations; the rotation angle ()
which rotates about the z_, in the counter-clockwise direction, 4; distance between x;
and x; axes along the z; (link length), a; the shortest distance between zi; and z; (offset

=

distance), and rotation angle (e;) about the x; (twist angle). The link parameters of a
PUMA 5601 robot arm are given (table 1).

LINK PARAMETERS

Link e a d o

6, |0 0 | -9
8, | a | d; 0
8 |a: | O 90
6, | 0 |d | -9
8 | 0 0 90
& | 0 | ds 0

O A W R e

Table 1. Link Parameters between the

different frames of a PUMA 560-Like Manipulator

From these parameters an orthogonal rotation matrix can be formed which transforms a
vector in the (i~1)* coordinate frame to a coordinate frame which is parallel to the ()
coordinate frame:

cos®; —sin®; cos; sin®; sino;
A;= |sin®; cos®; coso; —cosO; singy (1)
0 singy cosoy;

and the position of the ()% coordinate frame with respect to the (i-1)* coordinate frame
is given by:

a;
P:i= d,' Siﬂa" (2)
d; cosoy

For a revolute joint, ®; changes while 4, a;, and o; remain constant. For a translational
joint d; is changing while q, @, and o; are constants. To achieve transformation
between different coordinate frames a matrix T, is defined such that

T, = A1AA3AA5A (3)

1 PUMA 560 is a trademark of Unimation, Inc.

The previous equations describe the kinematic behaviour of the robot arm.

3. Previous Work

Several parallel architectures have been proposed by researchers to solve for the
inverse dynamics problem. The innovative work of Luh and Lin [35] , based on a gen-
eralization of the branch-and-bound algorithm, exhibits several significant limitations.
Most importantly, their proposed architecture does not fully consider the recursive
structure of the (NE) and the sequential dependencies of the algorithm. Furthermore,
the system suffers from load inbalances because some of the processors are under-
utilized and the interprocessor communication and synchronization of the (NE) are
ignored.

Orin et. al. [40] proposed a pipeline design for the (NE) that eliminates some of
the performance degradation problems associated with interprocessor communications
which appear in the computation of the (NE) using parallel processing techniques.
However, the performance of the proposed design was not analyzed and compared
with the serial (uniprocessor) implementation.

Lathrop [29] proposed two parallel algorithms using special purpose processors.
First, is a linear parallel algorithm which is related to the Luh and Lin method. The
second is a logarithmic-parallel-algorithm based on the partial sum technique. Kasahara
and Narita [24] proposed a parallel processing scheme which employs two scheduling
algorithms; depth-first/implicit-heuristic-search ~ and critical-path/most-immediate-
successors-first. The algorithm was implemented on an actual multiprocessor system to
prove its effectiveness. Lee and Chang [31] introduced a method based on the recur-
sive doubling algorithm with a modified inverse perfect shuffle interconnection scheme
between a set of parallel processors. Vukobratovic et. al. [47] proposed an algorithm
that employs a modified branch-and-bound (BB) method combined with the largest-
processing-time-first algorithm (LPTF). An actual implementation had been made and
good results were obtained, but the issues of intercommunication and intermediate
buffering were neglected, which degrades the performance in practical applications.
Recently, Hashimoto and Kimura [13] presented a scheme based on the so-called
resolved (NE) algorithm. Their approach is suitable for VLSI implementation. Finally,
some more work in this area can be found in the literature [2, 6, 8,33, 42, 50].

Most of the previous attempts did not involve implementation on an actual paral-
lel processing system. Results are presented in terms of the number of
multiplications/additions and their theoretical equivalent of processor clock cycles. The
results obtained in this work are the outcome of the actual implementation of the

-4 -

algorithm, The different task allocations are executed by a
Multiple processors development system. Hence, these results not only represent the
processing-time of multiplications/additions but also the delays caused by the commun-
ication between different processors and some other problems that might rise from
hardware and software limitations.

4. The Inverse Dynamics

The Inverse Dynamics problem can be stated as follows: Given the input vectors
of joint positions (1), joint velocities (1), and joint accelerations (1) at any instant
of time (z), calculate the applied force/torque t(1)). The dynamic equations of motion
of a manipulator can written as:

(t) = D(8) © (f) +C(8,6)+h(8) (4)

where (/) is an n x 1 applied force/torque vector for joint actuators; @(r), @), and 10}
are n x 1 vectors representing position, velocity and acceleration respectively; D(@) is
an n x n effective and coupling inertia matrix; C(®,8) is an n x 1 Coriolis and Cen-
tripetal effects vector; and h(®) is an n x 1 gravitational force vector, where (n) is the
no. of degrees of freedom (dof).

