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Long-distance quantum key distribution with imperfect devices

Nicoló Lo Piparo and Mohsen Razavi*
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(Received 5 November 2012; published 30 July 2013)

Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical

assumptions, two such schemes in terms of their secret key generation rates per quantum memory. The two

schemes under investigation are the one proposed by Duan et al. [Nature (London) 414, 413 (2001)] and that

of Sangouard et al. [ Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfection in both

protocols, such as nonzero double-photon probabilities at the sources, dark counts in detectors, and inefficiencies

in the channel, photodetectors, and memories. We also consider memory decay and dephasing processes in our

analysis. For the latter system, we determine the maximum value of the double-photon probability beyond which

secret key distillation is not possible. We also find crossover distances for one nesting level to its subsequent one.

We finally compare the two protocols in terms of their achievable secret key generation rates at their optimal

settings. Our results specify regimes of operation where one system outperforms the other.

DOI: 10.1103/PhysRevA.88.012332 PACS number(s): 03.67.Bg, 03.67.Dd, 03.67.Hk, 42.50.Ex

I. INTRODUCTION

Despite all practical progress with quantum key distribution

(QKD) [1–4], its implementation over long distances remains

to be a daunting task. In conventional QKD protocols such

as BB84 [5], channel loss and detector noises set an upper

bound on the achievable security distance [6]. In addition, the

path loss results in an exponential decay of the secret key

generation rate with distance. Both of these issues can, in

principle, be overcome if one implements entanglement-based

QKD protocols [7,8] over quantum repeater systems [9–12].

This approach, however, is not without its own challenges.

Quantum repeaters require quantum memory (QM) units that

can interact with light and can store their states for sufficiently

long times. Moreover, highly efficient quantum gates might be

needed to perform two-qubit operations on these QMs [9]. The

latter issue has been alleviated, to some extent, by introducing

a novel technique by Duan, Lukin, Cirac, and Zoller (DLCZ)

[10], in which initial entanglement distribution and swapping,

thereafter, rely on probabilistic linear-optic operations. Since

its introduction, the DLCZ idea has been extended and

a number of new proposals have emerged [13–18]. Such

probabilistic schemes for quantum repeaters particularly find

applications in QKD systems of mid- to long distances, which

makes them worthy of analytical scrutiny. This paper compares

DLCZ with one of its favorite successors [17], which relies on

single-photon sources (termed SPS protocol, hereafter). Using

a general system-level approach, which encompasses many

relevant physical sources of imperfections in both systems,

we provide a realistic account of their performance in terms of

their secret key generation rates per logical memory used. This

measure not only quantifies performance, but it also accounts

for possible costs of implementation.

The SPS protocol attempts to resolve one of the key

drawbacks in the original DLCZ protocol: multiphoton emis-

sions. DLCZ uses atomic ensembles as QMs, which lend

themselves to multiphoton emissions. This leads to obtaining

not fully entangled states, hence resulting in lower key

*m.razavi@leeds.ac.uk

rates when used for QKD. To tackle this issue, in the SPS

protocol, entanglement is distributed by ideally generating

single photons, which will either be stored in QMs or directed

toward a measurement site. Whereas, in principle, the SPS

protocol should not deal with the multiphoton problem, in

practice, it is challenging to build on-demand single-photon

sources that do not produce any multiphoton components. A

fair comparison between the two systems is only possible when

one considers different sources of nonidealities in both cases,

as we pursue in this paper.

The SPS protocol is one of the many proposed schemes

for probabilistic quantum repeaters. In [18] authors provide

a review of all such schemes and compare them in terms of

the average time that it takes to generate entangled states,

of a certain fidelity, between two remote memories. Their

conclusion is that in the limit of highly efficient memories and

detectors, the top three protocols are the SPS protocol and two

others that rely on entangled and two photon sources [14,16].

In more practical regimes, however, the SPS protocol seems

to have the best performance per memory and/or mode used.

In this paper, we therefore focus on the SPS protocol and

investigate, under practical assumptions, whether the above

conclusion remains valid in the context of QKD systems.

Our work is distinct from previous related work in its

focusing on the performance of QKD systems over quantum

repeaters. In [18], authors have adopted the general measure

of fidelity to find the average time of entanglement generation.

Whereas their approach provides us with a general insight into

some aspects of quantum repeater systems, it cannot be directly

applied to the case of QKD. In the latter, the performance is not

only a function of the entanglement generation rate, but also

the quantum bit error rate caused by using nonideal entangled

states. To include both of these issues, here we adopt the secret

key generation rate per memory as the main figure of merit,

by which we can specify the optimal setting of the system and

its performance in different regimes of operation.

Another key feature of our work is to use a normalized figure

of merit to compare the DLCZ and SPS protocols. In practice,

to obtain a sufficiently large key rate in such probabilistic

systems, one must use multiple memories and/or modes in

parallel. In order to account for the cost of the system, in
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our analysis, we provide a normalized key rate per memory

and/or mode. We calculate the dependence of the secret key

generation rate on different system parameters when resolving

or nonresolving detectors are used. In particular, we find the

optimal values for relevant system parameters if loss, double-

photon emissions, and dark counts are considered. Moreover,

we account for the dephasing and the decay of memories in our

analysis. Memory decoherence is one of the key challenges in

any practical setup.

The paper is structured as follows. In Sec. II, we review the

DLCZ and the SPS protocols, their entanglement distribution

and swapping schemes, as well as their QKD measurements. In

Sec. III, we present our methodology for calculating the secret

key generation rate for the SPS protocol, followed by numer-

ical results in Sec. IV. We draw our conclusions in Sec. V.

II. TWO PROBABILISTIC SCHEMES

FOR QUANTUM REPEATERS

In this section we review two probabilistic schemes,

namely, DLCZ and SPS, for quantum repeaters. We describe

the multiple-memory setup for such systems and model

relevant system components.

A. DLCZ entanglement-distribution scheme

The DLCZ scheme works as follows [see Fig. 1(a)].

Ensemble memories A and B, at distance L, are made of

atoms with �-level configurations. They are all initially in

their ground states. By coherently pumping these atoms,

some of them may undergo off-resonant Raman transitions

that produce Stokes photons. The resulting photons are sent

toward a 50:50 beam splitter located at distance L/2 between

L RL R

50:50

(a)

QM QM
pumppump

L

L R

50:50

(b)

QM QM

A B

L
SPS SPS

L

FIG. 1. (Color online) Schematic diagram for entanglement

distribution between quantum memories (QMs) A and B for (a) the

DLCZ protocol and (b) the SPS protocol. In both cases, we assume

QMs can store multiple excitations. Sources, memories, and detectors

are represented by circles, squares, and half circles, respectively.

