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Abstract: The objective of this paper is to investigate how the choice of sampling
interval is related to the stability of a class of nonlinear sampled-data systems, and
in particular how fast sampling may stabilise a sampled-data system when the
underlying continuous system is known to be stable. In this the first part of the pa-
per two fast sampling theorems are derived for a class of nonlinear sampled-data
systems and it is shown that provided the underlying continuous system is stable,
there exists a maximum sampling intetval such that when the system is sampled
below this interval it will remain stable. In the second part of the paper a special
class of nonlinear sampled-data systems are studied and an analytical relationship

between sampling rates and the domains of attraction of the system is derived.

1. Introduction

Due to the rapid development in computer technology, many systems need to
be studied as sampled-data systems. Although it is a well known fact that a
sampled-data system can become unstable if the sampling rate is not properly

chosen, analytical studies to obtain a relationship between sampling rate and the
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domain of attraction of a general nonlinear sampled-data system have not been car-
ried out. This is due to the fact that most studies on sampled-data systems to date
have not taken sampling rate as a parameter in the modelling of sampled-data sys-
tems. For instance, any modelling involving the z-domain transfer function of the
system assumes a known fixed sampling rate. When a sampled-data system is
modelled approximately by a set of difference equations using numerical methods,
any relationship obtained on the sampling rate and domain of attraction based on
the approximate discrete modelling will be valid for that model. However its vali-
dity on the original sampled-data system will always be in doubt due to the errors

associated with approximate modelling [1].

In this paper, the concept of hybrid modelling is introduced, that is the
behaviour of the sampled-data system during the &* sampling interval (O<k<e) is
modelled by a set of nonlinear differential equations valid during the time length
he=ti—ti-;.  As k varies the initial conditions of the differential equations form a
sequence which is a sampled-data sequence of the system, and it is assumed that
the complete time range of interest is covered as k—. This hybrid model describes
a nonlinear sampled-data system exactly without attempting to digitise it, and it
takes the k¥* sampling period k. as a parameter of the model. An important conse-
quence of such modelling is that 4, is allowed to vary with &, hence allowing vari-

able sampling rate in sampled-data systems.

Based on such modelling, section 2 below studies a class of nonlinear
sampled-data systems whose underlying continuous system is stable on some
domain about an equilibrium point of interest. Intuitively, the sampled-data system
would be expected to be stable provided it is sampled fast enough. Two theorems
will be derived to show that there exists a finite time interval k* independent of any
sampled datum such that provided the sampled-data system is sampled fast enough

(hsh*, k=12,...), it will be stable or asymptotically stable on some domain about the
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equilibrium point of interest. Section 3 relates the stability conditions given by
those theorems in section 2 to the Lyapunov function matrix of the linearised under-
lying continuous system, making the theorems easier to apply in practice. Conclu-
sions are given in section 4. A detailed study to actually obtain a relationship
between the sampling rate and the estimated domain of attraction of a special class

of sampled-data systems will be given in part II of this paper.

2. Fast sampling theorems

The sampled-data system to be studied here has the general mathematical

model

x=flx, %), x(tY=xy,  te[ty, tyl, k20 (2.1)
where xeR”; the mapping f R"xR"—R® is a nonlinear mapping in general with
f(0,0=0; the (k+1)* sampling period iS Ay = iy - tp and f—e as k—w. The origin is
assumed to be the equilibrium point of interest without loss of generality. The
differential equation holds only during each sampling period within which
X (k=0,1,2,..) is constant. In the following analysis, in order to avoid referring to any
particular sequence, x, will be used to denote the sampled datum at some sampling
instant ¢,.

The aim of this stability analysis is to search for conditions to be satisfied by
system (2.1) so that it will have the required stability properties. Several notations
are first introduced.

