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Highlights: 
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 Data-driven prediction approaches compared to semi-empirical boundary layer model. 

 

Abstract  

The feasibility of predicting the long-term wind resource at 22 UK sites using a measure-

correlate-predict (MCP) approach based on just three months onsite wind speed measurements 

has been investigated. Three regression based techniques were compared in terms of their 

ability to predict the wind resource at a target site based on measurements at a nearby 

reference site. The accuracy of the predicted parameters of mean wind speed, mean wind 

power density, standard deviation of wind speeds and the Weibull shape factor was assessed, 

and their associated error distributions were investigated, using long-term measurements 

recorded over a period of 10 years. For each site, 120 wind resource predictions covering the 

entire data period were obtained using a sliding window approach to account for inter-annual 

and seasonal variations.  Both the magnitude and sign of the prediction errors were found to be 

strongly dependent on the season used for onsite measurements. Averaged across 22 sites and 

all seasons, the best performing MCP approach resulted in mean absolute and percentage 

errors in the mean wind speed of 0.21 ms-1 and 4.8% respectively, and in the mean wind power 

density of 11 wm-2 and 14%. The average errors were reduced to 3.6% in the mean wind speed 

and 10% in the mean wind power density when using the optimum season for onsite wind 

measurements. These values were shown to be a large improvement on the predictions 

obtained using an established semi-empirical model based on boundary layer scaling. The 

results indicate that the MCP approaches applied to very short onsite measurement periods 

have the potential to be a valuable addition to the wind resource assessment toolkit for small-

scale wind developers. 

1. Introduction 

Small-scale wind energy (typically defined as < 50kW [1]) is achieving increasing interest as 

individuals, organisations and governments seek to decarbonize electricity supply [2].  The UK, 



which has put in place a legally binding commitment to reduce carbon equivalent emissions in 

2050 by 80% compared to 1990 levels [3], is particularly well placed to capitalize on small-scale 

wind energy as a decentralized, well-established renewable energy technology due to its 

favorable wind resource and growing expertise in the industry. These factors, along with the 

introduction of a feed-in-tariff in 2010 which pays a fixed tariff for every kilowatt hour of 

electricity generated from small-scale installations, have resulted in significant growth in the UK 

small-scale wind energy industry with installed capacity projected to reach 1.3 GW by 2020 [4]. 

However, in order for small-scale wind energy to reach its full potential, tools capable of 

predicting the wind energy resource quickly, cheaply and accurately are urgently required [5]. 

Such tools will allow consumers to make informed decisions regarding the financial viability of a 

proposed installation as well as the carbon savings that may be achieved. 

Thanks to decades of development, wind resource assessment is well established in the large-

scale wind industry. To account for the spatial and temporal variability inherent in wind flows, 

wind speed and direction are monitored at a number of locations across a potential site to 

establish the statistical characteristics of the wind resource. These data are used in conjunction 

with wind turbine power curves to predict the long-term wind energy resource at the proposed 

site. Data collected over 1-3 years [6] along with longer-term correlations to reference sites are 

typically required to obtain statistics which are robust enough to justify the large financial 

investments involved in such projects. However, in the small-scale wind industry, where 

investment costs are considerably lower, onsite measurement campaigns on these timescales 

are often impractical and prohibitively expensive, necessitating the use of indirect methods. 

Indirect approaches may be broadly categorized as modelling or data-driven. Any indirect 

approach must be capable of estimating the long-term average hub-height wind speed and the 

form of the wind speed distribution as a minimum requirement to predicting the wind energy 

resource. Building on previous work related to boundary layer meteorology and descriptors of 

surface roughness, the UK Met Office developed a promising modelling methodology which 

may be used to estimate the mean wind speed at any UK site without the need for onsite 

measurements [7]. However, despite the utility of such techniques in identifying potential wind 

energy locations, the uncertainties present in simple boundary layer scaling approaches may 

not be tolerable where significant investments are to be made [8]. The UK Met Office are 

currently developing more sophisticated modelling approaches based on long-term historical 

weather forecasts which may result in reduced uncertainties [9]. However, since uncertainties 

increase with site complexity [10], onsite wind measurements may still be required to achieve 

predictions with a sufficient level of confidence. 

