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ABSTRACT

This paper presents an investigation of far field speech recog-

nition using beamforming and channel concatenation in the context

of Deep Neural Network (DNN) based feature extraction. While

speech enhancement with beamforming is attractive, the algorithms

are typically signal-based with no information about the special

properties of speech. A simple alternative to beamforming is con-

catenating multiple channel features. Results presented in this paper

indicate that channel concatenation gives similar or better results.

On average the DNN front-end yields a 25% relative reduction in

Word Error Rate (WER). Further experiments aim at including rel-

evant information in training adapted DNN features. Augmenting

the standard DNN input with the bottleneck feature from a Speaker

Aware Deep Neural Network (SADNN) shows a general advan-

tage over the standard DNN based recognition system, and yields

additional improvements for far field speech recognition.

Index Terms— speech recognition, multiple microphone,

beamforming, deep neural networks

1. INTRODUCTION

Reducing the ASR performance gap between far field and close-

talking recordings has been an important research topic for a long

time. Typically, multiple channel data is enhanced before recog-

nition. The most representative multi-channel signal enhancement

methods are beamforming techniques [1], which perform a chan-

nel based noise reduction, temporal and spatial filtering [2, 3]. Ad-

vanced beamforming also considers the correlation among different

channels [4], and even extends the beamforming optimization with

maximizing the speech recognition likelihood [5, 6]. [7] introduced

the direct concatenation of multi-channel features and compared the

performance of direct channel concatenation with beamforming us-

ing standard PLP features. The experiments showed that equal or

better recognition performance can be achieved using direct chan-

nel concatenation, and that the WER tends to be higher when the

speakers are standing without head movement.

Neural network based features have long been used successfully

in meeting recognition [8, 9, 10]. While the early research did not

involve deep layers [11], the path towards deep learning was laid in

the stacking of bottleneck networks [9]. A DNN is a conventional

Multi-Layer Perceptron (MLP) with many internal or hidden lay-

ers. The BottleNeck (BN) features extracted from the internal layer

with a relatively small amount of neurons have been shown to ef-

fectively improve the performance of ASR systems. It is possibly

due to the limited number of units which creates a constriction in

the network and further forces the information pertinent to classifi-

cation into a low dimensional representation [12, 13, 14]. In many
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Fig. 1. DNN module structure

ASR systems, the neural network based features and the cepstrum or

spectrum based features (e.g. MFCC, PLP) are supposed to provide

complementary information. Using them jointly further improved

the recognition performance over any single one.

In far field ASR, the information relevant to speech recognition

(meta-information) can be encoded in different forms besides the

standard features. The speaker location can be encoded with the

Time Difference of Arrival (TDOA) values, and the speaker identity

can be represented with speaker adaptive models. Projecting stan-

dard features into a test speaker relevant space has shown to improve

the ASR performance, on both the classic features [15, 16] and the

DNN based features [17], both the close-talking data and the far-

field data. In recent research on speaker robustness of DNN, speaker

representative features like speaker code [18] and i-Vector [19] are

used to perform static speaker adaptation of the DNN neuron bias.

Work in this paper aims to extend and enhance the preliminary

work in [7] with redefined training and test sets (as outlined in §2.1)

and with advanced DNN based feature extraction. We followed the

standard strategies where the DNN includes one input layer, two or

three hidden layers, another bottleneck layer and one output layer.

The BN features are extracted from the bottleneck layer of DNN

trained to predict the context-dependent clustered triphone states.

Figure 1 shows the architecture. It is similar to those in [20, 21, 22].

We extended the concept of direct channel concatenation to DNN.

Similar work but with a different focus and system setup is referred

in [17]. The DNN based front-end allows a very flexible integra-

tion of meta-information. Thus we investigated integrating differ-

ent meta-information dynamically and statically into the DNN based

front-end to improve far-field ASR performance. We have shown

that a dynamic speaker adaptation of DNN based on 13 dimensional

speaker awareness bottleneck features improves far-field recognition

performance, especially when the direct channel concatenation is

used at the same time.

2. RECOGNITION OF MEETING DATA

Recognition of speech recorded in meetings is interesting for several

reasons: recordings can be made in a fairly controlled setting with

multi-channel far field and close-talking recording devices; speak-



Table 1. %WER using PLP features, models are trained on acntrain,

tested on acntest ("bmit": beamforming with BeamformIt).