Vertical bars denote beam splitters. In both protocols the detection of

a single photon ideally projects the two memories onto an entangled

state.

A and B. If, ideally, only one photon has been produced

in total at the ensembles, one and, at most, only one of

the detectors in Fig. 1(a) clicks. In such a case, the DLCZ

protocol heralds A and B to be ideally in one of the Bell

states |ψ±〉AB = (|10〉AB ± |01〉AB)/
√

2, where |0〉J is the

ensemble ground state and |1〉J = S
†
J |0〉J is the symmetric

collective excited state of ensemble J = A,B, where S
†
J is

the corresponding creation operator [10]. An important feature

of such collective excitations is that they can be read out by

converting their states into photonic states.

The fundamental source of error in the DLCZ scheme is the

multiple-excitation effect, where more than one Stokes photon

are produced [11]. If the probability of generating one Stokes

photon is denoted by pc, there is a probability p2
c that each

ensemble emits one photon. If this happens, a click on one of

the two detectors heralds entanglement generation, whereas

the memories are in the separable state |11〉AB .

In practice, one has to find the right balance between

the heralding probability, which increases with pc, and the

quantum bit error rate (QBER), which also increases with pc.

In [11], authors find the optimal value of pc that maximizes

the secret key generation rate in various scenarios when

photon-number resolving detectors (PNRDs) or nonresolving

photon detectors (NRPDs) are used. In this paper, we use their

results in our comparative study.

B. SPS entanglement-distribution scheme

The SPS protocol, proposed in [17] aims at reducing

multiphoton errors and, in particular, terms of the form

|11〉AB by using single-photon sources. The architecture of

this scheme is presented in Fig. 1(b). The two remote parties

each have one single-photon source and one memory. In the

ideal scenario, each source produces exactly one photon on

demand, and these photons are sent through identical beam

splitters with transmission coefficients η. It can be shown that

the state shared by the QMs after a single click on one of the

detectors in Fig. 1(b) is given by [17]

η|00〉AB〈00| + (1 − η)|ψ±〉AB〈ψ±|, (1)

which has our desired entangled state plus a vacuum compo-

nent. The latter, at the price of reducing the rate, can be selected

out once the above state is measured at later stages [10,11].

In a practical setup, several sources of imperfection must

be considered in Fig. 1(b). First, most known techniques

for generating single photons suffer from multiple-photon

emissions. That includes single-photon sources that rely on

parametric down-conversion [19,20], quasiatomic structures

such as quantum dots [21], or the partial memory-readout

technique described in [18]. In all cases, there is a nonzero

probability to generate more than one photon, which manifests

itself in producing nonzero values for second-order coherence

functions [19,20]. For practical purposes, however, it is often

sufficient to consider the effect of two-photon states, as we do

in this paper. It turns out that this approximation is particularly

valid for the systems of interest in this paper. One should also

consider nonidealities in QMs. In our analysis, we account

for reading and writing efficiencies of QMs, as well as their

decay and dephasing processes. We assume that QMs can store

multiple excitations.

012332-2
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FIG. 2. (Color online) (a) Entanglement connection between two

entangled links A-A′ and B ′-B. The memories A′ and B ′ are read out

and the resulting photons are combined on a 50:50 beam splitter. A

click on one of the detectors projects A and B into an entangled state.

The retrieval efficiencies and quantum efficiencies are represented

by fictitious beam splitters with transmission coefficient ηc and

ηD, respectively. (b) The equivalent butterfly transformation to the

measurement module, where ηs = ηcηD .

Throughout the paper, we assume that both setups in

Fig. 1 are symmetric and phase stabilized. Furthermore, all

conditions required for a proper quantum interference at 50:50

beam splitters are assumed to be met. Recent experimental

progress in QKD shows that it is indeed possible to achieve

these conditions [22,23].

C. Entanglement swapping and QKD measurements

Figure 2(a) shows the entanglement swapping setup for

the DLCZ and the SPS protocols. Entanglement is established

between QM pairs AA′ and B ′B using either protocol. A partial

Bell-state measurement (BSM) on photons retrieved from the

middle QMs A′ and B ′ is then followed, which, upon success,

leaves A and B entangled. The BSM is effectively performed

by a 50:50 beam splitter and single-photon detectors. To

include the effects of the atomic-to-photonic conversion

efficiency and the photodetectors’ quantum efficiency, we

introduce two fictitious beam splitters with transmission

coefficients ηc and ηD, respectively. All photodetctors in

Fig. 2 will then have unity quantum efficiencies. Note that

the parameter ηc also includes the memory decay during the

storage time.

Figure 2(b) provides a simplified model for the measure-

ment module in Fig. 2(a). The 50:50 beam splitter and the two

fictitious beam splitters in Fig. 2(b) constitute what we call

a butterfly operation, which is further studied in Sec. III and

Appendix A.

Alice and Bob use two butterfly operations to generate a

raw key bit, as shown in Fig. 3. After generating entangled

pairs over a distance L, Alice and Bob retrieve the states of

memories and perform a QKD measurement on the resulting

photons. They apply a random relative phase shift, ϕ, of either

0 or π/2 between their two fields. They later, at the sifting

stage, keep only data points where the same phase value is used

by both parties. They then turn their sifted keys into a secret

key by using privacy amplification and error reconciliation

techniques. Eavesdroppers can be detected by following the

BBM92 or the Ekert protocol [7,24].

As mentioned in Sec. I, previous analyses only provide

the fidelity or the time required for a successful creation of

an entangled state [17]. Instead, in Sec. III, we calculate the

33

50:50
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c

D

D

50:50
c

c

D

D
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C
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DD c D

L
C D

FIG. 3. (Color online) QKD measurements on two entangled

pairs. Two pairs of memories, A-B and C-D, each share an entangled

state. Memories are read out and the resulting photons are combined

at a beam splitter and then detected. Different QKD measurements

can be performed by choosing different phase shift values, ϕ, of 0

and π/2.

secret key generation rate for the SPS scheme and compare it

with that of the DLCZ protocol reported in [11].

