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Abstract: This paper uses a time-domain approach to study the effect of fast sam-
pling on the stability of a class of nonlinear sampled-data systems which have the
property that their underlying continuous systems are stable on a certain domain. In
this the second part of the paper a relationship between sampling rate and an
estimated domain of attraction of the system is obtained by extending the analysis
in Part I [1]. This relationship indicates that a faster sampling rate can increase the
estimated domain of attraction of the sampled-data system, a phenomenon well
known in practice. Hence this study is a significant step towards understanding the
effect of sampling on the behaviour of a sampled-data system. It may also help in
designing a sampled-data system in the best interests of economic instrumentation

and system performance.

1. Introduction

(T



This part of the paper attempts to find a relationship between sampling rate
and some estimated domain of attraction (DOA) of a class of sampled-data systems.
The class of sampled-data systems which is studied is assumed to have a general

block diagram structure shown in Fig.1.

+ PN Digital
Computer [ | —

Plant

Fig. 1
It is assumed that the plant can be described by the model
x(1) = Ax(f) + F(x(1)) + Bu(?)
y(1) = Cx(1) x(Q)=xy (1.1)
where yeR™, xeR",ueR'; 4, B and C are the characteristic, input and output
matrices of the plant of dimension (nxn), (nxl) and (mxn) respectively; =0 without loss

of generality; the nonlinearity of the plant F(x) is assumed a polynomial in x of

degree at most N, written as

N
Fx)=Y Fix), Fjox) = o/F (x), VaeR, VxeR® (1.2)

=2
Assume that the linearised model of the plant is both controllable and observable.
The plant is to be controlled by a digital computer, and due to the ZOH device, the

plant inputs u(r) are piece-wise constant signals which can be written as

u(t) = up €l aul, 20 (1.3)
Note that constant sampling rate is nor assumed. In the following, two types of digi-

tal controllers are to be used to control the plant. One is a simple proportional con-

troller, the other is a proportional-plus-integral controller. Both types are widely

used in practice.



2. Proportional control
In proportional control, the digital computer takes the control strategy
up = K(=yp) = =Ky, (2.1)
where K is a constant matrix of dimension (Ixm). Thus the state-space equation of
the feedback autonomous sampled-data system of Fig.1 can be written as
X =Ax + F(x) + Gx,
= fix, xp), x(t)=xy, 1€ [tptil, k20 22}
where
G = -BKC (2.3)
Clearly in this case, the mapping £ R°xR" — R® is polynomial in x but linear in .
flxxy) is thus continuous on R®xR®.
The problem to be solved is the following. Assume the sampled-data system
satisfies certain conditions so that the underlying continuous system is asymptoti-
cally stable on a certain domain about the origin. Find a range of allowable sam-

pling rates so that the sampled-data system can be stabilised on the same domain.

One condition the system is assumed to satisfy is that the underlying continu-

ous system of the sampled-data system, written as

x=Ax+ F(x) + Gx 2.4)

has an asymptotically stable linearised system

x = (A+G)x (2.5)
This assumption can be fulfilled by designing the controller matrix X to result a
stable matrix (4+G). With the controller thus designed, the following study takes two
steps. First, an estimated DOA of the continuous system is obtained by finding a
Lyapunov function of the system over the domain. Then by imposing upon the sys-
tem the condition |ix(rix,t)li<elix]| where O<e<l and x, lies in the above domain, a
range of allowable ¢ is obtained. In particular, a relationship between the maximum

of such r and the boundary of the estimated DOA is given.



2.1 The DOA estimation

The continuous system (2.4) is now written in the form:

X = (A+G)x + F(x) , x(0)=xg
= flxx) (2.6)
and due to the choice of the controller matrix X, the above system is asymptotically

stable about the origin, i.e., (4+G) is stable in the continuous sense. Hence there

exists a unique matrix P which is the solution of the equation

(A+G)'P + P(A+G) = - I, 2.7
where I, is the (nn) identity matrix and thus P is a positive definite matrix. Let the

quadratic mapping V and the P-matrix norm be defined as

V@) =xPx,  (P=P™>0) lixllp = V&'Px = V(x)"? (2.8)
Let the Banach space X=(|l.ll,, R®) be the state space of the system (2.6). Then along

the motion of the system,

Vix)=iPx+xXPi=2 TP fixx)
= x'[ (A+G)"P + P(A+G) }x + 2x"P F(x)