Define the mapping V: R® — R, as the quadratic function

V=xPzx P=PT>0 (P real (2.2)
Thus, V is positive definite. Define the P-matrix norm as

lidlle = P )2 = V{x)\? (2.3)

so that X=(.ll;, R®) represents a Banach space. Let D, As, and Bs be three compact

regions in X defined by



D={x/Vx)<d} (2.4)
Ag,={x/8<V(x)<d} (2.5)
Bs,={x/V(x)<3} (2.6)

respectively, as shown in Fig.1, with §y<d.
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Fig. 1

With the above notations and definitions, the stability analysis of the sampled-
data system will be carried out in three stages. Initially lemma 2.1 will show that if
the mapping V(x,) decays exponcntially Vx,e A5, then there exists a finite time period
independent of x, during which V still decays exponentially, bounded by a smaller
decay constant. This implies that the motion x(sx,:) of the system converges
towards a neighbourhood of the origin. Then (lemma 2.2), it will show that for any
sampling sequence {x, k=0,12...} sampled at intervals less than the above period,
there exists a finite k>0, where k is dependent on the initial condition xg, Such that x,
falls into the region Bs, provided x,.; lies still in As, Finally (lemma 2.3), it will
show that for all x,eB;, there exists a finite time period independent of x, such that

the motion x(r;x,t,) is bounded in D. Hence, the system (2.1) is stable in the region
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D in the sense that every motion of the system starting from it is bounded in it.

Lemma 2.1. Assume that the nonlinear mapping f in system (2.1) is continuous on
the domain DxA,. Let the mapping x: (x,1,1)—x(t;x,1,) denote a motion of the dynami-
cal system (2.1) for all x€Ap, 1.€., x(1ix,1) exists uniquely and is continuous with
respect to its arguments. If the system (2.1) satisfies the inequality

Vi) € - & Vix,) Vreds, 0, 2.7)

then there exists a finite sampling period 0 < k] < = such that

‘}(x(trxn!:)) w = -g' V(X(I,I;,I_r)) ’ Vx.rEAén ’ e [I;,fﬁ'h;[ - (28)

Essentially, this lemma suggests that
(a) at the sampling instant ¢, if V(x,) decays exponentially at a rate bounded by & for
all x,e 45, then V(x(rx,1)) will keep decay exponentially at a rate bounded by -g- pro-
vided ¢ is sufficiently small;
(b) the finite time period for the above to be true is independent of x, for all xXEAs, .

The proof below first shows that Vx,eAs, . the ’distance’ between x, and the sub-
sequent motion x(r;x,t,) can be made as small as required by taking a sufficiently
small time period independent of x,. It then proves that for all x€As, , provided the
‘distance’ between x, and x(;x,:,) is small enough, the inequality (2.7) implies the
inequality (2.8). This ’distance’ is in terms of the P-matrix norm and is closely

related to the quadratic mapping V.

Proof. Without loss of generality, assume #=0 so that x(r;x,t,) can be written simply
as x(tx). AS x(tx,) is continuous with respect to its arguments, for all ce [0,T)=1,

where T, is arbitrarily large and for all x€Ag, x(t,x,) is continuous on the compact

domain I;xAs, and therefore x(rx,) is uniformly continuous on IixAs,. Thus for each



8>0, there exist g,>0 and e,>0 such that

llx(ty, x5q) = x(ts, x)lp < & (2.9)

prOVidCd fl,[g.EfI, I_,l,x_‘.zEAso, and III_I2E<811 le_,g_‘xszﬂﬂsz. By Sctﬁﬂg =t f1=0, X=X =X, and

noting that x(0x,) = x,, (2.9) becomes

llx(z, ;) — xlp < 8, Vi A, (2.10)
provided [fi<e;, or te[0,[ since only the positive time is considered. In other words,
provided the time period ¢ is small enough, the motion x(tx;) can be made close

enough to its initial condition x, VxeAs .