In contrast to modelling techniques, data-driven approaches to small-scale wind resource 

assessment have received relatively little attention. This work is concerned with one such data-

driven approach known as measure-correlate-predict (MCP). MCP increases the value of short-

term wind speed measurements recorded at a target site by correlating these with concurrent 

data recorded at a reference site. The correlation is then used to predict the long-term wind 

resource at the target site using long-term historical data from the reference site [11]. Since 

long-term wind speed records are routinely held by airports and national weather forecasters, 



this technique provides a means of reducing the onsite measurement time required at the target 

site. MCP is already utilized in the large-scale wind industry where the relationship between the 

reference and target sites is typically estimated from a concurrent measurement period covering 

a year or more [12]. A number of studies have considered the application of different regression 

techniques to the MCP approach [13-15] but very little work has been done regarding the 

application of MCP to measurement periods of much less than one year [16]. While long-term 

onsite measurements are clearly desirable in reducing uncertainty, the focus of this work is to 

establish the feasibility of applying MCP approaches to measurement periods of much less than 

one year. The aim of this is to determine whether data-driven resource assessment can be 

made more accessible to the small-scale wind industry. In practice, the short-term onsite 

measurements required for MCP could be obtained using a portable meteorological mast or 

LiDAR (light detection and ranging) equipment.  

In this study, we constrain the onsite measurement period to just three months which is a more 

practically and economically viable time period in the case of small-scale wind installations. We 

compare the performance of three MCP techniques, simple linear regression (LR), linear 

regression augmented by a Gaussian scatter term (LR2) and variance ratio regression (VR). 

The success of the techniques in predicting the long-term wind resource at 22 UK sites located 

in a variety of terrains is assessed through comparison with onsite measurements recorded over 

a period of 10 years. The three month training period is applied throughout the whole data 

record using a sliding window technique to account for inter-annual and season variability. 

Metrics are applied to quantitatively assess the average errors in the predicted mean wind 

speed, mean wind power density, standard deviation of wind speeds and Weibull shape factor. 

2. Methodology  

2.1. Measure-Correlate-Predict 

The MCP strategy involves three stages: (I) measurement of wind speeds at a proposed 

installation site (the target site), (II) identifying a correlation between the target site and 

concurrent measurements at a local long-term reference site such as an airport or 

meteorological station and (III) predicting the long-term wind resource at the target site using 

long-term historical data from the reference site.  

Typically, a simple correlation is sought whereby the long-term historical reference data may be 

used to construct a time-series of wind speeds (and possibly wind directions) at the target site. 

From this time-series, statistical descriptors may be extracted which represent the long-term 

target site wind resource. In the case of the large-scale wind industry, onsite measurements at 

the target site covering a year or more may be extrapolated to several decades to predict the 

likely energy output over the lifetime of the installation. The main purpose of such a process is 

to take account of inter-annual variation in the wind resource. In the scheme proposed in this 

study, the analysis is based on just three months onsite measurements and thus a larger 

burden is placed on the MCP process since it must account for both inter-annual and inter-

seasonal variations and it must achieve this using a much reduced data set. 



The majority of MCP techniques involve the use of a parametric linear relationship between 

target and reference site wind speeds [11], although a number of alternatives have also been 

proposed [15, 17, 18] with variable results. In this work we have used two established 

regression based MCP techniques, LR and VR, and a third technique LR2, which employs a 

Gaussian scatter term in an attempt to improve the predictions of the wind speed distribution 

compared to simple linear regression. The 10 year wind resource at the target site was 

estimated using just three months concurrent measurements at the reference and target sites 

(the training data), and a further 10 years historical measurements at the reference site. In order 

to account for both seasonal and inter-annual variability, as well as to produce robust error 

statistics, multiple three month training periods were selected from the 11 year data record 

using a sliding window technique. The approach is shown schematically in Figure 1 and can be 

summarized as follows: 

(I) A training window spanning a full year is first defined and this is shifted in steps of one month 

throughout the 11 year reference and target site data records resulting in a total of 120 steps. 

The remaining data not covered by the training window is designated as the test data and 

covers a combined period of 10 years. 

(II) At each step, a three month training period at the start of the training window is used to 

extract the regression parameters for the MCP approaches of LR, LR2 and VR. This represents 

the short-term onsite measurement period proposed in this study. 

(III) The MCP approaches are then applied to the 10 year test data at the reference sites in 

order to predict a concurrent time-series of wind speeds at the target sites. This represents the 

long-term predictions extrapolated from the short-term onsite measurements. 

(IV) Error metrics are calculated at each step by comparing the predictions with the observed 

values over the test period at each target site. 

 

Figure 1: Schematic diagram of the sliding window technique used to test the MCP predictions across the 

entire data record. The test periods move with the training window such that the two never overlap. 

Note that while the training period spans just three months, a training window covering a full 

year is used to ensure that the test period always covers an integer number of years thus 

avoiding seasonal variations in the test data. This approach results in a total of 120 predictions 
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Yr 1 Yr 11Yr 3Yr 2
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of the 10 year wind resource spanning all training seasons and years within the 11 year data 

record.   