The computation of eq.(4) is computationlly expensive and has until recently posed a
major bottleneck in real-time control of robot manipulators. As mentioned earlier,

much effort has been allocated to producing more time-efficient techniques
[3,4,9,11,32,37,51].

Based on the (NE) [34] the dynamic algorithm for a revolute arm (PUMA 560)
divides into two recursive phases:

Initialisation:
= [0 0 l]T
Wy=m;=0
Vo=gzp g=9.8062 m/s?

fas1 = force exerted at the end-effector

Dy = moment exerted at the end-effector

Phase 1 (Forward iteration):

For i =0,..,n-1 do;

O = ALy [0+ 29 6y,] (5)
Oy = ALy [@+ 29 844y + 0% (2, 6u)] (6)
Vier = ALy [V 1+ Gy X pyyy + Oppg X (O X Py) (7)
Wit = Oy X Sy + @y X (O X Sy) + Vi (8)
Fiy = myy Wiy 9)
Nit = Jha Opy + 4y X (Jpg @y) (10)

End (Phase_l);

Phase 2 (Backward iteration):

fi=An [(fin 1+ F 11)
0= Aj [0y 1+ X+ N, +5 XF, (12)
(1) = nf (A z,) (13)

End (Phase_2);

where

o; and @ Angular velocity and acceleration of the i* coordinate Sframe
Vi Linear acceleration of the i* coordinate frame.

Vi Linear acceleration of the centre of mass of link (i).

Fiand N, Net force and moment exerted on link (i),

fiand n; Force and moment exerted on link (i) by link (i-1).

S Position of the centre of mass of link (i).

i Inertia tensor matrix of link (i) about its centre of mass.

m; Mass of link (i).

In the previous equations, all the matrices and vectors are of size (3x3) and (3x1)
respectively. The computational requirements for the previous general purpose (NE)
algorithm are listed in (table 2). Note that the sparsity of @, o, and v, is not incor-
porated in simplifying the computations for the sake of generality. Also, to find the
computational cost of the worst case situation.

TOTAL COMPUTATIONS (NE)
Equation Multiplications Additions
Subtractions
A, Matrices . 4N 0
p; Vectors 2N
;g 12N 9N
(bi-e-l 18N 15N
Visl 27N 21N
WYis 18N 15N
Fi 3N 0
Niy 24N 18N
f; 9N 9N
n; 2IN 21N
T 12N 8N
TOTAL 150N 116N
N =6 DOF 900 696

Table 2. N-E Computational Requirements

for a Revolute Manipulator

The previous table shows the computational requirements for a general revolute robot.
It takes 900 multiplications and 696 additions to compute the inverse dynamics algorithm
based on the (NE) and without any simplifying assumptions.

Less computationally-expensive algorithms have been produced by employing
Customisation and Symbolic Modelling Techniques [26,36,37]. In these techniques more com-
putational savings were realised by exploiting the sparsity of some of the matrices and
vectors. Also, some of the approaches included the assumption of a certain robot type.
As a consequence, further simplifications were made such as removing the multiplica-
tion by zero/one operations and some other redundant computations.

5. General Simplifications

In this section the (NE) algorithm will be simplified further. The analysis will
concentrate on applying general simplifiying assumptions. This will lead to less com-
plications and reduce the amount of tedious work needed to modify the algorithm if

B e

another robot is assumed.

In this case the simplifed (NE) algorithm utilises the sparse nature of the (z9) vec-
tor and the diagonality of (J;) matrix (if applicable). The procedure will be divided into
two parts.

5.1. Off-Lipe Analysis
For a PUMA-560 arm the rotation matrices can be shown to be:

I 1 [i [N
cos®; 0 —sin®, cos®; —sin®; 0 cos®; 0 sin®;

Ay = |sin®; 0 cos®,| , A,= sin®; cos®; 0f , Ay= sin®; 0 —cos®;

[0 -1 0 | |0 0 1 |0 1 0 |
rcos@,- 0 —sin®; (cos@,- 0 sin®, (cos@)‘- —-sin@®; 0
Ag=|sin®; 0 cos®;| , Ag= sin®; 0 —os®;| , Ag= sin®; cos®; 0

0 -1 o0] 0 1 o0] 0 0 1]

and the position vectors are:

0 a, as 0 0 0
Pr=100 .p2= (0| ,ps=|0| ,ps= |-dy| ,ps=[0| ,ps= |0
0 d2 0 0 0 dg

However, the only general simplifying element which will be used during the on-line
stage is the zero value of the element at position (3,1) of the A/'s matrices. In addition,
the sparsity of (z,) will provide further simplifications:
(a) In eq.(5,6)
. 3 T
7o Oy = [0 0 9¢'+1]

20 0, = [0 0 éiH]T
) :) T
W X (Zg By) = [ﬁ)z Qi1 —; O, 0]
(b) In eq.(10) if J, is diagonal then:

0 0] o
Ji0uw=[0 Jp 0| ¢ |o,
0 0 Ja3 (071

could be substituted by

11 w;
Ji 01 = [Up| o |, (simple vector dor product operation)
Ja3 0

-8-

the same applies to the (J; w,,) case.
(c) In eq.(13):

A;r Zy = [0 Sil'l((ll') COS(G;):]T

which will lead to:

0 0 | 0 0 0 0
AT zo=|-1| ,ATz5=[0]| , ATz = |1 Al zo= [-1| ,ATzo= (1] , ATz = |0

0 1 0 0 0 1
Accordinglly,

T(0) =0l (Al z9) = (nb sin(oy) + nj cos(ay))

this will yield:
u®)=(-m) . u0=(n) ,u0=(n)
WO =(-n3) , 5@ =(n) , 160 = (n§)

The computational load of the previous operations will be avoided in the on-line
implementation. It is important to note that if the algorithm is used for another robot
arm, the change to be made is minor and can be done manually.

5.2. On-Line Procedure

The cost of the dynamics computation is reduced as shown in table (3).

TOTAL COMPUTATIONS
Semi-Customised (NE)
Equation Multiplications Additions
Subtractions
Wy 8N 6N
d)“.l ION SN
Viet 26N 20N
Vis 18N 15N
Fi 3N 0
Ni 24N 18N
Niy 12N 6N
f; 8N 8N
n 20N 20N
TOTAL 117N 95N
TOTAL' 105N 83N
N=6DOF 702 570
N =6 DOF" 630 498

* In case), is diagonal
Table 3. Semi-Customised (N-E) Computational

Requirements for a Revolute Manipulator

It can be noticed from the previous table that the amount of reduction in the total
floating-point operations for the (NE) is 20% or 29% if (Jy) is dense or diagonal respec-
tively. In this case a trade off was made between the very specific fully customised
and the general numerical solutions. This is because part of the (NE) algorithm was
customised and expresséd symbolically where the sparsity of some of the vectors and
matrices was exploited, while the other part remained numerical and generality was
maintained. So it can be called the Semi-Customised Symbolic (NE) Algorithm (SCSNEA).

6. Multiple-Instruction Multiple-Data Stream Architecture (MIMD)

We are currently witnessing an enormous revolution in the mass manufacuring of
low cost advanced VLSI components. This will enable the practical implementation of
the theoretical parallel-orientated architectures and algorithms [5].

-10 -

Parallelism is achieved by distributing the job over a number of processors,
ideally in such a way that all the processors are fully utilised. As a consequence,
highly parallel structures have evolved, and many have been built to meet the increas-
ing demand for more computing power and higher processing speed [14, 16,28, 49].

Until recently, most of the research has been dealing with solving problems from
a parallel perspective by applying (SIMD) techniques. In this approach, a single
machine instruction is able to compute over massive data structures (e.g. vector and
array processors). However, the use of (S/MD) architectures was hindered by their tech-
nological constraints. As a result, the multiprocessing (MIMD) emerged to provide a
solution. In this case a number of processors interact and co-operate to produce higher
performance and computing power. The (MIMD) architecture is tightly coupled if the pro-
cessors are highly interactive. Otherwise, it is considered to be loosely coupled.

6.1. Transputer and Occam

The T800 TRANSPUTERT (Fig.2) which is adopted in this work is a 32 bit micro-
computer with 4 Kbytes of on-chip RAM for high processing speed, a configurable
memory interface, 4 bidirectional communication links, 64-bit floating point unit, and a
timer. It achieves an instruction rate of 10 MIPS (millions of instructions per second)
by running at a speed of 20 MHz. The Transputer is one of the first designs that incor-
porate several hardware features to support parallel processing. This allows for any
number of Transputers to be arranged together to build a parallel processing system,
and permits massive concurrency without further complexity. To provide maximum
speed with minimal wiring, the Transputer uses point to point serial communication
links for direct connection to other Transputers.