Now, let the above & be such that 8<5,<5}2 where §, is defined in (2.6); let the
corresponding e,<h;. Define y= 82 - §, so that v is positive finite. Then, because

[Pesllp < llx, = xllp + [Ixllp (2.1D)
this yields, for re[0,4)[,

“x”P 2 “x:”.P - “x: - x”P‘
> 5% -85,
% 5 (2.12)
Similarly,
lxllp < llx = xdlp + [bxllp
<3, +d"?, xE A5, (2.13)
where 4 is given by (2.4). Hence, provided re (0,4} and x;€ A5, the motion trajectory
x(tx) of the system is bounded in a region D, defined by
D,={x/ys|xl,<8,+d"} (2.14)
Note that D, extends the domain As, on both its lower and upper bounds. The next

step is to prove that (2.7) implies (2.8). By noting that

V = Px + xTPi = 24P+ (2.15)
= 2TPfix, x,)

the inequality (2.7) can be written as



- -

2TPfix, x,) < - & xTPx, , x€ Ag,
or, because x,€ As,, Which does not include the origin, the above inequality can be

written as

2Pz, %)
—xf_Px:—_ £-£, x_,EA5D . (216)

Similarly, the inequality (2.8) can be written as

2TPfix, x,) E
g g (xx)€ D xAs, . (2.17)

Thus, define a mapping L: D A5 —R as

2P fix, x,)
~rx (18

Now in lemma 2.1, f is assumed to be continuous on DxAg,. In the following proof,

L(x, x,) =

it will initially be assumed that f is continuous on D xAs, so that the motion x(1,x,) is
allowed to lie anywhere in D,. Later analysis will then show that x(x,) actually lies
only in D and the assumption on f made in lemma 2.1 is thus restored. Hence,
assume f is continuous on the compact region DxAs. L is then continuous on D xAs,
and thus L is uniformly continuous on DxAs,. Thus, for each >0, there exist §>0

and 30 such that
IL(xy, %q1) = Lz, x) < € (2.19)

thnevcr X1, IzE.De, Xl I:zEAao and lel—xzilpcﬁ, ”I,]_—xﬂ“p<8,. Now set X=X, X9=X1~=Xy~X,

and note that

Lz, x)&~E, x,€As,, (2.20)

If € is set at e-—--g- and the corresponding 8=%’, 5=5,’, then,

L(xy xs) <| L(xs X,) = L(I_,, x.r) | + L(x.r: x.:)
E_
< 5 E

=-.§ (2.21)



whenever

[lx = x.:“P < 5,! (x,x,)e DzXASO (222)
As it is always possible to let h, defined above be small enough so that §, satisfies

5, 2¥& (2.23)
if x is a point on the solution x(1,x,) for some r, then provided x,e A, and e [0, kg, the
distance between x and x, is bounded by |x-x]l < §, < &. Hence (2.21) is satisfied if

te [0, k[ where h; is independent of x. Substituting into (2.21) the definitions of L

and V, it is easy to see that

V) < -2 V),  neds, (0 KL
Now, return to the original assumption that f is continuous on DxAg,. Because

the above inequality yields

w2 e

Va(ta) < e * Vi)

it is clear that |ix(sx,)lp can never exceed |xl» provided re[0,k[, and x,EAs Conse-
quently |x(s,x)llp 18 actually bounded by
Y S Ixx)lp s 42

and therefore x(tx) lies always within the domain D. Thus f only needs to be con-

tinuous on DxAg, for lemma 2.1 to be true.

Q.E.D.

The above proof has shown the necessity of introducing the domain As): 1O
ensure the continuity of L. The assumption that f is continuous on Dx4s, allows f to
possess some ’odd’ characteristics near the origin for x&Bs,. For instance, f can be
discontinuous or a sector bounded function with respect to x, and the behaviour of
the system in the vicinity of the origin may not be ’nice’.