Each of the MCP techniques was applied sector-wise to data which was first binned according 

to the reference site wind direction. The sector approach was used to account for the directional 

dependence of the upwind roughness which previous work [8] has shown affects the scaling 

between the reference and target site wind speeds. In line with previous studies [14, 19], 

angular bins of width 30⁰ were used resulting in 12 separate regressions for each target-

reference site pair. For angular bins with less than 20 data entries, the regression parameters 

were obtained by applying a global fit to data from all bins. The individual regression techniques 

will now be described in more detail. 

Linear regression (LR) 

The individual wind speeds at the target site as described by LR are given by the equation: 

               

Equation 1 

where      is the observed wind speed at the target site,      is the corresponding observed 

wind speed at the reference site,   and   are the regression coefficients obtained using a least 

squares fit to the training data and   is an error term which represents the residual scatter. 

Assuming the data is well represented by a linear fit,  ̂            represents the mean 

prediction at the target site given a reference wind speed     . Despite its simplicity, standard 

linear regression has been shown to be surprisingly effective in predicting the target site mean 

wind speed [11, 18] and is included in many commercial MCP software packages.  

Linear regression with Gaussian scatter (LR2) 

While the LR approach is frequently used as a baseline for assessing the performance of more 

sophisticated MCP techniques, it is noteworthy that that the residual scatter term   in Equation 1 

is often not considered explicitly. This term represents a variety of processes which are not 

accounted for in the simple linear model and which result in scatter in the individual data points 

about the mean prediction  ̂   . Assuming the residuals are normally distributed about  ̂   , this 

scatter will not have a significant effect on the predicted mean wind speed. However, this term 

will have an impact on the shape of the predicted wind speed distribution, and due to the cubic 

relationship between wind speed and wind power, this will in turn impact on the predicted wind 

power.  

In order to account for this scatter, the error term was explicitly modelled as a zero-mean 

Gaussian distribution centred on each of the mean target site wind speed predictions  ̂    [20]: 

            
    

Equation 2 

where      is the sample standard deviation of the residuals about the predicted target site wind 

speeds  ̂   , as calculated from the training data using [20]:  
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Equation 3 

where   represents the     data point,   is the number of observations and      represents the 

average, wind speed independent value for a particular 30⁰ angular sector. The residual scatter 

  is then reconstructed by adding random draws from the Gaussian distribution in Equation 2 to 

the individual mean predictions at the target site,  ̂   . While such a model is in line with the 

standard assumptions of linear regression, it represents a simplification since the underlying 

joint distribution of      and      is expected to be joint Weibull rather than joint Gaussian [15]. 

Variance Ratio Regression (VR) 

In the simple linear regression case (LR) where no account is taken of the residual scatter  , it is 

known that the standard deviation of the predicted wind speeds    ̂  about the whole sample 

mean will be smaller than the standard deviation of the observed values      about the whole 

sample mean by a factor  , where   is the linear correlation coefficient [11]. Here  ̂ and   are 

used to indicate that the standard deviations are a function of the predicted or observed wind 

speeds respectively. Note that the standard deviation referred to here, describes the spread of 

wind speeds about the whole sample mean, in contrast with      defined by Equation 3 which 

describes residual scatter about individual wind speed predictions. The underestimation of the 

standard deviation will impact on the shape of the predicted wind speed distribution and hence 

will result in an under prediction of the available wind power at the target site. To account for 

this, Rogers et al. [11] proposed a variation of simple LR based on setting    ̂       . Using 

least squares theory it can be shown that this condition results in a linear equation of the form: 

 ̂    [ ̅    [
    

    
]  ̅   ]  [

    

    
]      

Equation 4 

where      and      represent the standard deviation about the mean wind speeds at the target 

( ̅   ) and reference ( ̅   ) sites respectively, as calculated from the short-term training data. 

This approach differs from that described in Equation 1 and Equation 2 in that no direct attempt 

is made to model the error term in order to reconstruct the residual scatter. Instead, Equation 4 

postulates zero scatter (  = 1) resulting in a gradient which is a factor of     larger than that 

obtained using simple LR thus forcing the required increase in    ̂ . 

2.2. Meteorological measurements 

In order to assess the success of the MCP approaches, long-term meteorological data (hourly 

averaged wind speed and direction) were obtained from the Met Office anemometer network 

[21] for a number of UK sites. The wind speed and wind angle were recorded with a resolution 

of one knot (0.51 ms-1) and ten degrees respectively. Each site was designated as either a 



target site (a location where we wish to predict the wind resource), or a reference site (used as 

a predictor for the target site wind resource). The target sites were specifically chosen to be 

representative of different terrain types, urban, sub-urban, rural and coastal to reflect the range 

of scenarios which may be encountered by small-scale wind energy developers. The site 

classification was achieved through examination of satellite images. Wherever possible, 

reference sites were located either in exposed rural areas, or in coastal locations in the case of 

pairings with coastal sites. Anemometers were assumed to be located at a height of 10 m above 

ground level in line with the standard Met Office observational practice. Where anemometers 

were known to differ from this height, they are noted below. 