OCCAMT is a high level language developed to run on the Transputer [18, 13,.25]
and optimise its operation. It is simple, block structured, and supports both sequential
(SEQ) and parallel (PAR) features on one or more Transputers which can be used to

facilitate simulation, modelling and control of complicated physical systems
[12,20,21].

T TRANSPUTER and OCCAM are trademarks of the INMOS group of companies.

- 11«

6.2. Processor Farms

Processor farms are based on a simple concept which might be useful in a wide
range of applications [17]. It involves a master processor which acts as a controller that
optimises processor utilisation and farms out tasks to a set of slave processors in the
network. When a task is completed successfully by a slave processor, the results are
sent back to the master which then farms out another task to it.

In this work, a similar processor organization is used. This technique is motivated
by the amount of tasks that can be executed independently in the proposed algorithm.
The software portions running on the processors are replica of one another with minor
modifications depending upon the task and the communication protocols.

7. Parallel Implementation of the Dynamics

Hollerbach [7] states that "Some improvements could arise by taking advantage of particular
kinematic structures of manipulators or by parallel computation”. In section (5) a simplified ver-
sion of the (NE) produced some computational savings. In this section the algorithm
will be distributed over a parallel processor system in order to speed up the computa-
tion. Therefore, it will be called the Parallel Semi-Customised Symbolic (NE) Algorithm
(PSCSNEA). Real-time results are included to show the superiority of multiprocessing
architectures.

7.1. _The Algorithm

For this method a tree structured network is used (Fig.3) where (Py) is the master
processor (controller) and the other three Processors Py, Py, and P, are slave processors
(the names processor and transputer are used interchangably).

The master processor is connected to a personal computer (PC) which works as a link
between the user and the network. Py sends the position variables, velocities and
accelerations (©,,0,,0,) and receives the columns of () from the slave processors in
the network. The main role of Py is to supervise the network and to check for any
faulty event. The job of computing the dynamics is divided as shown:

- Py : compute eq.(5,10) and eq.(12) in the first and second phases respectively.
- P, : compute eq.(6,8) and eq.(13) in the first and second phases respectively.
- P : compute €q.(7,9) and eq.(11) in the first and second phases respectively.

The whole procedure will be divided into four modules each running on a processor.

= 12

7.1.1. _Module (0):
P, sends ©,,8; and 6, to Py, P,, and P,. This is performed in parallel. Then, P, will start
receiving 1,(7) values from processor P,. As shown in OCCAM code:

SEQ
PAR
... Send ©,, €, and 6, where i=1,...n to P,
... Send ©;, ©,, and 6, where i=1,..n to P,
... Send ©,, ©, and 6, where i = 1,...n to P,
PAR

... Receive 1) where i = 1,...,n from P,

The following three modules are working in parallel together, but each one of
them is running sequentially. During the operation the three modules communi-
cate with one another.

7.1.2. Module (1):
This module computes eq.(5,10) and eq.(12). It is divided into two phases.

- 14 -

Initial Stage:
SEQ

... Receive @, ©,, and 8, from P,
... Form Ay,A,, - - - A,

... Initialise w,
Phase 1:
SEQ
SEQ i =0 FOR 6
SEQ
PAR
... Send w; to P,
... Send w; to P,
... Receive o, from p,
.. Compute Temp_Store = [w; + z, 0,1]
... Compute (A%, * Temp_Store) = Eq.(5)
... Compute (J;,; wyy) and (J,; @;,,)
.. Compute (V) = Eq.(10)
Phase 2: |
SEQ

... Initialise (n;,;)
WHILE (i>=1)

SEQ

... Receive F; from P,

... Compute Temp_Store = (A,,, Ri1)

.. Compute n; = Temp_Store + N,
.. Compute s; x F,

.. Receive f; from P,

.. Compute p; x f;

.. Compute n; = Eq.(12)

.. Send n; to P,

7.1.3. Module (2):
This module computes eq.(6,8) and eq.(13). It is divided into two phases.

o il

Initial Stage:

SEQ
... Receive @, 8, and 6, from P,
... Form A} A,, - - - A,
... Initialise @,

Phase 1:
SEQ
SEQi=0FOR 6
SEQ
PAR
... Send @; to P,
... Send @; to P,
... Receive o, from P,
.. Compute Temp_Store = [&; + 2z ©;,; + 0x (29 O,y)]
... Compute (A%, * Temp_Store) = Eq.(6)
.. Compute (G X 5:41) and (0 X (01 X 541)
.. Receive (v;,) from P,
.. Compute (y;,,) = Eq.(8)
... Send (y,,,) to P,
Phase 2:
SEQ
WHILE (i>=1)
SEQ

ses Receive n; from P;
... Compute () = Eq.(13)
... Send 7; to the Master Processor P,