The next lemma concerns the discrete property of the sampled-data system
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under the assumption of lemma 2.1. It is quite clear from the proof above that if
Xp-1€ A5, then |xlp<|xew;ll provided the sampling interval is sufficiently small, i.e., x,
is ’closer’ to the origin. But as soon as x, enters Bs, lemma 2.1 no longer holds.
Evidently, for every x€ A5, there exists a sampling sequence {x} which converges

to the domain B;,

Lemma 2.2. Assume lemma 2.1 holds and let x, represent the initial condition of
the sampled-data system (2.1). Then, there exists a finite time duration Ty, > 0 such

that the sampled datum x=x(T,x;) of the solution sequence {x;} of the system lies in

350 for all XQEASD.

9]

Proof. From lemma 2.1, inequality (2.7) implies the existence of an h; such that

(2.8) holds. Then, for any x A,

_E
Vixtt, x) < e 2 Vixg) , e (0,43, (2.24)
and in particular,
-1 ]
V) <e 2 Vixo), h<h (2.25)

where x; = x(hy). Similarly,
_E
Vixy) <e ? " Vix;)

_E
ce 2 g (2.26)
By induction,

- % (hythat..+h)

V(x,) <eée V(IO) ’ 0<hf<h; (2.27)

provided xz; is still within 4. It is clear from (2.27) that x; is closer to the region
Bs, than x, Now, suppose during the ¥* sampling period, x(t,x,;) crosses the boun-
dary V(x) = §, and enters the region B;, then, (2.27) says that x, stays within Bs pro-

vided x.,€ A5, and he<h. Therefore, there exists a Ty, dependent on x, where
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Tiag=hi+ b+ = +hp O<h<h;, (2.28)

such that x, lies within Bs,

QE.D.

After the sampling sequence {x} enters the region Bj, because the behaviour
of the system in By, can be irrational, the sequence may or may not stay in Bs, for

>T. The following lemma states a rather mild requirement on f which will ensure

the stability of the sampled-data system on the domain D.

Lemma 2.3. If the mapping f is such that x(rx,t,) exists uniquely for all x€Bs, and

is continuous with respect to its arguments, then there exists a finite sampling

period 0 < hy < = such that for all x,€Bs, and re [0, Ayl x(tx,t,) is bounded in D.

(o)

Proof. Again assume =0 without loss of generality and write x(f;x,.t,) as x(t,x,). As
x(t,x;) 1s unique and continuous with respect to its arguments, for all re [0,T,]=/, where
T, is arbitrarily large and for all x.eBs, x(tx,) is continuous on the compact domain
I,xBs, and hence x(1x,) is uniformly continuous on IxBs,. Therefore, for each 80,

there exist £,>0 and &,>0 such that

ety 2y )=x(t2x)llp < & (2.29)

provided t;,6€ 1}, X1.%2€ By, and |n—tl<e;, |xa—xallp<es. By letting #=t, £,=0, x,=x,=x, and
noting that x(0,x,)=x,, (2.29) becomes
”.I(:,X,)—x,”p <8 ’ I:EBSQ (2'30)

provided |d<e;, or re[0,g,[ since only positive time is concerned. Therefore, provided

x,€Bj, and e [0,¢,[, x(t,x,) is bounded by

Ix(txolle < Ie(txe—xllp + lixlp
< &+ 8 (2.31)
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If & is set to be

§ =8, < d” - 82 (2.32)

then, there exists a corresponding &,=h,<e= such that

Ixexlle < d',  xeBs, (2.33)

provided te [0,h;[. Thus, x(,x,) is bounded in D.
Q.ED.

The above three lemmas easily lead to the following theorem which concems

the stability of the sampled-data system (2.1).

Theorem 2.4 (Bounded Stability). Consider a sampled-data system whose
mathematical model is represented by eq.(2.1). Let V be the quadratic mapping
defined in eq.(2.2) and let D, A5, and Bs, be defined as in eq.s(2.4), (2.5) and (2.6)

respectively.
If

(a) flx, x) is continuous on the domain DxAs;

(b) fis such that for all xeD, x(1;x,t,) exists uniquely and is continuous with respect

to its arguments;
() 2P flxx) <-ExXP x, Vieds,, E50;

then, there exists an A*>0 such that for every initial condition x(rp)=x,eD, the motion

x(t;xoto) Of the sampled-data system stays in D for all >0 provided O<ty,—1<h*.