< -xlx+ 24P i F{(x) (2.9)
2

From the inequalities 1, 2 and 3 of Appendix I, inequality (2.9) becomes

1

i N
Vix) € - Vi 2% M |
(x) 5P (x) + FZZ i |l
1 2N 8 2.10
== ( ——— M.V Vi )
o 2 M VA )V (2.10)

where (P) is the largest eigenvalue of the matrix P and

M;= sup |F»lle
liylle=1 (2.11)
Note that both 3(P) and M; are positive constants independent of x. As x—0, V(x)—0,

and the expression in the bracket of (2.10) tends to ﬁ. This implies that in the

vicinity of the origin, - V(x) is positive definite. Thus from Lyapunov’s theorem, v
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is a Lyapunov function of the system and the origin is asymptotically stable.
|
Now suppose that for some small enough &>0, there exists a d;>0 and a domain

Dy = {x/V(x)sds } (2.12)

such that along the motion trajectory of the system,

Vx) S-EV(x), VxeD; (2.13)
By denoting V(x,)=V,, this yields

Vix) £ e, xqe Ds (2.14)
which clearly indicates that provided xeD;, V(x) tends to 0 as t—ee, OF x=0 as —eo,
Therefore, the domain Dy, if it exists, is an estimated DOA of the continuous system
(2.6). The objective therefore will be to search for conditions that, once satisfied by

the system, will enable the domain D; to be found.

Comparing (2.10) with (2.13), it is clear that to obtain Dy, it is only necessary
that

L _of vwT (2.15
< - M: V(x) , VYxe D, .
G(P) f§2 ] S )
or,
$ v T < L 2.16
23 MV £ —-£, Yxe D .1
5 i) (x) a(P) E x€E E ( )
Hence, provided 0<t< _(];3), there exists a d;>0 given by
(o]
N .?L 1
2¥Y M d? = — - 2.17
EME =5t 247

such that V<-£V will be satisfied on D;.

The above analysis is concluded by the following lemma.

Lemma 2.1. Consider the nonlinear continuous system (2.6). Assume the matrix
(4+G) is stable, i.e. the real parts of all its eigenvalues are strictly negative. Let the

matrix P be defined as in (2.7) and the quadratic mapping V and the P-matrix norm
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be defined as in (2.8). There exists a domain D; of the form

Dg = { x/ V(x)d; }
where d4; is given by
2F MdE = = _f,  ocke—l
5 = ee— 3 Pl
P 77 T
such that system (2.6) is asymptotically stable on D;. M, is defined by (2.11) and

B(P) is the largest eigenvalue of P.

Remarks.

(a) Note that the condition V<-£V imposed on the mapping V is much more restric-
tive than the condition V<0 given by the La Salle’s theorem. In fact, V is required to

decay exponentially over D.

(b) The estimated DOA D; is compact and varies with & which restricts the decay
rate of V on D;. From (2.17), for a sharper decay rate, ie., a bigger &, the

corresponding d; is decreased, hence D; is reduced but remains finite as long as

§<$P). This basically says that the estimated DOA becomes smaller if the decay
g :

rate imposed on V becomes bigger, as one expects.

Now, as the continuous system (2.6) is the limiting case of the sampled-data
system (2.2) when h—0 for all k, it is reasonable to ask the following question: will
the sampled-data system (2.2) be stabilised on the domain D; estimated above by
fast enough sampling rates? i.e., by letting &, close enough to zero? This is to be

investigated in the next subsection.

2.2 The relationship between sampling periods and Dy

The sampled-data system (2.2) can be written in the following form:

2= (A+G)x + F(x) + G(xgx) , =z, ety tl, K20 (2.18)



-

Comparing it with the continuous system #=(4+G)x+F(x), it is obvious that the term
G(xy—x) is due to sampling: if 4,—0, then x—x and hence the term G(x—x)—0.
Lemma 2.1 has given an estimated DOA D; for the continuous system (2.6). The
following analysis will prove that the sampled-data system can also be stabilised on

Dy provided 4, is small enough for all .

Lemma 2.2. Let V be the quadratic function as defined in eq.(2.8). Let x, denote a
sampled datum at some sampling instant . Let x(s;x,r,) be the subsequent motion

trajectory of the sampled-data system (2.18).

If there exist #*>0, &0 and a connected region D={ x/ V(x) <d } such that
Vix(tx,t)) € e V(x), VxeD, WVie[t, t+h*[ (2.19)
for some r20, then the sampled-data system has solutions from any initial condition

xe D and every solution is bounded in D provided 0 < -1, < A", k20.

If (2.19) holds for r>0, then every solution of the system converges to the ori-

gin provided x,eD, 0 < ty—t, < 1", k20.