The data included 22 target sites and 15 reference sites, (depending on geographical location, a 

single reference site may serve multiple target sites), and covered the period August 2001 to 

July 2012. The training and test periods were varied throughout the data set using the sliding 

window approach described above, such that the two periods did not overlap. In a real-world 

prediction scenario, we would expect to obtain short-term measurements at the target site and 

to have access to long-term historical data only from the reference site. In this study however, 

we require long-term data at both the reference and target sites to allow the predictions made 

using MCP to be tested against long-term measurements. Details of all sites used in this work 

can be found in Table 1 and approximate geographical locations are shown in Figure 2. 

Target Sites Reference Sites  

Site OS grid Elev (m) ūobs (ms
-1

) Site OS grid Elev (m) ūobs (ms
-1

) d (km) r 

U1
* 

SJ8396 33 3.2 Rf1 SD6614 440 6.6 25 0.78 
U2

** 
SU4210 26 4.4 Rf2 SU5501 9 6.0 16 0.85 

SU1 NJ8712 65 4.5 Rf3 NO4620 10 4.8 101 0.57 
SU2 SK5045 117 3.5 Rf4 TF0049   63 5.1 49 0.88 
SU3 SU8554 65 3.6 Rf5 SU3039  90 4.1 58 0.87 
SU4 SU1344 132 3.7 Rf5 SU3039 90 4.1 17 0.90 
SU5 SU1740 126 4.5 Rf5 SU3039  90 4.1 13 0.91 
SU6 SD8812 110 2.2 Rf1 SD6614 440 6.6 22 0.75 
SU7 SP3180 119 3.1 Rf6 SP2186 96 3.6 12 0.79 
C1 NK1345 15 5.5 Rf7 NJ2169 7 5.2 96 0.44 
C2 NU2514 23 5.1 Rf3 NO4620 10 4.8 133 0.72 
C3 TA1967 15 5.0 Rf8 TA0243 7 4.1 30 0.63 
C4 NM8834 3 3.9 Rf9 NR6622 10 6.1 113 0.68 
C5 SN2452 133 6.6 Rf10 SM8905 44 5.2 59 0.79 
C6 SX9456 58 6.1 Rf11 SX4952 50 5.2 46 0.66 
C7 SD3000 9 5.9 Rf12 SD3131 10 5.3 31 0.78 
R1 NH8914 228 2.8 Rf13 NJ0662  5 4.6 51 0.85 
R2 SE5238 8 4.3 Rf14 SE4961 14 3.6 24 0.57 
R3 SK5026 43 3.5 Rf4 TF0049 63 5.1 55 0.88 
R4 SO9749 35 3.5 Rf6 SP2186 96 3.6 44 0.87 
R5 SU7349 118 4.6 Rf5 SU3039 90 4.1 45 0.90 
R6 NS8264 277 5.9 Rf15 NT2302 236 3.5 74 0.91 

Table 1: Summary of the meteorological monitoring sites used in this study. Target sites are defined as 

Urban, Sub-Urban, Coastal or Rural, reference sites are denoted as Rf. The elevation above sea level 

(Elev), ratio of target and reference site mean wind speeds ( ̅     ̅   ), distance between target and 

reference sites (d) and linear correlation coefficient between the reference and target site wind speeds (r) 

are also shown. Anemometer heights differing from 10 m: *h = 20.6 m, **h = 22.5 m. 



 

Figure 2: Approximate geographical locations of the meteorological monitoring sites used in this study. 

Target sites are defined as Urban, Sub-Urban, Coastal or Rural, reference sites are denoted as Rf. 

2.3. Assessing the accuracy of predictions 

The MCP approaches described above were used to predict the entire time-series of hourly 

averaged wind speeds over a 10 year prediction period at each test site. From this time series, 

a number of parameters related to the wind resource can be extracted. Of particular importance 

are the predicted mean wind speed and the mean wind power density. Also of interest are the 

predicted standard deviation and Weibull shape factor since they give insight into the form of the 

predicted wind speed distribution. These parameters are defined below. 

The mean wind speed is simply the average of the long-term time series of predicted wind 

speeds. The mean Betz wind power density  ̅ , defined as the mean Betz power in the wind per 

unit swept area is given by [22]: 

 ̅               ̅̅ ̅ 

Equation 5 

where   = 1.225 kgm-3 is the air density, 16/27 is the Betz limit and   ̅̅ ̅ represents the mean of 

the cubed wind speeds. 