Proof. The proof simply follows from lemmas 4.1, 4.2 and 4.3, and #* is chosen

such that

k' =min ( A, hy ) (2.34)
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QED.

To further extend the study of stability of the sampled-data system (2.1) to that
of asymptotic stability, an additional restriction will have to be made on the system,

this is given in the following theorem.

Theorem 2.5 (Asymptotic Stability). Let the assumptions (a)-(c) of theorem 2.4

hold for the sampled-data system (2.1). Assume t=0. If there exists an #;>0 such that

(@ lim=x(f, %) =0, VxeBs, O<t—n<h;,
| o o]

then, there exists an A*>0 such that x(z, x;)—0 for all x,eD.

o
Proof. From lemmas 2.1 and 2.2, it is clear that Vxoe A;, there exists a Ty, such that
xe By, provided x, €Az, and O<t,,;—ti<h,. Because the sampled-data system is time-

invariant, this x, can also be treated as an initial condition of the system. Hence, if

the condition (4) is fulfilled, then x(t, x))—0 as t—e for all xeD and for O<ty—1<h’

where h" = min( k., k. ).
Q.E.D.

Note that the condition (d) implies that system (2.1) in the vicinity of the ori-

gin is asymptotically stable for O<m<h;, k0.

It has been observed that both theorems 2.4 and 2.5 state only .conditions for
the existence of a maximum sampling period ensuring the stability of the system. It
does not provide a method of calculating #* on the domain D on which relevant sta-
bility conditions are satisfied. This does not, however, mean that the above
theorems are of only theoretical value. Suppose an estimated DOA of a nonlinear
sampled-data system has already been established by some analytical method or by
trial-and-error, the above theorems may be used to check if this estimated DOA can

be further increased with respect to some sampling period by treating this estimated
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DOA as the domain Bs. It is possible that a larger domain exists on which (a)-(c)

(or (a)-(d)) are satisfied and the chosen sampling period still gives stability (or

asymptotic stability).

3. The choice of the quadratic function v

An observation made on the above theorems is that in defining the quadratic
mapping V, the choice of the positive definite matrix P seemed quite arbitrary, i.e.,
no specific relationship between P and the characteristics of the sampled-data sys-
tem (2.1) were required. Consequently, it is possible that for some choice of P, the

condition (c) of theorem 2.4 cannot be satisfied, i.e., a finite domain A, can not be

found, whereas for the same system with some other choice of P, (c) can be
fulfilled. This indicates that the choice of P can directly affect the existence of the
sampling period h*! Faced with such arbitrariness, the next theorem investigates
how, under certain conditions, the matrix P can be related to the characteristics of
the sampled-data system so that a systematic method of determining the required
matrix P becomes available. Perhaps the obvious choice is to try to relate P to the

linearised system of the sampled-data system.

Theorem 3.1. Let

x = flx, x), x(tg)=xo (3.1)
be the underlying continuous system of the sampled-data system (2.1). Let V be the
quadratic mapping defined by eq.(2.2). If Axx) is continuous with respect to its argu-
ments and for every x, in a small neighbourhood of the origin, x(rxyr,) exists

uniquely and is also continuous with respect to its arguments, then along x(r;xo,t),

the inequality

V@ <-EV(x), &0 (3.2)
will be satisfied if and only if the linearised system of (3.1) is asymptotically stable

and P must take the form of a Lyapunov function matrix of the linearised system.
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Note that the above inequality (3.2) is equivalent to condition (c) of theorem
2.4. Basically, this lemma says the necessary and sufficient condition for (3.2) to be

satisfied is to take P as a Lyapunov function of the linearised system of x=f(x,x).

