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Abstract

The properties of relaxor ceramics in the compositional series (1-x)K0.5Bi0.5TiO3-

xBa(Ti0.8Zr0.2)O3 have been investigated. Values of Tm, the temperature of maximum relative

permittivity, decreased from 380 °C at x = 0.0 to below room-temperature for x > 0.7.

Compositions x =0.1 and 0.2 were piezoelectric and ferroelectric. The maximum value of d33

piezoelectric charge coefficient, 130 pC/N, and strain, 0.14 %, occurred at x = 0.1.

Piezoelectric properties of x = 0.1 were retained after thermal cycling from room

temperature to 220 °C, consistent with results from high-temperature x-ray diffraction

indicating a transition to single-phase cubic at ~ 300 °C.
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Introduction

Health and environmental concerns surrounding the use of lead oxide have stimulated

extensive research into lead-free electroceramics [1-5]. A wide variety of possible alternative

lead-free solid solutions to the market leading lead zirconate titanate (PZT) have been

reported, many of which are based on the same perovskite ABO3 crystal structure. A common

theme is to attempt to engineer a temperature-insensitive morphotropic phase boundary

(MPB) between ferroelectric phases of differing symmetry in order to maximize ferroelectric

and piezoelectric coefficients, in an analogous manner to the PZT system [6,7].

Examples of lead-free piezoelectrics include solid solutions of sodium niobate and

potassium niobate, Na1-xKxNbO3. At a composition, x~ 0.5 (abbreviated NKN), d33 values

reach ~ 100 pC/N [8]; NKN forms an end-member for a number of other solid solutions

which have been investigated as potential lead-free piezoelectrics [8-14]. Binary solid

solutions include NKN-LiTaO3 with d33 ~ 200 pC/N at compositions 5-6 % LiTaO3 [4, 8];

similar properties exist in NKN-LiNbO3 [10]. In both of these systems, the maximum d33

and coupling coefficient, kp, values at 20 °C occur for levels of LiTaO3 or LiNbO3

substitution where the temperature of the polymorphic phase transition (PPT) between

orthorhombic/monoclinic and tetragonal phases is lowered to ~ 20 °C [4]. Phase coexistence

at the PPT creates enhanced piezoelectric coefficients, but values degrade on heating the

samples above room-temperature, due to disruption of the polar domain structure on cycling

through the PPT [4]. This limits implementation as a working piezoelectric for device

applications in which stable properties are required over a range of temperatures, although

improved stability may be achieved by a slight increase in LiTaO3 content [4]. Textured

ceramics based on (K, Na)NbO3-LiTaO3-LiSbO3 have been reported using complex reactive

template grain growth techniques; d33 values are around 400 pC/N [15].
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Compositionally modified BaTiO3 ceramics have attracted interest as lead-free

piezoelectrics and relaxor dielectrics [16-25]. High d33 values, ~ 600 pC/N at 20°C have been

reported for a composition, 0.5Ba(Zr0.2Ti0.8)O3 - 0.5(Ba0.7Ca0.3)TiO3 [22], competitive with

PZT. The Ca2+ and Zr4+ substituents modify the temperature of the various polymorphic

phase transitions in BaTiO3 such that a boundary between rhombohedral and tetragonal phase

develops at this composition [22]. Rietveld refinement of high resolution x-ray diffraction

indicated mixed tetragonal and rhombohedral phases at 20 °C, and single phase cubic at 100

°C [23]. The high d33 values have been interpreted on the basis of a combination of

polarisation rotation and extension, the latter arising from the relatively low Curie point, Tc ≤ 

100 °C, at which the paraelectric cubic phase forms [21]. The replacement of BZT with

Ba(Sn0.12Ti0.88)O3, gave a d33 of ~ 530 pC/N with a Tc of ~ 70 °C [24]; comparable properties

were reported for Ba(Hf0.2Ti 0.8)O3- Ba0.7Ca0.3)TiO3 [25].

Similarities in the electronic structures of Pb2+ and Bi3+ ions have attracted interest in

Bi-based perovskites. Systems include Na0.5Bi0.5TiO3 - BaTiO3 with d33 = 125 pC/N and kp =

0.55 at a phase boundary between rhombohedral and tetragonal phases [26]. Although Tc at

the optimum composition is ~ 280 °C, a depolarising transition at ~ 150 °C limits the

temperature range of operation [1, 27]. Solid solutions Na0.5Bi0.5TiO3- K0.5Bi0.5TiO3 offer

maximum d33 values of ~ 200 pC/N for ~20 mol % KBT at a rhombohedral-tetragonal

phase boundary, but again a depolarising transition occurs at ~ 150 °C [ 2, 28].