The standard deviation of wind speeds   is defined as: 
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Equation 6 

where    is the     wind speed observation,  ̅ is the long-term mean wind speed and   is the 

total number of observations.  

Along with the wind speed   and scale factor  , the Weibull shape factor   is used to define the 

Weibull probability distribution      as: 
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Equation 7 

The Weibull shape factor is obtained using the method of maximum likelihood to fit a Weibull 

probability distribution to the predicted target site wind speeds. 

Quantitative comparisons were made between predicted and observed values of these 

parameters across all 22 sites using the metrics of mean absolute percentage error (%Error), 

mean absolute error (MAE) and mean bias error (MBE). These are defined below for the 

predicted mean wind speed, equivalent error metrics may be defined for the remaining 

parameters of interest. 
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Equation 10 

where   represents the     site,  ̅    and  ̅     are the long-term observed and predicted mean 

wind speeds respectively and   is the total number of target sites.  

Note that a negative MBE represents an overestimate compared to the observed values of the 

parameter under consideration. Using the sliding window approach, 120 predicted time-series, 

and hence 120 values of the error metrics (Equation 8 - Equation 10) corresponding to each 



window position, were obtained for the target sites. The final error statistics were calculated as 

the average of these error metrics across all training/test periods. 

3. Results and Discussion  

Figure 3 shows hourly averaged target and reference site wind speeds for a single 30⁰ angular 

sector from the target/reference site pair C6-Rf11. Since there is a large amount of variability at 

each site and within each angular sector, these results are intended as an example rather than 

to be fully representative. Wind speed observations are recorded with a resolution 0.51 ms-1, 

hence in order to fully represent the discretized data, the wind speeds are presented as two 

dimensional density plots where the shading indicates the frequency of observations at each 

wind speed. In the case of the predicted wind speeds, (Figure 3C and D), the data are also 

discretized using wind speed bins of width 0.51 ms-1 for consistency with the recorded data. 

Figure 3A shows the observed wind speeds over the three month training period along with the 

three regression fits. The fits are identical for LR and LR2 since the approaches only differ in the 

prediction phase. It can be seen that VR results in a steeper gradient than LR due to the forced 

increase in    ̂  discussed previously. Figure 3B shows the recorded wind speeds over the 

entire 10 year prediction period and Figure 3C and D show the attempt to predict these 

observations using the MCP approaches. The predictions using LR and VR (Figure 3C) all lie 

along the straight lines defined by the regression equations. It can be seen that these 

predictions differ markedly from the instantaneous observations (Figure 3B) which exhibit 

considerable scatter. In contrast, the LR2 approach (Figure 3D) is capable of reproducing at 

least the general form of the scatter about the mean prediction. However, the predicted scatter 

has a narrower range than that observed in Figure 3B, implying that     , as modeled from the 

short-term training data, is lower than the long-term observed value.  

It can be seen from Figure 3D that at low reference site wind speeds, the predicted target site 

wind speed may be less than zero due to the effect of the residual scatter term. Previous 

studies have dealt with negative predictions arising from simple linear models by removing the 

values [17] or setting them to zero [11]. However, where an attempt is made to model the 

residual scatter, negative predictions are more frequent and simply removing them will reduce 

the number of entries at low wind speeds, resulting in a positive bias in the predicted mean wind 

speed and mean wind power. The opposite will be true if the values are simply set to zero. In 

this work we use a compromise whereby negative predictions are set to the mean value of the 

function before the residual scatter term is applied. In the small number of cases where the 

mean value of the function is also less than zero, the value is removed from the prediction. 



 

Figure 3: Target and reference site wind speeds for a single 30⁰ angular sector from the reference/target 

site pair C6-Rf11. A) Observed target and reference site wind speeds over the 3 month training period 
along with the LR, LR2 and VR fits, B) Long-term observed target and reference site wind speeds over 10 
years, C) Long-term predicted target site wind speeds over 10 years using LR and VR, D) Long-term 
predicted target site wind speeds over 10 years using LR2, the solid line represents the mean prediction, 
the dots show the individual predictions drawn from a zero mean Gaussian distribution. The shading 
represents the frequency of data points at each discretized wind speed. 

Figure 4 shows the average  ̅     and  ̅    10 year mean wind speeds at the 22 target sites 

using the three MCP approaches. Note these are averages over all training periods and hence 

only systematic biases will be visible since seasonal and inter-annual biases in the predictions 

will be smoothed out. The long-term mean wind speeds appear to be well predicted at all sites 

using each of the MCP approaches. However, there appears to be a small tendency for VR to 

overestimate the mean wind speed compared to the other two approaches. This is not 
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surprising since the VR method enforces a steeper gradient compared to LR. Note that the LR 

and LR2 approaches result in very similar values for  ̅     indicating that the residual scatter 

term does not significantly affect the mean wind speed prediction. 