7.1.4. Module (3):
This module computes eq.(7,9) and eq.(11). It is divided into two phases.

-15=

Initial Stage:

SEQ
... Receive ©,, @,, and 6, from P,
... Form A} A,, - - - Ag
... Initialise v,
Phase 1:
SEQ
SEQi=0FOR 6
SEQ
PAR
... Receive w; from P,
... Receive @; from P,
.. Compute A%, v,
.. Compute (@, % p;y;) and (w;,; x (Wiy X Pis1)
.. Compute (v,,;) = Eq.(7)
.. Send (v,) to P,
.. Receive (y;,) from P,
.. Form (F;,;) = Eq.(9)
Phase 2:
SEQ

... Initialise (f,)
WHILE (i>=1)
SEQ
... Send F; to P,
.. Form Temp_Store = A, fi
.. Compute f; = Temp_Store + F; = Eq.(11)
.. Send £, to P,

This parallel approach requires 40N multiplications and 32N additions, that is a total of
432 floating point operations, which seems sufficient for real-time applications.
However, any number of methods could be used to divide the problem. In our
case the choice was made to solve the problem as fast as possible and to keep the
flow of information (communication) between the processors smooth.

-16 -

8. Results

For the case of a PUMA 560 robot arm, the general (NE) and the
(SCSNEA) were executed using one Transputer only. Afterwards, the
(PSCSNEA) was distributed over a network of 4-Transputers (Fig.3). The results
of the total processing time required for each of them are shown in (Fig.4). A
total processing time of (2 msec) was achieved for the (PSCSNEA). The following
can be noticed from these results:

[a]. The amount of reduction in the total floating point operations for the
(PSCSNEA) is 73% and 62% compared to (NE) and (SCSNEA) respectively.

[b]. The amount of reduction in terms of total processing time for the
(PSCSNEA) is 58% and 41% compared to (NE) and (SCSNEA) respectively.

This difference can be referred to the overheads and communication time between
the processors because of the recursive nature of the algorithm. Zomaya and
Morris [53,54] used the (LE) to solve for the dynamics, and the communication
between slave processors was minimised by enabling each processor to execute
its job without the need for data from other processors. However, this algorithm
has the following two advantages:

(1). The physical implementation is simple. Being based on the (NE) which
requires less hardware to compute the dynamics [27] , the algorithm needs
only four Transputers.

(2). The modularity of the algorithm, that is, it needs little effort and time to be
modified to suit another robot arm (approximately 10-15 minutes).

9. Conclusion

The Dynamic modelling and simulation of typical robot manipulators such as
the PUMA 560 arm is systematic and simple in concept but complicated in
respect of the computational burden inherent in real-time control applications. A
simplified form of the dynamics based on the Newton-Euler formulation has been
distributed over a parallel-processing system. The system was constructed by
using the INMOS TRANSPUTER as its basic building element running the
OCCAM programming language.

A few notes have to be kept in mind while distributing a whole of a task
(algorithm) to work on several Processors:

* The data flow paths and the communication between the different processors
constitute a major bottleneck in many situations.

- 17 -

The division of the workload between the different co-processors.

The idle-time that each processor spends waiting for input from other pro-
Cessors.

The required computing power which decides the size and complexity of the
network.

The amount of parallelism and sequentialism inherent in the algorithm.
The efficiency in coding the algorithm (software development).

Similar scheduling strategies are equally applicable for other types of robot

control problems. It has already been shown that the application of the proposed

configurations can provide an efficient solution for the problems of Direct and

Inverse Jacobian and Forward Dynamics solutions [52, 54]. Real-time results have been
produced to demonstrate how the recent breakthroughs in VLSI technology can
be used together with parallel processing techniques to facilitate the dynamic

modelling of robot manipulators.

References

[1].

[2].

[3].

[4].

[5].

[6].

[7].

ARMSTRONG, W. M., (1979). “‘Recursive Solution to the Equations of Motion of
an N-Link Manipulator,” in Proc. 5th World Congress on Theory of Machines and
Mechanisms, vol. 2, pp. 1343-1346.