This paper reports the properties of a novel compositional series, (1-x)K0.5Bi0.5TiO3-

xBa(Ti0.8Zr0.2)O3, (KBT-BZT). The KBT end-member is tetragonal at room-temperature and

a relaxor dielectric, with Tm ~ 380 ºC [28, 29]. The BZT end-member composition is cubic at

room-temperature, and lies close to the ‘pinch - point’ where the temperatures of cubic-

tetragonal, tetragonal-orthorhombic, and orthorhombic–rhombohedral phase transitions

coincide [30].
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Experimental

Ceramics in the KBT-BZT system (1-x)K0.5Bi0.5TiO3-xBa(Ti0.80Zr0.20)O3, were

fabricated by a solid state processing route. The starting powders were BaCO3 (Alfa Aesar,

99 %), TiO2 (Sigma Aldrich, 99.9 %), ZrO2 (Sigma Aldrich, 99%), Bi2O3 (Sigma Aldrich,

99.9%) and K2CO3 (Sigma Aldrich, 99%). The powders were dried overnight in an oven at

200 °C and then weighed according to the stoichiometric ratios. All batches were mixed by

ball milling with zirconia grinding media in isopropanol for 24 h. After drying and sieving

through a 300 µm mesh nylon sieve, powders were calcined at 1000 °C for 4 h in closed

alumina crucibles with a heating ramp rate of 300 °C/h. The calcined powders were re-milled

for 24 h with addition of 1wt% binder (Ciba Glascol HA4). Powders were compacted into

pellets, 10 mm diameter and 1.5 mm thickness by uniaxial pressing in a steel die at 65 MPa,

followed by cold isostatic pressing at 300 MPa. During sintering, the pellets were embedded

in calcined powder of the same chemical composition; sintering was conducted in closed

alumina crucibles at dwell temperatures ranging from 1060 °C-1350 °C for 4-6 h.

An X-ray diffractrometer (Bruker D8, Cu-Kα~1.5406Å) was used to determine phase

content of powders obtained by crushing and grinding sintered pellets; the powders were

annealed at 500 ºC to reduce strain introduced by the grinding process. For electrical

characterization, the pellets were ground to reduce thickness to 0.8 mm, and silver paste

(Agar scientific) was applied to parallel polished surfaces; electroded pellets were fired to

550 ºC for 15 min with heating rate of 15 ºC/min. Measurements of dielectric relative

permittivity, εr, and loss tangent, tan δ,  as a function of temperature (25 ºC - 600 ºC)  and  

frequency (1 kHz - 1 MHz) were performed using an impedance analyzer (HP Agilent, 4192

Hewlett Packed) linked to a computerized data acquisition system. Piezoelectric d33 charge

coefficients were measured on poled samples using the Berlincourt technique (Piezotest
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meter PM 300). The samples were poled in a silicon oil bath at 50 °C for 10 min with an

applied electric field of ~ 4 kV/mm. Strain – field measurements (S-E) were performed at

room-temperature using a Precision LC analyzer (Radiant Technologies Inc.). Polarisation-

electric field response was measured using a triangular waveform (1s duration pulse). The

densities of sintered ceramic pellets were 90-92 % of theoretical, as determined from

geometric measurements using values of theoretical density obtained by least square

refinement of XRD data.

Results and discussion

X-ray diffraction patterns of the (1-x)K0.5Bi0.5TiO3-xBa(Ti0.80Zr0.2)O3 compositional

series are shown in Figure 1a. The KBT end-member (x = 0) was tetragonal [28] and BZT

(x = 1) cubic perovskite [30]. The tetragonal lattice parameters changed from a = 3.907 Å

and c = 3.997 Å at x = 0, to a = 3.926 Å and 3.997 Å for x =0.05. The KBT-BZT solid

solutions, 0.5 ≤ x ≤ 1 had single-phase cubic XRD patterns, with lattice parameter a

increasing to 4.033 Å at x = 1, Figure 2. Faint additional reflections appeared either side of

the 100 and 200 cubic XRD peaks for 0.1 ≤ x ≤ 0.4, as highlighted in Figure 1b.   