Conf IHM SDM 2bmit 4bmit 8bmit

- 35.6 66.3 61.8 60.5 58.2

HLDA 34.7 65.3 61.3 59.9 57.8

Table 2. %WER using PLP features, models are trained on acftrain,

tested on acftest. "#o" refers to the maximal number of overlapping

speakers in scoring, using NIST scoring toolkit sctk 2.4.8.

#o IHM SDM 2bmit 4bmit 8bmit

0 32.3 61.3 57.1 56.0 53.8

4 35.4 65.1 60.4 59.8 58.2

ing style ranges from very formal to highly conversational; multiple

speakers can speak at the same time, thus requiring the ASR to be

robust to environmental effects. The following sections describe the

data used and the baseline performance.

2.1. Data and Basic Setup

The AMI corpus [23] is used in our experiments due to its size,

high quality recordings and multiple levels of annotation with meta-

information like speakers’ head and body movement. It includes

recordings from Individual Headset Microphones (IHM) and Multi-

ple Distant Microphones (MDM) in microphone arrays of which the

first channel is referred as the Single Distant Microphone (SDM).

Segments with annotation of the speakers’ movement status

were included in our experiments. In the following, H+/H- refers

to presence or absence of head movement, while M+/M- refers to

presence or absence of body movement. Taking the balance of these

movement categorisations into account, we defined a 87.7 hours

training set acftrain and a 6.1 hour test set acftest which excludes

the meetings seen in the training set but includes some seen speak-

ers. A 15.8 hour sub-training set acntrain is defined with all the

non-overlapping speech in acftrain. Similarly a 1.9 hour sub-test set

acntest is defined with all the non-overlapping speech in acftest.

All experiments have equivalently configured 16 mixture com-

ponent HMM-GMMs trained with maximum likelihood criterion.

All model sets for the same training set have approximately the same

amount of clustered triphone states. Viterbi decoding is performed

with the AMI RT’09 trigram language model and dictionary [10].

2.2. Baseline Experiments

The experiments presented here are based on 39 dimensional fea-

ture vectors composed of 12 PLP coefficients plus c0, and their delta

and delta-delta features. Segmental Mean Normalisation (SMN) is

applied in all experiments. Some experiments also include Het-

eroscedastic Linear Discriminant Analysis (HLDA, [24]). Beam-

forming is performed with the toolkit BeamformIt [25].

Tables 1 and 2 show the WER results of PLP features on non-

overlapping subsets and full datasets respectively. Results on non-

overlapping speech include those obtained with feature dimension

reduction from 39 to 26 using HLDA, to compare with the 26 di-

mensional bottleneck features to show later. With more training data,

WER in far field conditions reduced by around 4.4% absolute. And

the WERs on the speech with a maximum of 4 overlapping speakers

are around 3.7% absolute higher than the non-overlapping speech.

Table 3. %WER using linear BN features (acntrain, acntest).

Conf IHM SDM 2bmit 4bmit 8bmit

2ML0 29.9 53.7 51.6 51.2 50.5

2TL 26.6 49.5 46.8 46.3 45.6

3TL 26.8 49.3 47.8 46.9 45.8

3. NEURAL NETWORK BASED FEATURES

3.1. Configurations

All DNNs are trained feed-forward with the TNET toolkit1 on

GTX690 based GPUs. In a default TNET setup, 31 adjacent frame

log filter bank features are decorrelated and compressed with DCT

into a dimension of 368 (31×23→16×23). Global mean and vari-

ance normalization are performed on each dimension before feeding

as the DNN input. The 5 layered DNN structure is shown in Figure

1. For 6 layered DNN, an extra hidden layer composed of 1745

units will be inserted before the 26 dimensional bottleneck layer.

On average 10% data in (acntrain and acftrain) is reserved for cross

validation in DNN training. The training stops automatically when

the improvement of frame-based target classification accuracy on

the cross validation set drops to below 0.1%.

The bottleneck layer is placed just before the output layer, as

in our initial experiments this topology gives the best performance.