 

Figure 4: Predicted and observed 10 year mean wind speeds at 22 target sites using three MCP 
approaches averaged across all training/test periods. The dotted line shows a one-to-one relationship. 

Table 2 shows the error metrics of %Error, MAE and MBE averaged across all target sites, and 

all training/test periods for the three MCP approaches. Predictions obtained using a semi-

empirical boundary layer scaling model (SE) are also included and these are discussed further 

in Section 3.2.  The results indicate that on average,  ̅ and  ̅  can be predicted to within 4.8% 

and 14% respectively using just three months onsite measurements with the best performing 

MCP approach. For the predicted  ̅ there is no clear difference between MCP approaches while 

for  ̅ , the LR2 approach performs best, closely followed by VR with the largest errors observed 

for LR. In the case of   and  , VR performs best indicating that this approach is more successful 

at predicting the wind speed distribution, again the largest errors are observed for LR. The bias 

errors indicate the degree to which the approaches systematically overestimate (negative bias) 

or underestimate (positive bias) a particular parameter. It is noteworthy that while LR results in 

very low bias in  ̅, the approach underestimates   and overestimates   resulting in a narrower 

predicted wind speed distribution which in turn leads to a large underestimate of  ̅ . LR2, which 

accounts for the residual scatter, results in the lowest bias for  ̅ , followed closely by VR. 

Overall, LR2 tend to underestimates  ̅  while VR overestimates it.  
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Table 2: Error metrics averaged across 22 target sites and all training/test periods for three MCP 

approaches, (LR, LR2 and VR), as well as a semi-empirical boundary layer scaling model (SE). 

In addition to the average error metrics, it is useful to consider the distribution of errors across 

individual sites. The distributions of percentage errors across all target sites are shown in Figure 

5, averaged across all training/test periods. The error distributions for  ̅ are very similar for all 

approaches although VR shows a slight tendency to overestimate. For  ̅ , which is perhaps the 

most significant parameter given that the aim is to predict the wind energy resource, LR can be 

seen to exhibit a strong positive bias (tendency to underestimate). This is expected due to the 

failure of LR to represent the residual scatter. On average, VR has a significantly lower bias 

than LR but the error distribution is negatively skewed indicating a tendency to overestimate. 

The best predictions (small bias and low error range) are obtained using LR2 highlighting the 

value of explicitly accounting for the residual scatter term.  

These observations are also reflected in the error distributions for of   and  . LR 

underestimates   and overestimates   leading to a narrower predicted wind speed distribution. 

LR2 does significantly better at estimating these parameters although it still leads to an 

underestimate of the width of the wind speed distribution, likely because the short training 

period makes it challenging to accurately estimate     (Equation 3). VR does particularly well at 

estimating   and   resulting in a very small bias and a low error range. It is likely that the 

tendency of VR to slightly overestimate  ̅, which has a more significant effect on the power 

density compared to   [8], prevents this approach from outperforming LR2 in terms of predicted 

 ̅ . 

 
 Method ū 𝒑 𝒅 σ k 

%Error SE 9.5 26 NA NA 
 LR 4.7 19 17 23 
 LR2 4.8 14 6.2 7.8 
 VR 4.8 15 5.3 4.3 

  
ū 

(ms
-1

) 

𝒑 𝒅 

(wm
-2

) 

σ 

(ms
-1

) 
k 

MAE SE 0.42 22 NA NA 
 LR 0.21 15 0.44 0.42 
 LR2 0.21 11 0.16 0.14 
 VR 0.21 11 0.13 < 0.1 

MBE SE 0.17 9.9 NA NA 
 LR < 0.1 13 0.43 -0.42 
 LR2 < 0.1 2.8 0.10 -0.13 
 VR < 0.1 -5.7 < 0.1 < 0.1 



 

Figure 5: Distribution of percentage errors in mean wind speed   , mean wind power density 𝒑 𝒅 , sample 

standard deviation  , and Weibull shape factor   averaged across 22 target sites and all training/test 
periods using three MCP approaches. The error bars represent the 5

th
 and 95

th
 percentiles, the shaded 

regions encloses the interquartile range. 

3.1. Seasonal effects 

Given that the MCP approaches presented in this study propose a training period of just three 

months, it is particularly important to consider seasonal effects in relation to the error estimates. 