It is worth noting that because of the reliance of our

QKD protocols on entanglement, all entanglement swapping

operations at the middle nodes can be done by untrusted

parties, e.g., service providers. This is, in essence, similar

to the recently proposed measurement-device-independent

QKD (MDI-QKD) protocols [25–27], which also rely on

entanglement swapping. MDI-QKD schemes, in their original

form, are not suitable for long-distance quantum cryptography.

By combining them with quantum repeaters in a hybrid setup

that relies on MDI-QKD for the access network and on

quantum repeaters for the core network, one can achieve the

best of the two worlds. Preliminary analysis on such hybrid

networks has been done [28] and the extended work is in

preparation.

D. Multiple-memory configuration

In order to compare different quantum repeater setups, we

consider the multiple-memory configuration shown in Fig. 4(a)

along with the cyclic protocol described in [29,30]. In this

protocol, in every cycle of duration L0/c, where L0 is the

length of the shortest segment in a quantum repeater and c

(a)( )

>
1
Q
M
s

N

BSM

0
2 LL

n

(b)
BSM

MmodesM modes

>

FIG. 4. (Color online) (a) A quantum repeater with multiple

quantum memories per node. At each round, we employ entanglement

distribution protocol to entangle any unentangled memory pairs over

shortest links. At any such cycle, we also match up entangled pairs

at different stations to perform Bell-state measurements (BSMs).

(b) A quantum repeater with multimode memories. In each round,

we apply our entanglement distribution scheme on all M modes, until

one of them becomes entangled. BSM will be followed as soon as

entanglement is established on both sides.

012332-3
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is the speed of light in the channel, we try to entangle any

unentangled pairs of memories at distance L0. We assume our

entanglement-distribution protocol succeeds with probability

PS(L0). At each cycle, we also perform as many BSMs as

possible at the intermediate nodes. The main requirement for

such a protocol is that, at the stations that we perform BSMs,

we must be aware of establishment of entanglement over links

of length l/2 before extending it to l (informed BSMs). We use

the results of [29] to calculate the generation rate of entangled

states per memory in the limit of infinitely many memories. It is

given by Rent(L) = PS(L/2n)P
(1)
M P

(2)
M · · ·P (n)

M /(2L/c), where

P
(i)
M , i = 1, . . . ,n, is the BSM success probability at nesting

level i for a quantum repeater with n nesting levels.

We use the following procedure, in forthcoming sections,

to find the secret key generation rate of the setup in Fig. 4(a).

For each entanglement distribution scheme, we find PS(L0)

and relevant PM probabilities to derive Rent(L). We then find

the sifted key generation rate by multiplying Rent(L) by the

probability, Pclick, that an acceptable click pattern occurs upon

QKD measurements. Finally, the ratio between the number

of secure bits and the sifted key bits is calculated using the

Shor-Preskill lower bound [31]. In the limit of an infinitely

long key, the secret key generation rate per logical memory is

lower bounded by

RQKD(L) = max{Rent(L)Pclick[1 − 2 H (ǫQ)],0}, (2)

where ǫQ denotes the QBER, and H (p) = −p log2 p − (1 − p)

log2(1 − p), for 0 � p � 1.

E. Multimode-memory configuration

Another way to speed up the entanglement generation rate

is via using multimode memories [15,32]. As can be seen in

Fig. 4(b), in this setup, we use only one physical memory per

node but each memory is capable of storing multiple modes.

In each round, we attempt to entangle memories at distance

L0 by entangling, at least, one of the existing M modes.

Once this occurs, we stop entanglement generation on that

leg and wait until a BSM can be performed. For readout, all

modes must be retrieved in order to perform BSMs or QKD

measurements on particular modes of interest. In effect, this

scheme is similar to that of Fig. 4(a), except that entanglement

distribution is not sequentially applied to unentangled modes.

The success probability for entanglement distribution between

the two memories is, however, M times that of Fig. 4(a). One

can show that, the generation rate of entangled states per mode

is approximately given by ( 2
3
)nRent(L) [18,30].

In our forthcoming analysis, we consider only the case of

Fig. 4(a), but our results are extensible to the case of Fig. 4(b)

by accounting for the relevant prefactor.

F. Memory decay and dephasing

Quantum memories are expected to decay and dephase

while storing quantum states. In this paper, we model these

two decoherence processes independently. The decay process,

with a time constant T1, can be absorbed in the retrieval

efficiency of memories. If the retrieval efficiency immediately

after writing into the memory is given by η0, after a storage time

T , the retrieval efficiency is given by ηc = η0 exp(−T/T1).

Different memories in the multiple-memory setup of Fig. 4(a)

undergo different decay times. In our analysis, we consider

the worst-case scenario, where all memories have decayed for

T = L/c, which is applicable only to the far-end memories.

Under this assumption, ηc can be treated as a constant at all

stages of entanglement swapping.

We model the memory dephasing via a dephasing channel,

by which the probability of dephasing after a period T is

given by ed = [1 − exp(−T/T2)]/2. In the context of the

QKD protocol in Fig. 3, this phase error is equivalent to

the misalignment error in a conventional polarization-based

BB84 protocol and has mostly the same effect. In our analysis,

we neglect the effect of dephasing at the middle stages and

consider only its effect on the far-end memories used for

the QKD protocol. Again, for the multiple-memory setup of

Fig. 4(a), the relevant storage time is given by T = L/c [29].

III. SPS SECRET KEY GENERATION RATE

In this section, the secret key generation rate for the SPS

scheme proposed in [17] is calculated. As shown in Sec. II, this

scheme relies on simultaneous generation of single photons in

two remote sites. Most practical schemes for the generation

of single photons, however, suffer from the possibility of

multiple-photon emissions. To address this issue, in this

section we consider nonideal photon sources with nonzero

probabilities for two-photon emissions and find the secret key

generation rate in the repeater and no-repeater cases.

Suppose our photon sources emit one photon with proba-

bility 1 − p and two photons with probability p. We therefore

have the following input density matrix for the initial state of

l and r sources in Fig. 5(a):

ρ
(in)
lr = ρ

(in)
l ⊗ ρ(in)

r , (3)

where

ρ
(in)
j ≡ (1 − p)|1〉jj 〈1| + p|2〉jj 〈2|, j = l, r. (4)

As we show later, in a practical regime of operation,

p ≪ 1; hence, in our following analysis, we neglect O(p2)

terms corresponding to the simultaneous emission of two

photons by both sources.