Comparisons of diffraction patterns in terms of trends in positions of the peaks in the 200c

region, and their relative intensity, infer that the extra reflections signify a phase coexistence

region of tetragonal and pseudo-cubic phases for 0.1 ≤ x ≤ 0.4.  

Plots of relative permittivity, εr, versus temperature indicated that KBT-BZT solid

solutions    were relaxor dielectrics, Figure 3. The εr - T plot for KBT (x =0) showed diffuse

peaks, with a temperature of maximum dielectric constant, Tm, ~380 ºC, (1 kHz), and only a

slight variation in Tm with changing radio frequency (Tm (1 kHz) – Tm (1MHz) = 20 °C),

consistent with literature  reports  [28 ]. The εr - T plot for x = 0.05 was similar to KBT, but
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Tm was slightly lower, 370 °C. A much stronger frequency-dependence in Tm values was

observed for compositions x ≥ 0.1, Figure 4.  This, together with the relaxation in tan δ at 

temperatures around Tm, is typical of a relaxor dielectric. The change in frequency-

dependence of Tm as the BZT constituent increased from x = 0.05 to 0.1 correlates to the

emergence of the pseudo-cubic phase as the dominant phase in XRD patterns (Figure 1b).

Room temperature relative permittivity was ~ 700 for x = 0.1, and ~ 1000 for x = 0.2

(1 kHz); with tan δ (20 °C) values of 0.06 - 0.07 (1 kHz) for  x = 0.1 -  0.2,   higher values, 

tan δ ~ 0.1, were recorded for compositions 0.3 ≤ x ≤ 0.6 due to the  effects of the loss 

tangent peak as Tm decreased.  Peak values of relative permittivity decreased from εr max ~

4000 (1 kHz) for x  ≤ 0.2, to ~ 3000 for 0.2 < x ≤ 0.5, and to ≤ 1500 at x ≥ 0.6, Figure 3.  The 

trend of falling Tm with increasing x was such that Tm decreased to below to room

temperature for x > 0.7, Figure 5 (and relaxor behaviour was not investigated).

Various models have been proposed to account for relaxor behaviour; it is generally

considered to arise from chemical or structural disorder associated with the existence of polar

nanoregions [31-34]. Relaxor properties of BaTiO3-BaZrO3 solid solutions have been

studied by several groups [16, 17, 35-38]: a change from normal ferroelectric to relaxor

behaviour occurs as the Zr content in Ba(Ti1-yZry)O3 increases to 0.25 ≤ y ≤ 0.5. Unlike 

classic relaxors such as Pb(Mg,Nb)O3 both B-site ions in Ba(Ti1-y,Zry)O3 are of the same

valence. An EXAFS study (extended x-ray absorption fine structure) of Ba(Ti1-yZry)O3

compositions identified aggregation of non-polar ZrO6 units inferring relaxor behaviour was

due to random elastic fields created by BaZrO3 inclusions [38].

In the present KBT - BZT solid solutions, a combination of mixed valence

substitution on the A sites, and isovalent substitution on the B sites of the perovskite ABO3

lattice may be anticipated from the basic solid solution mechanism: (K0.5-0.5xBi0.5-0.5xBax) (Ti1-
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xZrx)O3. Relaxor behaviour may relate to ZrO6 ordering in the manner reported for BZT [38],

but with an additional contribution arising from mixed valence A-site occupancy. The

changeover in dielectric properties as composition approaches KBT to a weak frequency

dependence suggests the level of Zr4+ substitution is insufficient at x ≤ 0.05 to form ZrO6

clusters of sufficient size or number to give a classic relaxor response.

Only compositions x = 0.1- 0.2 were ferroelectric, as evidenced by the polarisation-

electric field responses shown in Figure 6. Remanent polarization, Pr, values were 12 -14

μC/cm2 and coercive fields, Ec ~ 30 kVcm-1 and ~ 20 kV/cm for x = 0.1 and 0.2 respectively.

Broadening of the ferroelectric P-E hysteresis loops was consistent with the relatively high

tan δ values.  

Strain-electric field responses of x = 0.1 and 0.2 compositions are shown in Figure 7.