Proof. Without loss of generality, assume =0 and write x(t,xo)=x(t;xg.t0). AS x(t,xy) is
continuous with respect to its arguments, it can be made as close to the origin as

required by making x, close enough to the origin and r close enough to 0.

To prove that the satisfaction of the inequality (3.2) implies the asymptotic sta-

bility of the linearised system of (3.1), write

flx, x) = Ax + g(x) (3.3)

where 4 is an (nxn) matrix and

gl _
s " 34

i.e., g(x) contains at least second order nonlinearity and is continuous. By noting that

V(x) = 2x7P f(x, x) = 2x"P(Ax + g(x))
the inequality (3.2) becomes

2T(ATP+PA)x + 27Pgx) < - «TPx, E>0 (3.5)
satisfied for x in the vicinity of the origin. As x is close enough to the origin, the
nonlinear term is negligible (from (3.4)) compared with the linear term. Hence,

(3.5) becomes

X(ATP+PA)x < -E x'Px, E>0 (3.6)
valid for x in a small enough neighbourhood of the origin. Now, introduce a matrix

Q where

ATP+PA=-0
so that (3.6) becomes
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T0x 2 ExTPx, £>0 (3.7)
Le., the inequality (3.2) is equivalent to the above inequality. As P is a positive
definite matrix, (3.7) will hold only if Q is a positive definite matrix. Thus P is a

Lyapunov function matrix of the stable linear system

Jf: = Ax, x(D)=xD
To show that the asymptotic stability of the linearised system of (3.1) implies
inequality (3.2), let f(x, x) be as defined in (3.3), assume 4 is a stable matrix, Q is a

positive definite matrix and the matrix P satisfies the equation

ATP+PA=-Q
Then P is a Lyapunov function matrix of the linear system x=Ax, x(0)=x,. Thus it is

always possible to find a sufficiently small e>0 such that

“Qx 2 exPx

or

*(ATP+PAx < —ex'Px (3.8)
Now, due to the property of g(x) given in eq.(3.4), provided x is sufficiently small, it

is always possible to find a small enough &>0 such that

Ee 2P g(x)

xTPx

v

and inequality (3.8) thus becomes

*T(ATP+PA)x + 2x"Pg(x) < -& x"Px, £>0

Hence inequality (3.2) is satisfied for some &>0.

Q.E.D.

Observe that although in theorem 3.1, inequality (3.2) was assumed to hold
only in the vicinity of the origin, it is possible to obtain a finite domain on which it
would be satisfied by computing inequality (3.5), and then defining the domain As,
inside the above domain. Thus theorem 3.1 provides a convenient method of ensur-

ing that condition (c) of theorem 2.4 will be met if the sampled-data system has an
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underlying continuous system whose linearised system is asymptotically stable. In

such cases, the matrix P is a Lyapunov function matrix of the linearised system.

4. Conclusions

This the first part of the paper has focussed upon finding restrictions under
which there would exist a finite time period A* sampled below which system (2.1)
would be stable (theorem 2.4) or asymptotically stable (theorem 2.5) on a certain
domain about the origin. The restrictions on such sampled-data systems were weak
enough to include a wide range of nonlinear sampled-data systems, for example,
systems which represent nonlinear continuous plants, or systems with static non-
linear elements in their feedback loops, or systems possessing some ‘odd’ behaviour
in the vicinity of their equilibrium points, etc..

The theoretical evidence of the existence of such an A= is significant in that it
encourages the practice of searching for such an #* once a sampled-data system of
the type (2.1) is found to satisfy various conditions given in the theorems. Even if
such an #* may be theoretically difficult to obtain, the theorems given above make
it possible to conclude that a sampled-data system satisfying certain conditions can
be stabilised by fast enough sampling rates. Note that both theorems 2.4 and 2.5

provide sufficient, but not necessary, conditions for stability.

The second part of this paper will concentrate on finding, analytically, a rela-
tionship between the sampling rate and an estimated domain of attraction of a par-

ticular class of sampled-data systems. It will show that such relationship can be

rather simple.
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