A. No-repeater case

In this section, we describe how we obtain parameters

PS, Pclick, and RQKD for the setup in Fig. 5(a) and QKD

measurements as in Fig. 3.

Figure 5(a) depicts the entanglement-distribution setup

for the SPS scheme. In our model the memories’ writing

efficiencies, the path loss, and the detectors’ efficiencies

are represented by fictitious beam splitters with transmis-

sion coefficients ηm, ηt , and ηD, respectively, where ηt =
exp[−L/(2Latt)], with Latt = 25 km for an optical fiber

channel. Photodetectors, in Fig. 5, are then assumed to have

unity quantum efficiencies.

In our analysis, we use an equivalent setup, as shown in

Fig. 5(b), where beam splitters have been rearranged such that

ηtηD = ηmηd . We can then recognize similar building blocks,

which we referred to as butterfly modules, in Fig. 5(b). A

butterfly module, as shown in Fig. 6, is a two-input, two-output
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FIG. 5. (Color online) A schematic model for the SPS scheme.

In (a) the memories’ writing efficiencies, the path loss, and the

detectors’ efficiencies are represented by fictitious beam splitters

with transmission coefficients ηm, ηt and ηD , respectively. In (b),

an equivalent model is represented, where we have grouped beam

splitters in the form of butterfly modules; see Fig. 6. Here, ηtηD =
ηmηd and the model is valid so long as ηtηd � ηm.

building block consisting of three beam splitters. For an input

state ρL′R′ in Fig. 6, we denote the output state on ports L and

R as BηB ,ηx
(ρL′R′).

We use well-known models for beam splitters [33] to find

output density matrices for input states to a generic butterfly

module. In Appendix A, we find the relevant input-output

relationships for the states of interest. We use MAPLE 15 to

simplify some of our analytical results. We can then find

ρALBR, the joint state of the memories and the optical modes

entering detectors L and R in Fig. 5(b) by applying the butterfly

operation three times, as follows:

ρALBR = B0.5,ηd

(

Bη,ηm

(

ρ
(in)
l

)

⊗ Bη,ηm

(

ρ(in)
r

))

. (5)

According to the SPS protocol, a click on exactly one of

the detectors L or R in Fig. 5(b) would herald the success

of entanglement distribution. This process can be modeled by

applying proper measurement operators considering whether

PNRDs or NRPDs are used. For example, for a click on

detector L, the explicit form of the measurement operator is

given by

M =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − dc)[|1〉LL〈1| ⊗ |0〉RR〈0|
+ dc|0〉LL〈0| ⊗ |0〉RR〈0|], PNRD

(1 − dc)[(IL − |0〉LL〈0|) ⊗ |0〉RR〈0|
+ dc|0〉LL〈0| ⊗ |0〉RR〈0|], NRPD

(6)

RL

x

L’ R’

x

B

FIG. 6. (Color online) A generic butterfly module, represented by

BηB ,ηx
, where ηB and ηx are transmissivities for beam splitters shown

in the figure.

where IL denotes the identity operator for the mode entering

the left detector [34], and dc is the dark count rate per gate

width per detector.

After the measurement, the resulting joint state, ρAB , of

quantum memories is given by

ρAB =
trL,R(ρALBRM)

P
, (7)

where

P = tr(ρALBRM) =
PS(L)

2
(8)

is the probability that the conditioning event M occurs. The

last equality is due to the symmetry assumption.

For QKD measurements, we assume that two pairs of

memories, A-B and C-D, are given in an initial state

similar to that of Eq. (7). We use the scheme described in

Fig. 3 to perform QKD measurements. For simplicity, we

assume both users use zero phase shifts; other cases can

be similarly worked out in our symmetric setup. In Fig. 3,

the retrieval efficiency and the quantum detectors efficiency

are represented by fictitious beam splitters with, respectively,

transmission coefficient ηc and ηD. It is again possible to

remodel the setup in Fig. 3 as shown in Fig. 2(b) and use

the butterfly operation B0.5,ηs
, where ηs = ηcηD. The density

matrix right before photodetection in Fig. 3 is then given by

B0.5,ηs
(B0.5,ηs

(ρAB ⊗ ρCD)), where one of the B operators is

applied to modes A and C, and the other one to modes B

and D. Using this state, we find Pclick and ǫQ as outlined in

Appendix B.

Using Eq. (2), the secret key generation rate per memory,

RQKD, in the no-repeater setup, is then lower bounded by [11]

R1 = max

[

[1 − 2 H (ǫQ)]
PS(L)

2L/c
Pclick/2, 0

]

, (9)

where PS (L)

2L/c
, given by Eq. (8), is the generation rate of

entangled pairs per logical memory, Pclick is the probability

of creating a sifted key bit by using two entangled pairs, and

[1 − 2 H (ǫQ)] is the probability of creating a secret key bit out

of each sifted key bit. Here, we assume a biased basis choice

to avoid an extra factor of two reduction in the rate [35]. The

full definition for Pclick is given by Eq. (B3). The QBER,

ǫQ =
Perror

Pclick

, (10)

where Perror is the probability that Alice and Bob assign

different bits to their sifted keys, is given by Eq. (B4).

B. Repeater case

First, consider the repeater setup of nesting level one in

Fig. 2(a). We use the structure of Fig. 5(a) to distribute

entanglement between A-A′ and B ′-B memories. The initial

joint state of the system, ρAA′BB ′ = ρAA′ ⊗ ρBB ′ , can then be

found, using Eq. (7), as described in the previous section.

We then apply a BSM by reading memories A′ and B ′

and interfering the resulting optical modes at a 50:50 beam

splitter. Success is declared if exactly one of the detectors in

Fig. 2(a) clicks. This can be modeled by applying measurement
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operators in Eq. (6), which results in

ρAB =
trLR(Mρ ′

ALBR)

PL

, (11)

where ρ ′
ALBR = B0.5,ηs

(ρAA′BB ′ ), where L and R represent the

input modes to the photodetectors. Note that in Fig. 2 the

detectors have ideal unity quantum efficiencies. Moreover,

PL = tr(Mρ ′
ALBR) = PM/2 (12)

is the probability that only the left detector clicks in the BSM

module of Fig. 2. A click on the right detector has the same

probability by symmetry.