The error metrics presented thus far have been averaged across all training periods and while 

these provide robust statistics, they do not give information as to how the magnitude and sign of 

the errors may vary with the measurement season. Such information is important in making a 

more precise estimate of the likely error given a specific training season as well as in 

determining if prediction errors can be minimized through choosing an optimum season in which 

to collect the short-term onsite wind measurements. 
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To investigate these sensitivities, the average error statistics have been decomposed into 

seasonal averages. This was achieved by averaging the error metrics for equivalent three 

month training periods across all years in the data record resulting in seasonal averages across 

a full 10 years. Due to the large bias present in the predictions obtained using LR, as described 

above, only the LR2 and VR approaches were selected for more detailed study. 

Figure 6 shows the variation in the average percentage errors for  ̅,  ̅ ,  , and   using different 

three month training periods throughout the calendar year. The vertical lines mark training 

periods corresponding to the nominal seasons of autumn (Sept-Nov), winter (Dec-Feb), spring 

(Mar-May) and summer (June-Aug). Training data periods between these points include months 

which overlap more than one season. Clear seasonal variations can be seen in the prediction 

errors for all parameters for both LR2 and VR. For the key parameters of  ̅ and  ̅ , the largest 

errors occur close to winter and summer while the smallest errors occur close to autumn and 

late winter/early spring (Feb – April). The results indicate that on average, significant reductions 

in the error of the predicted  ̅  can be achieved through choosing optimum seasons in which to 

obtain the short-term onsite measurements. For LR2, the best season results in a percentage 

error in  ̅  of ~10%, compared to ~18% for the worst season. Similarly for VR, the best season 

results in an error in  ̅  of ~12%, compared to ~20% for the worst. Interestingly, for the 

parameters of   and  , which are related to the form of the wind speed distribution, the LR2 

approach exhibits a stronger seasonal variation than VR with the largest errors occurring in 

summer.  



 

Figure 6: Seasonal variation of the percentage errors in mean wind speed   , mean wind power density 

𝒑 𝒅, sample standard deviation   and Weibull shape factor   averaged across 22 target sites and 10 years 
using two MCP approaches. The vertical lines mark the nominal seasons of autumn (Sept-Nov), winter 
(Dec-Feb), spring (Mar-May) and summer (June-Aug). The horizontal axes show the three month period 
used for training.  

Seasonal variations in the error metrics indicate that the regression parameters extracted from 

the short-term training data vary according to seasonal changes in synoptic weather patterns. 

These weather patterns could introduce a number of factors which contribute to this variability. 

In general, it might be expected that training periods which include the most variable weather 

patterns would lead to regression fits which are most representative of the long-term reference-

target site relationship. Of interest in this regard is a recent study by Earl et al. [23] which 

investigated the variability in UK surface winds over a 30 year period using a network of 40 

anemometer stations. While the UK surface winds are dominated by winds from the southwest, 

relatively large seasonal variations in wind direction were observed. In particular, spring was 
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found to have a more significant northeasterly component leading to a more even spread of 

wind directions compared to other seasons.  

For the 15 reference sites used in the current study, Figure 7 compares the percentage 

frequency of wind directions during winter and spring as averaged across the 11 year data 

record. The data shows similar seasonal variations in wind direction to those observed by Earl 

et al. with more significant northeasterly and easterly components during spring compared to 

winter. As the MCP approaches are applied sector-wise, it is likely that seasons which have a 

greater spread of wind angles will result in more robust estimates of the regression parameters 

since the sectors will be more uniformly populated. Conversely, seasons with a strongly 

dominant wind direction could result in poor estimates of the regression parameters for certain 

poorly represented sectors. This effect could be a contributing factor to the improved error 

statistics observed in specific seasons. While any such effect could in principle be reduced by 

using a single regression fit to data from all wind directions, it was found that on average the 

prediction errors were lower when using the sector approach. 

 

Figure 7: Percentage frequency of wind directions in 30⁰ sectors during winter (Dec-Feb) and spring (Mar-

May) averaged across the 15 reference sites and 11 year data record used in this study. The lines are 

included as a guide to the eye. 

Another point of interest is the increased errors in   and   observed for LR2 during summer. For 

the sites considered in this study, both the mean wind speed and the average variance of the 

wind speeds was lowest during this season. This could result in insufficient range over which to 

achieve an accurate least squares regression as well as impacting on the estimates of the long-

term residual standard deviation      required to reconstruct the residual scatter. 
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To establish whether certain seasons are more likely to result on average in over or 

underestimates of the wind resource, Figure 8 shows the seasonal variation in the mean bias 

error for  ̅ and  ̅ . For LR2, winter training periods are more likely to result in overestimates of 

the long-term wind resource (negative bias) while the opposite is true for summer training 

periods. For VR, the same trend is visible for winter training periods while for the remaining 

seasons the bias is close to zero. Since Figure 6 shows that the percentage errors in  ̅ and  ̅  

also peak for VR in the summer, this implies that for VR the sign of the error varies depending 

on the specific site during this season. 