BARHEN, J., (1987). ‘‘Hypercube Ensembles: An Architecure for Intelligent
Robots,”” in Computer Architectures for Robotics and Automation, ed. J. H. Gra-
ham, pp. 195-236, Gordon and Breach Science Pub, NewYork.

BEICZY, A. K., (1974). ‘“‘Robot Arm Dynamics and Control,”” NASA-JPL Techni-
cal Memorandum, 33-669.

BEICZY, A. K. AND PAUL, R. P., (1981). “Simplifed Robot Arm Dynamics For
Control,”” in Proc. 20the IEEE Conf. Decision and Control, San Diego, pp. 261-
262.

BERTSEKAS, B. P. AND TSITSIKLIS, J. N., (1989). Parallel and Distributed Compu-
tation: Numerical Methods, Prentice-Hall, Englewood cliffs, N.J.

BINDER, E. E. AND HERZOG, J. H., (1986). ‘‘Distributed Computer Architecture
and Fast Parallel Algorithms in Real-Time Robot Contol,”” JIEEE Trans. on Systems,
Man, and Cybernetics, vol. 16, no. 4, pp. 543-549

BRADY, M., HOLLERBACH, J. M., JOHNSON, T. L., LOZANO-PEREZ, T., AND
MASON, M. T., (1982). Robot Motion: Planning and Control, MIT Press,

-18 -

[9].

[13].

[14].

[15].

[17].

[18].

[19].

[20].

[21].

[22].

Cambridge, Mass.

CHEN, C. L, LEE, C. S. G, AND Hou, E. S. H., (1988). ‘‘Efficient Scheduling
Algorithms for Robot Inverse Dynamics Computation on a Multiprocessor System,’”
IEEE Trans Systems, Man, and Cybernetics, vol. 18, no. 5, pp. 729-743.

CHENG, P., WENG, C., AND CHEN, C., (1988). *‘Symbolic Derivation of Dynamic
Equations of Motion for Robot Manipulators Using Piogram Symbolic Method,"’
IEEE J. Robotics and Automation, vol. 4, no. 6, pp. 599-609.

. DENAVIT, H. AND HARTENBERG, R., (1955). ‘A Kinematic Notation for Lower

Pair Mechansims Based on Matrices,”” J. Applied Mechanics, no. 22, pp. 215-221.

. FAESSLER, H., (1986). ‘‘Computer-Assisted Generation of Dynamical Equations for

Multibody Systems,’” Int. J. Robotics Research, vol. 5, no. 3, pp. 129-141.

. HAMBLEN, J. O., (1987). ‘‘Parallel Continuous System Simulation Using the Tran-

sputer,”” Simulation, vol. 49, no. 6, pp. 249-253.

HASHIMOTO, K. AND KIMURA, H., (1989). ““A New Parallel Algorithm for Inverse
Dynamics,”” International J. of Robotics Research, vol. 8, no. 1.

HAYNES, L. S., LAU, R. L., SIE“(IOREK, D. P., AND MIZELL, D. W., (1982). “A
Survey of Highly Parallel Computing,”’ IEEE Computer, pp. 9-24.

HOLLERBACH, J. M., (1980). ‘‘A Reccursive Lagrangian Formulation of Manipula-
tor Dynamics and a Comparative Study of Dynamics Formulation Complexity,”’
IEEE Trans. on Systems, Man, and Cyberntics, vol. smc-10, no. 11, pp. 730-736.

. HWANG, K. AND BRIGGS, F. A., (1985). Computer Architecture and Parallel Pro-

cessing, McGraw-Hill, New York.

IEE,, (1986). Colloguium on the Transputer Applications and Case Studies, Profes-
sional Group C2.

INMOS,, (1984). OCCAM Programming Manual, Prentice-Hall, Englewood Cliffs,
NJ.

INMOS,, (1988). OCCAM-2 Reference Manual, Prentice-Hall, Englewood Cliffs,
N.J.

JONES, D. I, (1985). ‘“‘OCCAM Structures in Control Applications,”’ Trans. Inst.
of Measurements and Control, vol. 7, no. 5, pp. 222-227.

JONES, D. I. AND ENTWISTLE, P. M., (1988). *‘Parallel Computation of An Algo-
rithm in Robotic Control,”’ in Int. Conf. on Control 88, Oxford, U.K, pp. 438-443,

KABUKA, M. AND EscoTro, R., (Feb. 1989). ‘“‘Real-Time Implementation of
Motion on the NEC PD77239 DSP,”* IEEE Micro, vol. 9, no. 1.

-19 -

[23].