In order to find the secret key generation rate, we follow

similar steps to the no-repeater case. That is, we apply the

butterfly operation to find relevant density matrices, from

which Pclick and ǫQ can be obtained. From Eq. (2), in the

one-node repeater case, RQKD is lower bounded by

R2 = max

[

[1 − 2 H (ǫQ)]
PS (L/2)

2L/c
PM Pclick/2, 0

]

. (13)

Using the same approach, and by using Eq. (2), we find the

secret key generation rate for higher nesting levels. The details

of which have, however, been omitted for the sake of brevity.

IV. NUMERICAL RESULTS

In this section, we present numerical results for the secret

key generation rate of the SPS protocol, versus different

system parameters, in the no-repeater and repeater cases,

and we compare them with that of the DLCZ protocol. As

mentioned earlier, we have used MAPLE 15 to analytically

derive expressions for Eqs. (2), (9), and (13) when PNRDs or

NRPDs are used. Unless otherwise noted, we use the nominal

values summarized in Table I for all the results presented in

this section.

A. SPS key rate versus system parameters

1. Source transmission coefficient

Figure 7 shows the secret key generation rate per memory,

RQKD, versus the source transmission coefficient η in Fig. 1(b),

TABLE I. Nominal values used in our numerical results.

Memory writing efficiency, ηm 0.5

Quantum efficiency, ηD 0.3

Memory retrieval efficiency, ηc 0.7

Dark count per pulse, dc 10−6

Attenuation length, Latt 25 km

Speed of light, c 2 × 105 km/s

Decay (dephasing) time constants, T1 (T2) ∞
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FIG. 7. (Color online) RQKD versus the source transmission

coefficient η for the PNRDs and NRPDs in the no-repeater and

one-node repeater cases. Here, p = 0.001, L = 250 km, and n = 1

for the repeater system; other parameters are listed in Table I

at p = 0.001 and L = 250 km. It can be seen that there exist

optimal values of η for both repeater and no-repeater systems.

Table II summarizes these optimum values for different nesting

levels. The optimal value of η for the no-repeater system

is higher than the repeater ones, and that is because of the

additional entanglement swapping steps in the latter systems.

Another remarkable feature in Fig. 7 is that the penalty of

using NRPDs, versus PNRDs, seems to be minor at p = 10−3.

PNRDs better show their advantage at higher values of p when

double-photon terms become more evident.

The existence of an optimal value for η arises from a com-

petition between the probability of entanglement distribution

PS , which grows with η, and Pclick, which decreases with η.

This has been demonstrated in the inset of Fig. 7. The latter

issue is mainly because of the vacuum component in Eq. (1).

In the case of the repeater system, PM also decreases with η

for the same reason, and that is why the optimal value of η is

lower for repeater systems.

The optimum values of η in Fig. 7 are interestingly almost

identical to the value of η that minimizes the total time for a

successful creation of an entangled state, as prescribed in [17].

It is because, at a fixed distance, the QBER term in Eqs. (9)

and (13) is mainly a function of the double-photon probability

and the dark count rate, and it does not vary considerably with

η. More generally, the optimum values of η remain constant as

in Table II so long as the error terms are well below the cutoff

threshold in QKD.

TABLE II. Optimal values of η, at p = 0.001 and L = 250 km,

for repeater and no-repeater systems, when PNRDs or NRPDs are

used. The figures with an asterisk are approximate values.

Nesting level PNRD NRPD

0 0.35 0.34

1 0.28 0.27

2 0.21 0.20*

3 0.12 0.11*
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FIG. 8. (Color online) RQKD versus distance for up to three

nesting levels at two different dark count rates at p = 10−4. All other

values are listed in Tables I and II.

2. Nesting levels and crossover distance

Figure 8 depicts the normalized secret key generation rate

versus distance for different nesting levels. At dc = 0, the

slope advantage, proportional to PS(L/2n), for higher nesting

levels is clear in the figure. Because of additional entanglement

swapping stages, the no-path-loss rate at L = 0 is, however,

lower for higher nesting levels. That would result in crossover

distances—at which one system outperforms another—once

we move from one nesting level to its subsequent one.

The crossover distance has architectural importance and will

specify the optimum distance between repeater nodes.

The crossover distance is a function of various system

parameters. As shown in the inset of Fig. 8, positive dark

count rates can change considerably the crossover distance.

By including dark counts in our analysis, there will be a

cutoff security distance for each nesting level. By increasing

the dark count rate, these cutoff distances will decrease and

become closer to each other. That would effectively reduce the

crossover distance. At dark count rates as high as dc = 10−6,

the superiority of three over two nesting levels at long distances

would almost diminish as they both have almost the same

cutoff distances.

The crossover distance will decrease if component efficien-

cies go up. This has been shown in Fig. 9 when the crossover

distance is depicted versus measurement efficiency. The latter

directly impacts the BSM success probability, PM , and that is

why the larger its value the lower is the crossover distance.

Larger values of ηm also reduce the vacuum component, thus

enhancing the chance of success at the entanglement swapping

stage.

It can be noted in Fig. 9 that, even for highly efficient

devices, the optimum distance between repeater nodes

would tend to lie at around 150–200 km. For instance, at

L = 1000 km, and with the nominal values used in this paper,

the optimum nesting level is 2, which implies that the distance

between two nodes of the repeater is 250 km. This could

be a long distance for practical purposes, such as for phase

stabilization, and that might require us to work at a suboptimal

distancing. The latter would further reduce the secret key

generation rate. Our result is somehow different from what

1400
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1400

2 3 nesting level

600

800 1 2 nesting level

0.2 0.4 0.6 0.8 1
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400 0 1 nesting level

Measurement efficiency,
s

FIG. 9. (Color online) The crossover distance, at which a repeater

system with nesting level n outperforms a system with nesting level

n − 1, as a function of measurement efficiency ηs = ηcηD , at p =
10−4. All other parameters are taken from Tables I and II, except for

the dark count, which is 10−7.

is reported in [18,30], although one should bear in mind the

different set of assumptions and measures used therein.

3. Double-photon probability

Figures 10 show the secret key generation rate for the

SPS protocol, at the optimal values of η listed in Table II,

versus the double-photon probability p in the no-repeater

and repeater cases. It can be seen that, in both cases, there

exists a cutoff probability at which RQKD becomes zero.