(o]

Proof. Consider the sampled-data system (2.2) during the first sampling period

where x(0)=xq, te [0, & [. If (2.19) holds, then, provided A<k and x.eD,

Vix(txo)) € e Vix), te [0, Ay

and in particular at the first sampling instant,

Vi) S €™ Vizo)
which implies that x lies in D. Now, because the sampled-data system is time-

invariant, by induction,

V) < & MM yen, WaeD,  Ochsht,  1sick
Thus, for 0, V(x)—0 as k—e. Therefore, the sampled-data system is asymptotically

stable on D provided O<sy,—1 < h* for all k. If =0 however, then V(xy) € V(xp) for all



k20 and the system is stable on D.
LE.D.

In lemma 2.2, there is no suggestion that the connected region D, if exists, is
the domain Dy given by lemma 2.1. However, in the following procedure of search-
ing for an A* which is related to the domain D, the relationship between D and Dx

will become apparent. Now, the inequality (2.19) can also be written as

ttsxat)llp < & L;-“-’-':"P , VxeD, Wielt, 1+h[ (2.20)
In order for this inequality to be satisfied, the idea is to initially find an upper
bound on |k(fix.t)llp in terms of the parameters of the system. If there exists an h*
and a domain D such that this upper bound is also bounded by the right-hand of the
inequality (2.20), then (2.20) will be automnatically satisfied.

Without loss of generality, let +=0 so that x(txat)=x(tx;), or for simplicity in
notation, x(r) will be used to represent the motion trajectory of the system without

causing misunderstanding. Then from the model of the sampled-data system,

x(1) = ez, 4 [§400 [ Fxn)) + Glx~x(1)) ] dt (2.21)
1]

Take the P-matrix norms on both sides, make use of the inequalities 2 and 4 pro-

vided in Appendix I, define the error term

e(t) = x, — x(1) (2.22)
and

Ne= sup |l e?) llp
0<r<t (2.23)
Note that 7, is nondecreasing with «, and that for 0<r<

I()lp = [Ix(r) — x; + xlp
SN+ lixlle (2.24)
thus (2.21) becomes
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]

]
- — - — N
)l € € PO lp + 28(P)1-e ZP) [ T Mlixlle + 1Y + IGllp M, )
=2

= UG, lkxlle, M) (2.25)

where U is an upper bound of |ix(:)||» defined by

1 3

U, Iglle, 1) = ¢ 2P |jx)lp + 25(P) (1-e 2P [
N .
2 M{lixllp + 1Y + IGllp M, ] (2.26)
=2

Therefore, condition (2.20) is further restricted to yield the following corollary.

Corollary 2.3. Consider the sampled-data system (2.18). If there exist a*>0, &0,

and a domain D of the form D = { x/ V(x) <d } such that

U(f, ”x:iIP! Tl!) < e—T "Is"}’! rao! e [f_r,f_ﬁ'h*[ (227)
for all x,eD, then the sampled-data system is stable in D provided 0 < #,,,~1, € h* for

all k0.

Note that although the above corollary sets a more restrictive condition, it is
now possible to find a range of time periods and a corresponding range of x|, that
satisfy (2.27), and hence guarantee the stability of the sampled-data system. In
what follows, the cases of stability (~=0) and asymptotic stability (r>0) are to be dis-

cussed separately. Without loss of generality, assume 1,=0.

2.2.1. Stability conditions (r=0).
In this case, the inequality (2.27) becomes
U@, lixglle M) S lixdle x£eD, re[0A* (2.28)

By substituting (2.26) for U into the above and after a little manipulation, it
becomes
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N : .
WP M; (Ixllr+neY + IIGlle 1 < lixlle xeD, te(0,h’[ (2.29)
=2

Note that when |lx[»=0, x=0 which is the equilibrium point. Excluding this equili-

brium point, define

A= F"l‘l: - (2.30)

so that (2.29) can be written as

N
8P M; (1+AY Itz + IGllp AJ < 1, x,eD|0, te[0,h*[ (2.31)
=2

Note that 4, is, like n,, nondecreasing with :. Further, define

N A
O lixllp) = 28(P) [T M; (1+AY lixlz" + 1IGllp A, ) (232
=

so that (2.31) becomes

¢(ln ”x:”P) = 1! IJEDJOv te [Ovh*[ (2.33)
The question of stability has now become:

Corollary 2.4. For the sampled-data system (2.2), if there exist A*>0, 450, and a
domain D of the form D = { x/ V(x) < 4 } such that vxeD|0, the inequality (2.32) holds
for all Ae[0, A*], where
A= sup X,
te [0,h*[ (2.34)
then the system is stable on D with 0 < t,,—, < . Furthermore, if z=0, then x(n=0 for

all ~0.

o]

To start searching for such 4* and d, the properties of the mapping ¢ is first
investigated. It is noted that (a) ¢(0,0) = 0; (b) from its definition, ¢ is a polynomial
in both of its arguments. Thus ¢ is continuous on RxR and increases monotonically

with its arguments. Hence ¢ is uniformly continuous on some compact domain € in
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RxR containing the origin. In other words, ¢ can be made as small as required by
making A, and |z, sufficiently small. Let Q denote the domain on which o<I.
Because ¢ increases monotonically, the boundary of Q is found by setting ¢=1, or,

there exists a A*>0 for each 4>0 such that

o(A*, d3y=1 (2.35)
and ¢<1 holds for all Ael[0, A*], 0<lix|l.<d"?. Note from (2.35) that A* and 4 are
inversely related to each other. The maximum of 4 is obtained when A*=0 in which

case

N EL
60, d"?) =28(P) T M;d? =1 (2.36)
=2
As A* increases, d decreases and the maximum of A* is reached when 4=0 in which

case

o(A*, 0) = 28(P) lIGllp A* = 1 (2.37)
The compact domain Q thus can be found by, say, solving (2.35) for A* correspond-

ing to each 4.

From the above, the domain D would be maximum if 4 is maximum. Now,

note that (2.36) can be written as

N %1 1
2 M d = —
,}::‘ ! 3(P)

Comparing it with (2.17), it is clear that d; is less than the maximum possible 4, or
that D; is contained in the maximum possible D. This implies that at some d = 4,
there exists a A*>0 such that ¢(A*.d;)<1. Now, as the underlying continuous system
associated with the sampled-data system is asymptotically stable in D, it is much
more interesting to study the relationship between D; and the sampling periods that
stabilise the sampled-data system. Therefore, the domain D is replaced by D; from

now on.

Having found the relationship between A* and d;, the next step is to relate A*
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with A* in terms of the parameters of the sampled-data system in the hope that a

relationship between #* and 4; will eventually be found.

From eq.s(2.21) and (2.22), an expression for the term e(s) is found to be

e(t) = ([-e** D) x, ~ [§4 O [ Flx(t)+G(x,—x(1)) Jdt (2.38)
0

Again, take the P-matrix norms on both sides, use the inequalities 2 and 5 in
Appendix I and use the definitions of m, and A, respectively, the above equation

yields

. N ) )
M S 26(P)(1~e ) [I4+Gllp + 3, MI+AYIL ! + IGlIpA,) (2.39)
=
for all x,eR® |0, t=0. Now, define

T

N

Y(EAnllxle) = 28(P) (1~e ®)) [I4+Gilp + T M, (1+AYIx " + 1GI[pA] (2.40)
=)

so that y is an upper bound of A, at all time 20 for all x,eR"|0. Note that unfor-
tunately this upper bound of A, is itself a function of A,! But all is not lost. The fol-
lowing lemma shows that provided ¢ is sufficiently small, there indeed exists a finite

range of A, such that the inequality (2.39) can be satisfied.

Lemma 2.5. Consider the mapping y defined by (2.40). At |ix,|,=0, there exists a
A>0 such that provided « is small enough,

A<y, Ay il Ael0, Al (2.41)
and at A, =4,
A= v A I le) (2.42)
o}
Proof . Define

Vi, &) = W, Ay lxllp)
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Then, vy, is continuous in both of its arguments and that v, increases monotonically
with respect to its arguments, with y,(0,0)=0. Also, dy,/dA, is continuous and is also a
monotonically increasing function of its arguments with 3y,(0,01/8A=0. Appendix II

provides a proof for the above lemma.
QED.

By keeping |ix/l» fixed and taking r as a parameter, a family of curves vy, vs. A,

can be drawn shown in Fig.2, in which #<n<n, x, is nonzero. The straight line

Tepresents y, = A,

WSJ[ ti 1) t.
A
B=a,
i ;
oli, Xy A EW

Fig. 2
With the help of this diagram, it can be seen that provided the time : is
sufficiently small, there always exists a 4, dependent on r and a range Ae[0, 4]
within which the straight line is bounded by the curve. This implies the inequality

(2.39), and is essentially what lemma 2.5 states.