DNNs are trained on classification targets of monophone (M) or tri-

phone states (T). In the bottleneck layer, linear (L) or sigmoidal (S)

BN features are extracted respectively before or after the sigmoid

activation. Hence a configuration abbreviation of "2TS" denotes BN

features extracted after the sigmoid function from a 5 layered DNN

(2 extra hidden layers plus an input layer, an bottleneck layer and

an output layer) trained on triphone targets classification. If a DNN

is initialized randomly, a "0" is attached at the end of configura-

tion abbreviation (e.g. "2ML0" in table 3). Otherwise it is trained

layer by layer. Standard HMM-GMM models are trained on the BN

features with Single Pass Retraining (SPR) from the corresponding

PLP models with HLDA (Table 1), with 8 iteration Baum-Welch re-

estimation followed. SMN is performed in all experiments.

3.2. Bottleneck Features Only

Table 3 shows the results for BN features of different configurations

on IHM, SDM and MDM with beamformed audio by BeamformIt.

All the DNNs are trained with the triphone state targets force-aligned

using IHM data on the acntrain training set. The decoding is per-

formed on the acntest test set. On average there is 20% relative WER

improvement over the standard PLP features (Table 1). Performance

for more than 2 extra hidden layers seems to decrease. Note that lin-

ear BN features are used because the variance value of sigmoidal BN

features is very small, which leads to complications in Baum-Welch

training due to overly dominant posteriors.

3.3. Concatenation of DNN and PLP Features

Table 4 shows the results for BN+PLP feature concatenation. Over-

all there are 8.1% absolute WER improvement for IHM data and

12.5% for 8 channel beamformed data over the PLP baseline.

Experiments here addressed three issues in the DNN front-end:

network depth, monophone or triphone target, and linear or sig-

moidal feature output. While these seem rather technical, we have

observed mixed results depending on the exact nature of the input

throughout experiments. Hence these results are reported here.

1http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet



Table 4. %WER using BN+PLP feature concatenation under differ-

ent DNN configuration (acntrain, acntest).

Conf IHM SDM 2bmit 4bmit 8bmit

- 2TL 26.8 49.9 48.0 47.4 45.7

- 2TS 26.7 49.9 46.9 46.8 45.3

- 3TL 26.3 49.4 47.6 47.0 45.6

- 3TS 26.5 49.5 47.2 46.5 44.5

STC 2TS 26.5 49.6 47.1 47.0 45.4

STC 3TS 26.0 48.9 46.9 46.2 44.9

Table 5. %WER using BN+PLP concatenation (acftrain, acftest).

Conf #o IHM SDM 2bmit 4bmit 8bmit

2TS 0 22.1 43.5 41.8 41.2 39.5

2TS 4 23.9 48.5 46.8 46.9 45.1

As shown, the recognition performance improves with more mi-

crophones involved in beamforming. Among different configura-

tions of DNN and BN features, the best performance is observed

with 3TS for 4 and 8 channel MDM, with 2TS for 2 channel MDM,

and with 3TL for IHM and SDM data. Interestingly the difference

between using linear BN features (Table 3) and using BN+PLP con-

catenated features is small and it varies among different recording

channels. The concatenation with PLP gave a slight improvement in

the majority with 3TL configuration, but not with 2TL.

Further experiments in Table 4 investigated using Semi-Tied Co-

variance matrices transformation (STC, [26, 27]) for feature decorre-

lation. All models were then retrained using a full re-clustering and

mixup procedure while keeping roughly the same amount of states.

Similar to concatenating with PLP features, STC brought a slight

improvement in most cases with 3TS, but not with 2TS.

3.4. Overlapping Speech

Speech overlap is a key feature in meeting speech recognition. While

acoustic beamforming can in theory address this problem, in prac-

tice the algorithms do not allow concurrent speech recognition (e.g.

due to maximum loudness target selection). Table 5 shows the per-

formance of BN+PLP with overlapping speech in both the training

set acftrain and test set acftest. Results of #o=0 scoring in Table 5

should be compared with results of the 2TS configuration in Table 4.

For non-overlapping test set, a five-fold amount increase in training

data gives an average WER decrease by a 13.1% relative. Com-

pared to using PLP features (Table 2), the WER gap between non-

overlapping speech and speech with maximal 4 overlapping speakers

increased on average from 3.7% to 4.6% absolute and from 6.8% to

10.6% relative.