This point corresponds to the threshold QBER of 11% from

the Shor-Preskill security proof. In the case of QMs with

sufficiently long coherence times, as is the case in Fig. 10,

the QBER in our system stems from two factors: dark count

and double-photon probability. The former is proportional

to dc/ηd and it comes into effect only when the path loss

is significant. The latter, however, affects the QBER at all

distances. To better see this issue, in Fig. 10(b) the cutoff

probability is depicted versus the dark count rate. It can be

seen that the cutoff probability linearly goes down with dc,
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FIG. 10. (Color online) (a) RQKD versus double-photon proba-

bility, p, using PNRDs and NRPDs in the no-repeater and one-node

repeater cases. (b) Cutoff double-photon probability, at which the key

rate becomes zero, versus the dark count rate dc. The higher the dark

count rate, the less room for multiphoton errors. All graphs are at

L = 250 km.
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TABLE III. Cutoff double-photon probabilities when PNRDs are

used for different nesting levels. The paramter values used are listed

in Tables I and II.

Nesting level Cutoff double-photon probability

0 2.5 × 10−2

1 5.0 × 10−3

2 1.8 × 10−3

3 2.1 × 10−4

which confirms the additive contribution of dark counts and

two-photon emissions to the QBER.

The cutoff probability at dc = 0 deserves particular atten-

tion. As can be seen in Fig. 10(b), for the no-repeater system,

the maximum allowed value of p is about 0.028 for PNRDs and

0.026 for NRPDs. This implies that the QBER in this case, at

dc = 0, is roughly given by 4p. This can be verified by finding

the contributions from two- and single-photon components in

Eq. (4). We can then show that the QBER, at the optimal

value of η in Table II, is roughly given by 3(1 + η)p ≈ 4p.

Similarly, in the repeater case, one can show that each BSM

almost doubles the contribution of two-photon emissions to

the QBER. Considering that four pairs of entangled states

is now needed, and that the chance of making an error for

an unentangled pair is typically 1/2, the QBER is roughly

given by 4 × 2 × 3(1 + η)p/2 ≈ 16p, which implies that, to

the first-order approximation, the maximum allowed value for

p is about 0.11/16 = 0.0068. Figure 10(a) confirms this result,

where the cutoff probability is about 0.0056 for the PNRDs

and 0.0054 for the NRPDs, corresponding to ǫQ ≈ 20p.

With a similar argument as above, one may roughly expect

a factor of 4 to 5 increase in the QBER for each additional

nesting level. This implies that for a repeater system with

nesting level 3, we should expect a QBER around 500p just

because of the double-photon emission. Table III confirms

our approximation by providing the actual cutoff figures for

different nesting levels. We discuss the practical implications

of this finding later in this section.

4. Memory dephasing

Figure 11(a) shows the secret key generation rate per

memory for the SPS protocol with NRPDs versus distance for

two different values of the dephasing time, T2, at p = 10−3.

It is clear that, by reducing the coherence time, the security

distance drops to shorter distances. Whereas at T2 = 100 ms

the key rate remains the same as that of Fig. 8(b), at T2 = 10 ms

both repeater and nonrepeater systems would fall short of

supporting distances over 360 km.

Figure 11(b) shows the secret key generation rate per

memory versus T2 at L = 250 km. There is a minimum

required coherence time of around 5 ms below which we

cannot exchange a secret key. This point corresponds to the

11% QBER mainly caused by the dephasing process. In fact,

at this point, we have ǫQ ≈ ed = {1 − exp[−L/(cT2)]}/2 =
0.11, which implies that the maximum distance supported

by our protocol is about cT2/4. To be operating on the flat

region in the curves shown in Fig. 11(b), one even requires a

higher coherence time. In other words, the minimum required
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FIG. 11. (Color online) (a) The secret key generation rate versus

distance for two values of decoherence time, T2 = 10 and 100 ms. In

(b) the secret key rate is plotted as a function of T2 at L = 250 km.

In both graphs, p = 10−3.

coherence time to support a link of length L is on the order

of 10L/c. This is in line with findings in [29]. Although not

explicitly shown here, the same requirements are expected to

be as applicable to other QKD systems that rely on quantum

repeaters.

B. SPS versus DLCZ

Figure 12 compares the secret key generation rate for the

SPS protocol found in this paper with that of the DLCZ

protocol as obtained in [11]. In both systems, we have assumed

dc = 0. All other parameters are as in Table I. In both systems,

we use the optimal setting in the PNRD case. The conclusion

would be similar if one uses NRPDs, as seen in all numerical

results presented in this paper. For the SPS protocol, the

optimal setting corresponds to the values of η in Table II. In

the DLCZ protocol, the adjustable parameter is the excitation

probability pc. Note that, whereas in the SPS protocol, the

rate decreases monotonically with p, in the DLCZ protocol,

it peaks at a certain value of pc. That is because in the SPS
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FIG. 12. (Color online) Comparison between the DLCZ and SPS

protocols using PNRDs. For both systems, the better of repeater or

non-repeater system is used. Both systems operate at their optimal

setting: For the SPS protocol, the optimum value of η is used; for

the DLCZ protocol, the optimum value of pc is used. By varying the

double-photon probability, p, in the SPS protocol, we find that the

maximum p at which SPS outperforms DLCZ is around p = 0.004.

In all curves, dc = 0. All other parameters are taken from Tables I

and II.
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protocol we use an on-demand source of photons, whereas in

the DLCZ protocol the heralding probability as well as the

relative double-photon probability are both proportional to pc.

The optimum value for the excitation probability is given by

pc = 0.0243 in the no-repeater case and pc = 0.0060 in the

one-node repeater case [11]. Note that the analysis in [11]

accounts for all multiexcitation components in the initial state

of the system. In all curves in Fig. 12, we have used the better

of the repeater and no-repeater systems at each distance. Our

results show that the SPS protocol offers a higher key rate per

memory than the DLCZ for on-demand single-photon sources

with double-photon probabilities of 0.004 or lower. The advan-

tage is, however, below one order of magnitude in most cases.