Now, consider the inequality (2.39) on the domain Dg. As discussed before,
there exists a A*>0 such that the equality ¢(A*.d;)=1 holds. Now, if this A* is such that
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A* 2y, AX, &) (2.43)

for some >0, then there exists a AgA* given by

A= v, A, di)
such that for all Ae(0, %) and xeD:0,

M < Wt Ay di?)
From the definition of v, the requirement (2.43) can be written as

f

= N e
A* 2 2B(P)(1 - e BP) [IA+Gllp + T M; (1+A*Y 4 + [IGllp A*] (2.44)
=2

Substituting the eq.(2.43) into the above yields

A* 2 (1-e ) 23(P) I4+Gl + 1) (2.45)
The maximum of such a r, denoted by h* which ensures the above inequality is

obtained from

h*

A* = (1-e ?(P’) 2 B(P) ||[4+Glp + 1) (2.46)

Note that the case

A* 2 2G(P) ||A+Gllp + 1 (2.47)
corresponds to the situation when, from Fig.2, the whole family of curves v, for 20
intersect with the straight line y=A, This might be possible if both 4; and the con-
troller gain are chosen sufficiently small to give a sufficiently large A*. (This will
be discussed in greater detail later.) If so, the sampled-data system would be stable
on D at all sampling rates, or the maximum possible #* is +e. A perhaps much

more general situation is when the reverse of the inequality (2.47) holds. If so,

b )
28(P)IA+Gllp + 1

h*=-28P)In(1-

In this final expression for &*, it is worth noting that A* is not explicitly related to
d;. In general, A* needs to be computed from $(A*,dg)=1. Thus A* is also not expli-
citly related to the size of the estimated DOA D;. Before the effects of various

parameters on the estimations of k* and d; are discussed, the above result is stated



-15 -

as a stability criterion below for easy reference later.

Theorem 2.6. (Stability Criterion)

Consider the sampled-data system given by (2.18) where the matrix (4+G) is

stable, i.e., the real parts of its eigenvalues are negative, F(x) is a polynomial in =,

the (k+1)* sampling period is denoted by hy, =t,—t,, The quadratic mapping V and

the P-matrix norm are defined as in eq.(2.8).
On the compact domain D; of the form
Dy ={x/V(x)sds }

where d: is evaluated from

A n | 1
22de§2 =— -, 0<f < ——
F2

3(P) ap)

if the real positive quantity A*, given by

£l
2 +IGl A1 =1

=
k]

N .
2T(P) [ I M(1+A*Y d
=]

is such that

(a) A* 2 28(P)|lA+G||p+1, then there exists an 4* where

h*z-l-on;

or,

(b) A* < 25(P)|lA+Gllp+1, then there exists an A* given by

A* )
2 G(P) IA+Gllp + 1

h*=—28(P) In(1-

and for all h<h*, k>0, the sampled-data system has solutions on D

(2.48)

(2.49)

(2.50)

(2.51)

(o]

Remarks. From the above theorem, there are two factors affecting the evaluation of

the domain D¢ and the maximum sampling interval h*. One is the parameter &, the

other is the controller gain X. The effect of £ is quite obvious. By choosing & closer

to zero, dg is increased, resulting in a larger domain D;. However from (2.50), an
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increase in 4; decreases A* and hence h* is decreased according to (2.51). Conse-
quently, the variation of § is such that on a larger estimated DOA D; (by decreasing
£ ), the maximum sampling interval A*, which stabilises the sampled-data system,
will be reduced. The effect of the controller gain X is reflected in the marmix

G=- BKC and is more complicated. Because P is given by

(A+G)P + P (A+G)=-1,

from which it can be shown that

2(|lAllp + IGI)EP) 2 2A+Gl8P) 2 1
a sufficiently small &(P) implies that ||A+G||, or ||Gll must be sufficiently high. This

requires higher eigenvalues of G. Furthermore, the size of the sphere

XPx=1
tends to increase as @(P) decreases, which implies that M, as defined in (2.11) tends
to increase as G(P) decreases. Hence, an increase in the controller gain in terms of
higher eigenvalues of G has the tendency of decreasing &(P), but increasing M; at a
rate dependent on j. It is therefore difficult to conclude from (2.49) how d; varies
with the controller gain. If the order of the nonlinearity is sufficiently high, then M,
may increase rapidly with a slight decrease in &(P), resulting in a decrease in the
size of the domain D;. From (2.50), A* also has the tendency of decreasing with a
larger ||Gllp, and A* decreases with a decrease in A* as well as in &(P). Hence too
high a controller gain tends to destabilise the system, as is the case in classical con-

trol theory for linear feedback systems.