4. DIRECT MULTI-CHANNEL INPUT

Compared to the direct concatenation of BN and PLP features in

§3.3, a direct concatenation of multi-channel PLP features leads

to very high-dimensional input for HMM-GMM training, which is

problematic. For this reason, any BN+PLP feature concatenation in

this section refers to using the PLP features from the first channel

only2. Concatenation is performed on the compressed log filter bank

features from multiple channels in the DNN input.

4.1. Concatenation Versus Beamforming in DNN Input

Table 6 shows the results of direct channel concatenation applied

on PLP features and on DNN training input. The #o=0 scoring

2We tried concatenating with more channels and even beamformed chan-
nel, but there was no evident improvement over using the single first channel.

Table 6. %WERs using direct channel concatenation on PLP fea-

tures and DNN training input, trained with non-overlapping speech

(acntrain, acftest) ("cct": direct channel concatenation).

Feature Conf #o 2cct 4cct 8cct

PLP - 0 62.1 62.2 -

PLP - 4 67.9 68.3 -

BN+PLP 2TS 0 46.8 46.5 47.4

BN+PLP 2TS 4 54.1 54.7 55.6

Table 7. %WER using channel concatenation on DNN training input

trained with overlapping speech (acftrain, acftest).

Conf #o 2cct 4cct 8cct

2TS 0 41.1 40.3 41.7

2TS 4 46.4 46.2 47.8

over direct channel concatenation of PLP in Table 6 should be com-

pared with the PLP baseline results in Table 1. The 2 channel con-

catenation achieved 4.2% absolute WER improvement over SDM,

only 0.3% less than 2 channel beamforming. However concatena-

tion generates large feature dimensionality and HMM-GMM param-

eter amount, which makes higher order concatenation intractable.

In a comparison between Table 6 and Table 4, the DNN front-end

achieved a small but consistent improvement for the 2 and 4 channels

MDM by using direct channel concatenation over standard beam-

forming. The performance for 8 channel concatenation degraded

possibly because of large DNN input layer. Table 6 also shows that

between the two different implementations of direct channel con-

catenation, the WER gap between the overlapping speech and the

non-overlapping speech is larger when using DNN front-end and

BN+PLP features than using PLP features.

Table 7 shows equivalent results trained with the full training set

(acftrain). Compared to the Table 2, for 2 and 4 channels there is an

an average 28% relative WER improvement on the non-overlapping

test speech, and 23% relative WER improvement on the full test set.

Compared to the beamforming results in Table 5, direct concate-

nation of 2 and 4 channel achieves better performance than beam-

forming on both overlapping and non-overlapping speech, while the

loss in 8 channels remains. The WER gap between non-overlapping

and overlapping speech also reduced compared with training on non-

overlapping speech (acntrain) only (Table 6).

4.2. Analysis

So far the best performance on 2 and 4 channel MDM data has been

achieved with direct channel concatenation as the DNN input. It is

important to understand where the improvement occurs. Thus we

analysed the WER in terms of head and body movement (Table 8).

The recognition performance with IHM tends to be better with head

or body movement than without, possibly due to cognitive load. Dis-

tant microphones are quite sensitive to speakers’ body movement,

and the recognition performance is evidently better when the speaker

sits or only moves a little (e.g. take_notes). The direct concatenation

tends to improve the moving speech better than beamforming, pos-

sibly because it better preserves the signals from all directions. As a

result, the WER gap between with body movement (M+) and with-

out body movement (M-) is smaller using direct channel concatena-

tion than standard beamforming. And head movement appears to

have more impact than body movement in all cases.



Table 8. %WER using BN+PLP (2TS) features; trained on acftrain,

decoded on acftest, and scored on maximal 4 overlapping segments.

(M+: 2.42 hours; M-: 3.67 hours; H+: 2.72 hours; H-: 2.29 hours)

IHM SDM 2bmit 4bmit 8bmit 2cct 4cct

M+ 22.4 49.4 48.3 49.0 47.0 47.0 46.1

M- 24.6 47.4 45.3 45.0 43.2 45.5 45.6

H+ 23.3 45.8 43.9 43.7 41.5 43.7 43.5

H- 25.7 51.3 49.5 49.5 48.4 49.5 49.3

Fig. 2. SABN feature computation.