A key assumption in the results obtained above is the use

of on-demand sources in the SPS protocol. The less-than-one-

order-of-magnitude difference between the two protocols can

then be easily washed away if one uses single-photon sources

with less than roughly 50% efficiencies. This means that the

conventional methods for generating single photons, such as

parametric down-conversion or quantum dots, may not yet

be useful in the SPS protocol. The partial memory-readout

technique could still be a viable solution. In this scheme, we

drive a Raman transition, as in the DLCZ protocol, in an atomic

ensemble, such that with some probability p a Stokes photon

is released. If we detect such a photon, then we are left with

an ensemble, which can be partially read out with probability

η to resemble the first part of the SPS protocol. One should,

however, note that with limitations on the cutoff probability

to be on the order of 10−4–10−5, it may take quite a long

time to prepare such a source-memory pair. For instance, if

the required p is 10−4, and the efficiency of the collection and

detection setup is 0.1, even if we run the driving pulse at a

1-GHz rate, it takes on average 0.1 ms to prepare the initial

state. This time is comparable to the time that it takes for light

to travel 100 km, which is on the same order of magnitude

that we run our cyclic protocol in Fig. 4(a). Considering a

particular setup parameters, it is not then an obvious call to

which of the DLCZ or SPS protocols performs better, and that

underlines the importance of our theoretical analysis.

V. CONCLUSIONS

In this paper, we analyzed the SPS protocol proposed

in [17] in terms of the secret key generation rate that it could

offer in a QKD-over-repeater setup. This protocol belongs

to a family of probabilistic quantum repeaters, perhaps one

of their best, inspired by the DLCZ proposal [10]. Our aim

was to compare the SPS protocol for QKD applications

with the original DLCZ protocol, as reported in [11], in a

realistic scenario. To this end, we considered various sources of

imperfections in our analysis and obtained the optimal regime

of operation as a function of system parameters. We accounted

for double-photon probabilities at the source and realized that,

under Shor-Preskill’s security-proof assumptions, its value

should not exceed 0.11/4 in a direct-link scenario and 0.11/20

in a one-node repeater case. We would expect the same scaling,

if not worse, at higher nesting levels, which implied that for a

repeater setup of nesting level 3, the double-photon probability

must be on the order of 10−4 or lower. That would be a

challenging requirement for on-demand single-photon sources

needed in the SPS protocol. Under above circumstances, the

advantage of the SPS protocol over the DLCZ would be

marginal and would not exceed one order of magnitude of key

rate in bit/s per memory. In our analysis, we also accounted

for memory dephasing and dark counts. The former would

quantify one of the key characteristics of quantum memories in

order to be useful in long-distance quantum communications.

Our results showed that the minimum required coherence time

for a link of length L is roughly given by 4L/c, where c is

the speed of light in the channel. The crossover distance at

which we have to move up the nesting-level ladder varies for

different system parameters. The optimum distancing between

repeater nodes can nevertheless be typically as high as 150

to 200 km depending on the measurement efficiency among

other parameters. We noticed that, within practical regimes of

operation, there would only be a minor advantage in using

resolving photodetectors over more conventional threshold

detectors. We emphasized that, because of using a normalized

figure of merit in our analysis, our results would be applicable

to multimemory and/or multimode scenarios.
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APPENDIX A: BUTTERFLY TRANSFORMATION

In this Appendix, we find input-output relationships for the

butterfly module in Fig. 6. We do this in the number-state

representation only for the relevant input states in Eq. (5).

Table IV provides the output state for the butterfly operation

Bη,ηm
when there is exactly one or two photons at one of the

input ports. These are the only relevant terms in the input states

in Eqs. (3) and (4). Using Table IV, we find Bη,ηm
(ρ

(in)
l ) ⊗

Bη,ηm
(ρ(in)

r ), to be used in Eq. (5).

The last operation required in Eq. (5) is the symmetric

butterfly operation B0.5,ηd
. Table V lists the input-output

relationships for all relevant input terms in our system for the

more general operation B0.5,ηx
. Note that by choosing ηx = ηs ,

we can use the same relationships for the measurement

modules used in entanglement swapping and QKD of Figs. 2

and 3, respectively. For the sake of brevity, in Table V, we have

only included the terms that provide us with nonzero values

after applying the measurement operation. More specifically,

we have removed all asymmetric density matrix terms, such as

|10 〉〈01| or |01 〉〈10| , for which the bra state is different from

the ket state, from the output state.

APPENDIX B: DERIVATION OF Pclick AND Perror

In this Appendix, we find the gain and the QBER for the

QKD scheme of Fig. 3. Let us assume that the memory pairs

AB and CD are already entangled via the no-repeater or the

one-node repeater scheme described in Sec. III. In the case of

SPS protocol, their state is, respectively, given by Eqs. (7) and

(11). The density matrix right before photodetection in Fig. 3
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TABLE IV. The input-output relationship for the Bη,ηm
operator. |jk〉〈jk| = |j〉JJ 〈j | ⊗ |k〉KK〈k|, where J = L′ and K = R′ for input

number states and J = L and K = R for output number states in Fig. 6.

ρin Bη,ηm
(ρin)

|10〉〈10| ηηm|01〉〈01| + ηm

√
η(1 − η)(|10〉〈01| + |01〉〈10|) + ηm(1 − η)|10〉〈10| + (1 − ηm)|00〉〈00|

(1 − ηm)2|00〉〈00| + 2ηηm(1 − ηm)|01〉〈01| + ηη2
m(1 − η)(|20〉〈02| + |02〉〈20|)

|20〉〈20| + 2ηm(1 − ηm)
√

η(1 − η)(|10〉〈01| + |01〉〈10|) + η2η2
m|02〉〈02| + 2ηη2

m(1 − η)|11〉〈11|
+ η2

m(1 − η)
√

2η(1 − η)(|20〉〈11| + |11〉〈20|) + ηη2
m

√
2η(1 − η)(|02〉〈11| + |11〉〈02|)

+ 2ηm(1 − η)(1 − ηm)|10〉〈01| + η2
m(1 − η)2|20〉〈20|

is then given by ρABCD = B0.5,ηs
(B0.5,ηs

(ρAB ⊗ ρCD)), where

one of the B operators is applied to modes A and C and the

other one to modes B and D. Using Table V, we can calculate

the exact form of ρABCD , as we have done in this paper.