Example 2.1. Consider a nonlinear scalar system

X=-x+ % 13 - Xp .t(:t)=xb 1e [tb ’k-i-l.{' k20
From theorem 2.6, the estimated relationship berween h* and |x| is found, shown in

Fig3. To compare the estimated k* with the actual value, consider on the domain

D={x/lx<1}
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Bt
3.00

0.0

0.0

The estimated k* is found to be

h* = 0.35

It can be found by solving the differential equarion thar the actual h* is

h* =3.29
Hence the estnmated value is considerably conservarive due to the facr that in
esnmaring h*, no negarnve sign was taken into account. All terms used their

supremwm of norms during any sampling interval.

Example 22. Consider a second order nonlinear plant with the mathematical

model

F+3y+y-01y = u, 0=y, 3=y,

Assume thar the feedback proportional controller used is

Ug = 2y

Then the state equation for the feedback sampled-data system can be written as

x(f) = _0_1 x(t) + P 0 X+ 8 » XhExp te(ty [, k20
1-3 20 0.1
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where the state vector x=(xq, x3)’. The estimated relarionship berween d: and h* are

shown in Fig.4. i
020 T

0.0

0.0 ' 9.00
Fig. 4

Note thar there is no easy way of finding the actual relationship berween h* and the
corresponding DOA for such a nonlinear multivariable system. Numerical method

could be used, but it would involve considerable amount of compuration.

The above examples showed that theorem 2.6 could provide useful information
on how fast a sampling rate would be in order to stabilise a sampled-data system on
certain domain, even though results thus obtained could be quite conservative. For
nonlinear multivariable sampled-data systems, it was generaly difficult to estimate a
range of sampling rates which stabilise the corresponding system on a certain
domain. Usually the sampled-data system would first be approximated by a discrete
model and then numerical methods would have to be used to search for the max-
imum sampling rate. Note that the parameters of the discrete system are related to
the sampling rate. One application of theorem 2.6 is that it can be taken as the first

and, most importantly, reliable estimation of the allowable sampling rates for mul-
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tivariable nonlinear sampled-data systems.

As mentioned before, theorem 2.6 does not guarantee the asymptotic stability
of the sampled-data system. For instance, there may exist some limit cycles in D:.

The asymptotic stability requires r>0.

2.2.2. Asymptotic stability conditions (r>0).

In this case, the basic procedure of finding an A* to stabilise the sampled-data
system on the domain D; is the same as in the previous case. But the mathematics
becomes more involved due to the fact that the inequality (2.27) cannot be
simplified. Thus by taking D; as the domain D and after a simple manipulation,
(2.27) becomes

rt !

e ‘ - -
BP)(1-e PP [¥T MI+AY Ikl + IGlp A Se * —e 2P (2.52)
=2

First note that the above inequality would hold for some 0 only if r< a(lP)' Now,

substituting the mapping ¢ defined in (2.32) into the above yields

» 7 e 26‘(1’)
0% lixle) < — 2,2 Dgl0
1-e B
= E(1) (2.53)
where
v e
E(n=——"°— (2.54)
1-¢ 20

Obviously, E(n=1 if r=0, the situation discussed previously. Now, provided

O<r<#P), E(r) is a monotonically decreasing function of 1, with

lim E(j) = 1 - r 3(P), lim E() = 0 (2.55)
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The asymptotic stability of the sampled-data system on the domain D; requires the

existence of some finite 0 and a corresponding A0 such that

oA, dt?) < E() (2.56)
The following lemma shows that provided r is chosen properly, this requirement can

be satisfied for some 0 and a range within which A, may lie.

Lemma 2.7. If r is chosen such that

r<(l-et, O<e<1 (2.57)
then, there exists some >0 and a corresponding 420 such that (2.56) is satisfied for
all A& [0, &;.