Maximum strains were ~ 0.14 % at x = 0.1, with d*33 ~ 200 pC/N, Figure 7. Negative strains

recorded for x = 0.1 and 0.2 samples were consistent with piezoelectric behaviour. Remaining

compositions were non-piezoelectric, with electrostrictive strains of < 0.08 %. Trends in

measured d33 values from composition x = 0 to x = 0.5 are shown in Figure 8; values

increased from 44 pC/N for KBT to a maximum of 130 pC/N at x = 0.1, decreasing to ~ 100

pC/N for x = 0.2 and then dropping sharply at x > 0.2, Figure 8. Hence the optimum

ferroelectric and piezoelectric properties in KBT-BZT occur around the changeover in phase

content from tetragonal to mixed phase (tetragonal and pseudocubic) at x = 0.1. A future

detailed crystallographic study would clarify the symmetry of the ferroelectric phase(s) in this

region.

As discussed in the Introduction, few lead-free piezoelectrics retain their properties on

thermal cycling to > 200 °C in the manner of PZT. The thermal stability of d33 for x = 0.1

was investigated by measuring d33 before and after heating a poled sample. The d33 value
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after heating to 220 °C was within 10 % of the original value, whereas significant

depolarisation occurred after heating to 250 °C. Analysis of a powdered sample of the x =

0.1 ceramic by in-situ high-temperature x-ray diffraction indicated a transition from mixed

phase to single phase cubic at ~300 °C, Figure 9, similar to the temperature Tm recorded

from permittivity plots. Hence depolarization occurs ~ 80 °C below Tm (PZT depolarizes

well below its Tc of ~ 390 °C).

The d33 value of x = 0.1, at a ceramic density of only 92 % theoretical, is higher than a

number of other KBT-based perovskites such as KBT- BiScO3 or KBT-BiFeO3 [39, 40]; d33

values are comparable to NBT-BaTiO3 but lower than NKN-LT with d33 ~ 200 pC/N [4, 41].

The new material exhibits a higher depolarization temperature than NBT-BT and NBT-KBT

which depolarize at ~ 150 °C [2,27,28], or BaTiO3 with a Tc of ~130 °C [6]. Although

KBT-BZT has much lower d33 values than BCT-BZT ceramics, the latter depolarise at <

100 °C [22]. Overall, the results infer that this region of the K0.5Bi0.5TiO3-BaTiO3- BaZrO3

phase diagram offers promise in the search for lead-free piezoelectrics which retain

piezoelectric activity to elevated temperatures.

Conclusions

Ceramics in the system (1-x)K0.5Bi0.5TiO3-xBa(Ti0.8Zr0.2)O3 were fabricated by conventional

mixed oxide processing. Dielectric measurements showed typical relaxor behaviour for x >

0.05. The temperature of peak relative permittivity, Tm, decreased with increasing levels of

Ba(Ti0.8Zr0.2)O3, with Tm ~ 380 °C at x = 0, decreasing to Tm < 20 °C for x > 0.7. A

narrow range of compositions, x = 0.1 and 0.2, were ferroelectric. The maximum

piezoelectric charge coefficient d33 occurred at x = 0.1, with d33 = 130 pC/N and maximum
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piezoelectric-field strain 0.14 % (d*33 = 200 pC/N). Unlike a number of other lead-free

piezoelectrics, the piezoelectric properties were retained after thermal cycling to >200 °C.
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List of Figure Captions

Figure 1. (a) X-ray diffraction patterns for (1-x)K0.5Bi0.5TiO3-xBa(Ti0.8Zr0.2)O3 at room

temperature; ( b) highlighted 002c region, arrows indicate trends in peaks attributed to a

tetragonal phase coexisting with a pseudo-cubic phase for 0.1 ≤ x ≤ 0.5.

Figure 2. Lattice parameters for (1-x)K0.5Bi0.5TiO3-xBa(Ti0.8Zr0.2)O3 as a function of x.

Figure 3. Relative permittivity and loss tangent versus temperature at different radio

frequencies for: (a) x=0; (b) x=0.05; (c) x= 0.1; (d) x=0.4.

Figure 4. Temperature of maximum permittivity, Tm, versus log frequency for x= 0 to x = 0.4.

Figure 5. Temperature of maximum relative permittivity (Tm) as function of BZT content (x).

Figure 6. Polarisation – electric field response for x = 0.05, 0.1, 0.2, 0.3.

Figure 7. Strain-electric field (S-E) response for x = 0.1 and 0.2.

Figure 8. Charge coefficient d33 for x = 0 to 0.5.
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Figure 9. Temperature-variable X-ray diffraction data for x= 0.1 showing transition to single-

phase cubic pattern at ≥ 300 °C. 
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