5. ADDING INFORMATION FOR DNN ADAPTATION

5.1. Speaker Separation Features

Similar to training DNNs for phoneme discrimination, a Speaker

Separation DNN (SSDNN) to discriminate the speakers in the train-

ing set was trained. SSDNN uses the speaker identities as the tar-

gets and the same compressed log filter bank features as the input.

Around 5% data from each speaker is randomly chosen and reserved

for cross validation in SSDNN training. The 13 dimensional sig-

moidal BN features generated from SSDNN (Figure 2) provide a

projection similar to iVectors [28], but dynamically. The BN fea-

ture of this SSDNN is further referred to as the Speaker Separation

BottleNeck (SSBN) feature. SSBN is appended to the compressed

log filter bank features in the input of a standard feedforward DNN

(Speaker Aware DNN, SADNN) for speech recognition. The BN

features obtained in this form are further referred as the Speaker

Aware BottleNeck (SABN) features. Figure 2 shows the process.

Compared to standard bottleneck features, the SABN features re-

quires training an extra SSDNN. As a reward it saves the effort of

2 pass decoding, as it’s not necessary to estimate the speaker code

or speaker dependent adaptation for the test set. This provides the

possibility, flexibility and generality of fast adaptation.

As the SSBN varies from frame to frame, this operation is equiv-

alent to a dynamic bias adaptation in the input layer. Figure 3 shows

its influence on the frame accuracy improvement in each iteration of

SADNN training. Table 9 compares the performance using SABN

features with standard BN features. The SABN features achieved

better performance than corresponding BN features in most cases,

and the best performance on MDM is achieved by using SABN fea-

tures together with direct channel concatenation.

5.2. Location and Speaker Identities

We further experimented with similar DNN adaptation with infor-

mation on speaker location and speaker identities. The physical lo-

cation of speakers is unfortunately not available for the AMI corpus

data. Instead, we used the TDOA computed by BeamformIt as a

proxy since this was successfully applied to a speaker diarisation

Fig. 3. Frame accuracy change in DNN and SADNN training (acn-

train, acntest). The "CV" and "train" in the figure respectively refer

to the cross validation and training subsets in acntrain.

Table 9. %WER using BN or SABN features (acntrain, acntest).

IHM SDM 2 4 8

BN+PLP
26.7 49.9

bmit 46.9 46.8 45.3

(2TS) cct 46.8 46.5 47.4

SABN+PLP
26.1 49.8

bmit 47.4 46.0 44.7

(2TS) cct 46.8 45.5 -

SABN
26.5 48.9

bmit 47.4 46.0 44.8

(2TL) cct 45.7 44.8 -

task [29]. However, adding the TDOA values directly in the input

(similar to SSBN) gave no improvement over the BN+PLP baseline,

with 46.8% WER on acntest for 4 channel concatenation. A sec-

ond set of experiments constructed speaker GMMs on the test data

(with 8 mixture components) on the basis of linear SSBN features.

The Gaussian means were sorted by weight then added to the DNN

input. However, the performance degraded substantially, to 52.2%.

6. DISCUSSION AND CONCLUSIONS

The DNN based front-end on the AMI meeting corpus was tested

in the context of far field speech recognition. Experiments showed

that on both overlapping and non-overlapping speech, BN features

gave an average 25% relative WER reduction over using PLP fea-

tures, regardless of the number and type of microphones. As for

DNN training input, using direct channel concatenation performs

similar or better than using beamforming for the 2 and 4 micro-

phone cases. Results for more microphones degrades potentially

due to large feature dimensionality. An analysis of WER by speaker

body and head movement shows that the WER with IHM tends to be

lower with moving speakers, hinting at increased cognitive load of

the speaker. Body movement challenges beamforming while the di-

rect channel concatenation performs better on moving speech. With

BN features, general performance degradation caused by overlap-

ping speech varies from 1.8% absolute WER on IHM to 5.7% on 4

channel beamforming even with sufficient training data acftrain in-

cluding both overlapping and non-overlapping speech. Experiments

aimed at providing additional information for dynamic adaptation of

DNN might be a start of further work on aiding far field recognition

with dynamic meta-information. The flexibility of neural network

allows using features from related tasks (e.g. speaker separation) for

speech recognition tasked DNN adaptation. Shown results indicate

performance improvements with speaker information, particularly in

the far-field channel concatenation scenario.
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