Proof. As is known, ¢ is continuous and increases monotonically with A, and
N £l
®(0, di?) =2 8(P) 3 M; di*
=2

=1-E 3P (from (2.17))

On the other hand, E() decreases monotonically with ¢ with the two end conditions

given by (2.55). If r is chosen according to (2.57), then,

lj_J'r:’0 E() = E(Q) = 1-r8(P) 2 1 - (1-e)EB(P)

=1-EB(P) + eEB(P)
= ¢(0, dl?) + e£G(P)

i.e., E0) is greater than ¢, d}?). Now, as E(:) is continuous in s it is continuous on
the compact interval re[0,T;}=/; where T; can be arbitrarily large. Hence, E is uni-

formly continuous on /. For each ¢’>0 therefore, there exists §>0 such that

IE(t) - E(r)| < €
whenever 1,nel;, and |4-1,45". Since E also decreases monotonically, by setting

1=r>0, 1,=0, the above inequality becomes

EO)-E@<¢ (2.58)



-21 -

whenever tel, and <&'. In other words, E(:) can be made as close to E(0) as possible
by making ¢ small enough. On the other hand, the mapping ¢ is continuous with 4,
and 2, is continuous with ¢, i.e., ¢ is a composite function of r and it is also continu-
ous in + Thus ¢ is continuous on the compact interval e/, and it is thus uniformly

continuous on /;. Hence for each £”>0, there exists >0 such that

16y, db?) - kg, i) < €”
whenever 1,,,€l,, and |n-,45” (note that A, is also uniformly continuous on /; and
hence the quantity [A,~A,l can be made as small as required). By noting that ¢
monotonically increases with A, and A, is non-decreasing with «, let 1=r>0, 7,=0, so

that A=A, and A,=0 and

o\, di?) - (0, di?) < ¢” (2.59)
whenever e/, and <8”. Hence from (2.58) and (2.59), if =min{ §,8” }, then

oA, di?) < (0, di'?) + "
< E(0) - e£B(P) + £
< E(t)+ ¢ + €& —eEB(P)
By choosing & and &” such that

g +€" = e&T(P)

it is clear that

oA, di?) < E(9)
As the relationship between A, and ¢ is not known, it is only possible to say that

because ¢ increases monotonically with A, A, lies in the region [0,A[ where A, is

given by

ok, di?) = E() (2.60)

QED.

Now, in order to find how r is related to d, it is crucial to find how r is related

to A. Such a relationship has in fact already been stated in lemma 2.5. Thus if 4, is
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such that

Aoz ow, A, di?) (2.61)
then there exists a 4, <, such that (2.39) holds for all Ae[0, 4], x.e D¢/0. Substituting

the definition of v into the above yields

N N ~1
A 2 26(P) (1-e BP)) [4+G|p + ¥ M(1+1,y d:%' + [IGlIpA) (2.62)
P2
and from (2.60), after rearranging, (2.62) becomes

wall

A 2 (1-e PP) Q5(P) |4+Gllp + 1) - (1-¢ 2) (2.63)

Because r < (1-e)k < B_(IP;’ it can be shown easily that the right-hand expression of

the above inequality increases monotonically with r. Thus the maximum of such ar,

denoted by k*, is given when

he ri®

A* = (1-e BP) Q5(P) [A+Gllp + 1) - (1= 2 )

where A* also satisfies

O(A*, di?) = E(h%)
Note that in this case, no explicit expression for #* in terms of A* and the system
parameters is available. The above analysis results in the following stability cri-

terion.

Theorem 2.8 (Asymptotic stability).

Consider the sampled-data system (2.18) having the properties as described in
theorem 2.6. The mappings ¢ and E are defined in (2.32) and (2.54) respectively.

The parameter r lies in the range given by (2.57).

On the compact domain D; as defined before by (2.12), the sampled-data sys-
tem is asymptotically stable provided O<i,,,-r<h* for all k>0 where A* is found by
solving simultaneously the two equations

. rh*

A* = (1—e BP) (28(P) |IA+Gllp + 1) — (1-e 2 ) (2.64)
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oA%, i) = E(h%) (2.65)

to eliminate A*.

0

Note from (2.64) that A* increases monotonically with A*, converging to
25(P) lA+Gllp as h*—o, It can also be seen from (2.65) that for each *, there exists
a unique real positive A* which decreases monotonically to zero with increasing h*.
Hence it is concluded that the above two equations always intersect uniquely in the
region A*20 and A*20.

Remarks. The effect of the parameter £ and the controller gain K on the estimates
of D; and h* are as discussed in 2.2.1. The additional parameter that affects the
evaluation of a* is the decay parameter r imposed on V. (Note r has no effect on
Dg.) One would expect that as r is decreased, the restriction on V is relaxed and A*
might be iﬁcreased. This is, however, not apparent from the above stability cri-
terion. As r is decreased, the value of E(h*) is increased wh*20. For the same h*, the
value of A* is thus increased (eq.(2.65)). However from (2.64), a decrease in r
implies that the rate of increase of the right-hand expression with respect to A* is

also increased. It is therefore not possible to conclude if a decrease in r would

increase the value of A*

3. Proportional-plus-integral control

The sampled-data system to be studied here has the same structure as that
shown in Fig.1. The plant is assumed to have the same mathematical model given
by eq.(1.1). However, instead of proportional control, the digital controller takes the
proportional-plus-integral (P+) control strategy, i.e., the controller signal u consists
of two parts: the proportional control action denoted by u,, and the integral control

action denoted by ;. Thus, u can be written as

Up = Upy + Uy, k20 (3.1)
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As in the previous section, the proportional control signal u, is such that

Uy =K, (—y)=-K,C x, k=0 (3.2)
where X, is the proportional controller gain matrix of dimension (Ixm).