[24].

[25].
[26].

[27].

[33].

[34].

[35].

KANE, T. AND LEVINSON, D., (1983). ‘‘The Use of Kane’s Dynamical Equations
in Robotics,”” Int J. Robotics Res., vol. 2, no. 3, pp. 3-21.

KASAHARA, H. AND NARITA, S., (1985). ‘‘Parallel Processing of Robot-Arm Con-
trol Computation on a Multi-microprocessor System,’’ /EEE J. Robotics and Auto-
mation, vol. 1, no. 2, pp. 104-113.

KERRIDGE; J., (1987). OCCAM Programming: A Practical Approach, Blackwell.

KHOSLA, P. K. AND NEUMAN, C. P., (1985). ‘‘Computational Requirements of
Customized Newton-Euler Algorithms,”’ J. Robotic Systems, vol. 2, no. 3, pp. 309-
327.

KHOSLA, P. K. AND RAMOs, S., (1988). “A Comparative Analysis of the
Hardware Requirements for the Lagrange-Euler and the Newton-Euler Dynamics
Formulations,’” in IEEE International Conf. on Robotics and Automation, Philadel-
phia, PA, vol. 1, pp. 291-296.

. KUNG, H. T., (1982). ““Why Systolic Architectures,’’ IEEE Computer, pp. 37-46.

- LATHROP, R. H., (1985). ‘‘Parallelism in Manipulator Dynamics,”’ Int. J. Robotics

Res., vol. 4, no. 2, pp. 80-102.

. LEE, C. S. G,, LEE, B. H, AND NIGAM, R., (1983). ‘‘Development of the General-

ized D’Alembert Equations of Motion for Mechanical Manipulators,’” in Proc. 22nd
Conf. Decision and Control, San Antonio, Tex., pp. 1205-1210.

. LEE, C. S. G. AND CHANG, P. R., (1986). “‘Efficient Parallel Algorithm for Robot

Inverse Dynamics Computation,”’ IEEE Trans. on Systems, Man, and Cybernetics,
vol. 16, no. 4, pp. 532-542.

. LEWIs, R. A,, (1974). ‘‘Autonomous Manipulation on a Robot: Summary of Mani-

pulator Software Functions,”” Tech. Memo. 33-679, Jet Propulsion Laboratory,
Pasadena, California.

LIAO, F. Y. AND CHERN, M. Y., (1985). ‘“‘Robot Manipulator Dynamics Computa-
tion on a VLSI Processor,” in Proc. Ist Conf. on Supercomputing Systems, st.
Petersburg, Florida, pp. 116-121.

LUH, J. Y. S.,, WALKER, M. W., AND PAUL, R. P., (1980). “‘On-Line Computa-
tional Scheme for Mechanical Manipulators,’”” Trans. ASME J. Dynamic Systems,
Measurements, and Control, vol. 102, pp. 69-76.

LUH, J. Y. S. AND LIN, C. S., (1982). “‘Scheduling of Parallel Computation for a
Computer Controlled Mechanical Manipulator,” 1EEE Trans. on Systems, Man, and
Cybernetics, vol. 12, no. 2, pp. 214-234.

< 30 =

[36].

[37].

[38].

[39].

[40].

[41].

[42].

[44].

[45].

[46].

[47].

[48].

[49].

NEUMAN, C. P. AND MURRAY, J. J., (1985). ““Computational Robot Dynamics:
Foundations and Applications,” J. Robotic Systems, vol. 2, no. 4, pp. 425-452,

NEUMAN, C. P. AND MURRAY, J. J., (1987). ““Customized Computational Robot
Dynamics,” J. Robotic Systems, vol. 4, no. 4, pp. 503-526.

NIGAM, R. AND LEE, C. S. G., (1985). “A Multiprocessor-Based Controller for the
Control of Mechanical ianipulators,” IEEE J. Robotics and Automation, vol. 1, no.
4, pp. 173-182.

ORIN, D. E., MCGHEE, R. B., VUKOBRATOVIC, M., AND HARTOCH, G., (1979).
“Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing Newton-Euler
Methods,”* Math. Biosci., vol. 43, pp. 107-130.

ORIN, D. E, CHAO, H. H., OLSON, K. W., AND SCHRADER, W. W., (1985),
“‘Pipeline/Parallel Algorithms for the Jacobian and Inverse Dynamics Computa-
tions,”” in Proc. IEEE Int. Conf. on Robotics and Automation, pp. 785-789.