 

Figure 8: Seasonal variation of the mean bias error in mean wind speed  ̅ and mean wind power density 

 ̅ , averaged across 22 target sites and 10 years using two MCP approaches. The vertical lines mark the 

nominal seasons of autumn (Sept-Nov), winter (Dec-Feb), spring (Mar-May) and summer (June-Aug). 

The horizontal axes show the three month period used for training.  

These results indicate that on average, significant improvements in the accuracy of the 

predicted long-term wind resource estimated from short-term measurements can be made 

through choosing optimum seasons in which to obtain onsite measurements. In addition, the 

results also give an indication as to the average sign of the bias error as a function of the 

season used for training and the MCP approach used. 

3.2. Comparison between modelling and data-driven approaches 

Given that obtaining onsite wind speed measurements, even for a short time period, 

necessitates additional time and expense, it is useful to investigate to what extent a data-driven 

approach, based on a very short measurement period, may improve predictions of the wind 

resource compared to a modelling approach. The target sites used in this work formed a subset 

of sites considered in a previous study [8] which evaluated the accuracy of a semi-empirical, 

boundary layer scaling model (SE) that was developed by the UK Met Office [7] for predicting 

the UK wind resource. Hence, it is possible to make a direct comparison between the accuracy 

of the two approaches for these sites. The average error metrics are compared in Table 1 for 

SE and the three MCP approaches. The SE predictions were obtained using the improvements 



suggested in reference [8] which included taking account of the angular dependent upwind 

roughness.  

Table 1 shows that despite the very short training period, all the MCP approaches result in a 

clear improvement in all of the average error metrics. For example, using LR2 compared to SE 

reduces the average percentage error in the predicted  ̅  from 26% to 14% and halves the MAE 

from 22 wm-2 to 11 wm -2. It should be noted that modelling approaches are still of significant 

value in that they can be easily implemented in a scoping context with little prior investment. 

However, the results presented here indicate that the additional time and investment required 

for short-term onsite measurements accompanied by MCP analysis is well justified in cases 

where investors require greater confidence in the predicted wind resource.   

4. Conclusions 

We have investigated the feasibility of predicting the long-term wind resource over 10 years at 

22 UK sites using MCP approaches based on short-term onsite measurements covering just 

three months. Using a sliding window approach over an 11 year data period, robust error 

statistics have been obtained which account for both inter-annual and seasonal variations. The 

results indicate that while such a short measurement period introduces additional challenges 

including seasonal variations and reduced data coverage, the approach can be successfully 

applied in wind resource prediction. 

Three regression approaches, LR, LR2 and VR were compared, and it was found that all 

approaches were able to successfully predict the mean wind speed. However, due to the failure 

of LR to take account of the residual scatter, the predictions of wind power density showed 

significant bias when using this approach. On average, LR2 resulted in wind power predictions 

with the lowest bias and percentage error, closely followed by VR. The LR2 approach tends to 

slightly underestimate wind power while VR tends to overestimate it. VR was on average most 

successful at predicting parameters related to the wind speed distribution,   and  , closely 

followed by the LR2 approach, while LR again resulted in large biases.  

Analysis of the sensitivity of the wind resource predictions to the season in which the onsite 

wind speed measurements were obtained revealed clear seasonal variations in both the sign 

and the magnitude of the prediction errors. The results indicate that on average in the UK, the 

lowest prediction errors are obtained when using either autumn or early spring as the training 

period, while the highest errors are obtained when using winter or summer. For a three month 

training period, choosing the optimum measurement season can result in an average 

improvement of 8 percentage points in the predicted wind power density compared to the worst 

season. 

Comparison between the MCP approaches presented in this work and a previously developed 

semi-empirical model demonstrate that large improvements can be made in predicting the long-

term wind resource using the MCP approaches even with just three months onsite wind speed 

measurements. Across 22 UK sites, the best performing MCP approach resulted in mean 

absolute and percentage errors of 4.8% and 0.21 ms-1 respectively for  ̅ and 14% and 11 wm-2 



for  ̅ . By way of comparison, the modelling approach resulted in errors of 9.5% and 0.42 ms-1 

for  ̅ and 26% and 22 wm-2 for  ̅ . 

These results indicate that in addition to modelling techniques, MCP approaches used with very 

short onsite measurement periods have the potential to be a valuable addition to the wind 

resource assessment toolkit for small-scale wind developers. This is particularly true in cases 

where investors require greater confidence in the predicted wind resource and can thus justify 

the additional expense of a short measurement campaign. 
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