The most general measurement on the modes entering the

photodetectors of Fig. 3, namely, A, B, C, and D, can be

written in terms of the measurement operators

Mabcd = |a 〉AA〈 a| ⊗ |b 〉BB〈 b| ⊗ |c 〉CC〈 c| ⊗ |d 〉DD〈 d|
(B1)

for PNRDs, where a, b, c, d = 0, 1 and |k 〉K represents a

Fock state for the optical mode K = A,B,C,D. In the

case of NRPDs, we only need to replace |1 〉KK 〈1| with

(IK − |0 〉KK 〈0| ), where IK is the identity operator for

mode K.

Similarly, we can define the corresponding probabilities to

the above measurement operators as follows:

Pabcd = T r (ρABCDMabcd ) . (B2)

The explicit forms for Pclick and Perror are then given by

Pclick = PC + PE (B3)

TABLE V. The input-output relationship for a symmetric butterfly module. The notation used is similar to that of Table IV.

ρin B0.5,ηx
(ρin)

|10〉〈10| ηx

2
(|10〉〈10| + |01〉〈01|) + (1 − ηx)|00〉〈00|

|01〉〈01| ηx

2
(|10〉〈10| + |01〉〈01|) + (1 − ηx)|00〉〈00|

|11〉〈11| ηx(1 − ηx)(|10〉〈10| + |01〉〈01|) + (1 − ηx)2|00〉〈00| + η2
x

2
(|20〉〈20| + |02〉〈02|)

|20〉〈20| ηx(1 − ηx)(|10〉〈10| + |01〉〈01|) + (1 − ηx)2|00〉〈00| + η2
x

2
|11〉〈11| + η2

x

4
(|20〉〈20| + |02〉〈02|)

|02〉〈02| ηx(1 − ηx)(|10〉〈10| + |01〉〈01|) + (1 − ηx)2|00〉〈00| + η2

2
|11〉〈11| + η2

x

4
(|20〉〈20| + |02〉〈02|)

|21〉〈21| 3

2
ηx(1 − ηx)2(|10〉〈10| + |01〉〈01|) + (1 − ηx)3|00〉〈00| + η2

x

2
(1 − ηx)|11〉〈11|

+ 5

4
η2

x(1 − ηx)(|20〉〈20| + |02〉〈02|) + 3

8
η3

x(|30〉〈30| + |03〉〈03|) + 1

8
η3

x(|21〉〈21| + |12〉〈12|)

|21〉〈21| 3

2
ηx(1 − ηx)2(|10〉〈10| + |01〉〈01|) + (1 − ηx)3|00〉〈00| + η2

x

2
(1 − ηx)|11〉〈11|

+ 5

4
η2

x(1 − ηx)(|20〉〈20| + |02〉〈02|) + 3

8
η3

x(|30〉〈30| + |03〉〈03|) + 1

8
η3

x(|21〉〈21| + |12〉〈12|)

|10〉〈01| 1

2
ηx(|10〉〈10| − |01〉〈01|)

|01〉〈10| 1

2
ηx(|10〉〈10| − |01〉〈01|)

|11〉〈20|
√

2

2
ηx(1 − ηx)(|10〉〈10| − |01〉〈01|) + 1

2
√

2
η2

x(|20〉〈20| − |02〉〈02|)

|11〉〈02|
√

2

2
ηx(1 − ηx)(|10〉〈10| − |01〉〈01|) + 1

2
√

2
η2

x(|20〉〈20| − |02〉〈02|)

|20〉〈11|
√

2

2
ηx(1 − ηx)(|10〉〈10| − |01〉〈01|) + 1

2
√

2
η2

x(|20〉〈20| − |02〉〈02|)

|02〉〈11|
√

2

2
ηx(1 − ηx)(|10〉〈10| − |01〉〈01|) + 1

2
√

2
η2

x(|20〉〈20| − |02〉〈02|)

|21〉〈21| ηx(1 − ηx)2(|10〉〈10| − |01〉〈01|) + η2
x(1 − ηx)(|20〉〈20| − |02〉〈02|)

+ 3

8
η3

x(|30〉〈30| − |03〉〈03|) + 1

8
η3

x(|12〉〈12| − |21〉〈21|)

|12〉〈12| ηx(1 − ηx)2(|10〉〈10| − |01〉〈01|) + η2
x(1 − ηx)(|20〉〈20| − |02〉〈02|)

+ 3

8
η3

x(|30〉〈30| − |03〉〈03|) + 1

8
η3

x(|12〉〈12| − |21〉〈21|)

(1 − ηx)4|00〉〈00| + 2ηx(1 − ηx)3(|10〉〈10| + |01〉〈01|) + η2
x(1 − ηx)2|11〉〈11|

|22〉〈22| + 3

2
η3

x(1 − ηx)(|30〉〈30| + |03〉〈03|) + 1

2
η3

x(1 − ηx)(|21〉〈21| + |12〉〈12|)
5

2
η2

x(1 − ηx)2(|20〉〈20| + |02〉〈02|) + 3

8
η4

x(|40〉〈40| + |04〉〈04|) + 1

4
η4

x |22〉〈22|

012332-10
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and

Perror = edPC + (1 − ed )PE, (B4)

where ed is the dephasing (misalignment) error,

PC =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(1 − dc)2
[

P1100 + P0011 + dc(P1000 + P0100 + P0010 + P0001) + 2d2
c P0000

]

, PNRD
(

d2
c

2
− dc + 1

)

(P1100 + P0011) + dc(1 − dc

2
)(P1001 + P0110)

+ dc

2
(2 − dc)(P1000 + P0100 + P0010 + P0001) + d2

c

2
(2 − dc)2P0000

+ 1
2
(P1110 + P1101 + P0111 + P1011) + dc

2
(2 − dc)(P1010 + P0101) + 1

2
P1111, NRPD

(B5)

is the probability that Alice and Bob assign identical bits to their raw keys if there is no misalignment, and

PE =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(1 − dc)2
[

P1001 + P0110 + dc(P1000 + P0100 + P0010 + P0001) + 2d2
c P0000

]

, PNRD
(

d2
c

2
− dc + 1

)

(P1001 + P0110) + dc

2
(2 − dc)(P1000 + P0100 + P0010 + P0001)

+ d2
c

2
(2 − dc)2P0000 + 1

2
(P1110 + P1101 + P0111 + P1011)

+ dc

2
(2 − dc)(P1100 + P1010 + P0011 + P0101) + 1

2
P1111, NRPD

(B6)

is the probability that they make an erroneous bit assignment in the absence of misalignment.
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