PAUL, R. P., (1981). Robot Manipulators: Mathematics, Programming, and Con-
trol, MIT Press, Cambridge, Mass.

RAHMAN, M. AND MEYER, D., (1987). ““A Cost-Efficient High Performance Bit-
Serial Architecture for Robot Inverse Dynamics Computation,”” IEEE Trans. on
Systems, Man, and Cybernetics, vol. 17, no. 6, pp. 1050-1058.

- RAIBERT, M. H. AND HORN, B. K., (1978). *‘Manipulator Control Using the

Configuration Space Method,” Indusrial Robot, vol. 5 , 10. 2, pp. 69-73.

SILVER, W. M., (1982). ““On the Equivalence of Langrangian and Newton-Euler
Dynamics for Manipulators,”” Int. J. Robotics Res., vol. 1, no. 2, pp. 60-70.

UIKER, J. 1., (1965). “‘On the Dynamic Analysis of Spatial Linkages Using 4x4
Matrices,”’ Ph.D. Thesis, Dept. of Mechanical Engineering and Astronautical Sci-
ences, Northwestern University.

VUKOBRATOVIC, M. AND STOKIC, D., (1983). “Is Dynamic Control Needed in
Robotic Systems, and, if so, to What Extent 2,”" Int J. Robotics Res., vol. 2, no. 2.

VUKOBRATOVIC, M., KIRCANSKI, N., AND L1, S. G, (1988). ‘‘An Approach to
Parallel Processing of Dynamic Robot Models,”” Int. J. Robotics Res., vol. 7, no. 2,
pp- 64-71.

WALKER, M. W. AND ORIN, D. E,, (1982). *‘Efficient Dynamic Computer Simula-
tion of Robotic Mechanisms,”’ Trans. ASME J. Dynamic Systems, Measurements,
and Control, vol. 104, pp. 205-211.

ZAKHAROV, V., (1984). “‘Parallelism and Array Processing,”” IEEE Trans. Com-
puters, vol. 33, no. 1, pp. 45-78.

T

[501].

[51].

[52].

[53].

[54].

ZHENG, Y. AND HEMAMI, H., (1986). ‘‘Computation of Multibody System Dynam-
ics by a Multiprocessor Scheme,’’ IEEE Trans. on Systems, Man, and Cybernetics,
vol. 16, no. 1, pp. 102-110.

ZOMAYA, A. Y. AND MORRIS, A. S., (1988). ‘““The Dynamic Performance of
Robot Manipulators Under Different Operating Conditions,’’ Research Report No.
345, Dept. of Control Engineering, University of Sheffield, Sheffield SI1 3JD, U K.

ZOMAYA, A. Y. AND MORRIS, A. S., (1988). “‘Distributed VLSI Architectures for
Fast Jacobian and Inverse Jacobian Formulations,”” Research Report No. 346, Dept.
of Control Engineering, University of Sheffield, Sheffield S1 3JD, UK.

ZOMAYA, A. Y. AND MORRIS, A. S., (1989). ‘‘Robot Inverse Dynamics Computa-
tion Via VLSI Distributed Architectures,”’ Research Report No. 350, Dept. of Con-
trol Engineering, University of Sheffield, Sheffield S1 3JD, UK.

ZOMAYA, A. Y. AND MORRIS, A. S., (1989). ‘‘Fast Forward Dynamics Algorithm
for Robot Arms Using Multi-Processing,”’ Research Report No. 367, Dept. of Con-
trol Engineering, University of Sheffield, Sheffield S1 3JD, UK.

w9

23

JOINT 3

. ¥ _ A
X2 g2 B2
JOINT 2
X4
Z1 JOINT 4
~qi Y5
: Y1
¥ ‘ B1 JOINT 5
JOINT 1
z Y6
z
JOINT 6
Y
SPACE
COORDINATES ROBOT

GRIPPER

Figure 1. The Relation Between the Different
Links of a Robot Arm.

. EXTERNAL
r MEMORY BUS

Figure 2. The well known INMOS T800 Transputer.

INPUT/OUTPUT

Figure 3. A Four-Processors Network.

4arl ha

ls

e =4

Lral

}

- et
[E—-

e

n

L]
L]

Paspe

——
-
[|
-
e
-
=™
=
S
————
b
= A
2T e
e e
=~ PR
Mn'TH BTy
s ey |
——
-
o
=2
S
mare T e T — ci

R N T =ihe Mandm MR,

Figure 4. Processing time for the (NE), (SCSNEA),

and (PSCSNEA) Implementations.