The action of a digital integrator is very similar to that of a continuous integra-
tor where the control action at any time t is proportional to the area swept by the
signal at the input during the time period [0,1). But the difference is that for a digital
integrator, the area depends on the functions to be assumed between any two adja-
cent data at the input of the integrator. Therefore, this assumed function determines

the structure of the digital integrator. For instance, if the integral action is such that

U = = K; Gy + yihy + -+ + yihy), k=0 (3.3)
where K; is the integrator parameter matrix of dimension (Ixm), and 4 is the i* time
interval, then the function between any two adjacent data is assumed to be a zero-
order hold function carrying the amplitude of the previous datum. For notation sim-

plicity, let »; be denoted by v. Then, (3.3) has the closed form

-

Vel = Vi — hhwl Kj Ye (34)

or, because y, = C x,,

Vie = Vi + A K xp (3-5)
where

K" = - K,' C (36)
However, with such an integrator, the present input datum x,., is not taken into

account. A modified version of it would be

Vil = Vi + By (AKx + (SA)K x4), k20 3.7)
where the additional matrix A can be chosen as any matrix having the property

0spalst (3.8)
Thus, the action of the integrator (3.7) varies with A, and the integrator given by

(3.5) is a special case when A=/. Hence the (P+/)~controlled sampled-data system can
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be written in general as

x(t) = Ax(1) + F(x(1)) + Gx, + Bv, , (3.9a)
Viel = Vi + By (AKxe + (-A)K ) (3.9b)

x{fk)=x,b e [l.'j_-, [-h'l[! k20
where G=-BK,C and K; is given by (3.6). The stability of such a feedback system

will obviously be affected by A, which should be chosen to provide a less conserva-

tive stability criterion.

3.1 A=1I, h, variable.

Here, the integrator takes the form (3.5). It is not difficult to see that this

integrator has a control action which exactly coincides with the continuous integra-

tor

W(!) = Ki Xpy w(rk)zwb H = [Ih Ik-o-l[: k20 (310)
at all sampling instants ¢, , with veg=w,. In other words,

Ve = Wp V=0 (3.1 1)
Thus, (3.9b) can be replaced by (3.10) and the feedback sampled-data system can

be written as

[f(?)} - (38 [+ ]« i’;} ’ (3.12)

W)=xp WEwe 1€t iy, k20

GB
K, 0

Writing z=(x,w)” and comparing the above system with the proportionally controlled

system (2.2), it is clear that they have exactly the same form. Define

A0 _|GB
A: = {0 0]! G: = Ki 0] (3.13)
so that
4+G, = MGB (3.14)

Assume the proportional controller X, is chosen such that A+G is a stable matrix in

the continuous sense and X; is chosen (through K;) such that A.+G., is also stable in
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the continuous sense. Then both theorems 2.6 and 2.8 are applicable to the stability
and asymptotic stability of this class of (P+))-controlled sampled-data systems. Note
that the matrix (A+G) is required to be stable so that in the absence of the integral

action, the system can still be stabilised by fast sampling.

3.2 0<)AlS 1, A= h, V0.

This case corresponds to a fixed sampling rate. This is because the analysis
below is already quite involved technically and it would be better to study the sim-

plest case in order to illustrate the crucial points. The integrator (3.7) thus becomes

Vis1 = Vi + B (AKxy + (I-8)K %) k20 (3.15)

whose expansion in terms of {x} is

Vel = h K; (xgrxy+..4x) + R(I-A)K X k20 (3.16).
By introducing the dummy variable w where w satisfies (3.10) but with a fixed sam-

pling rate, i.e.

Wie = A K; (Xg#x+..42) (3.17)

at the (k+1)* sampling instant, then v, can be written in terms of wy and x; as

Vi=wi+ h (!—A) K,x,, (3.18)

and the feedback sampled-data system with this integrator can be written as

x(1) = Ax(t) + F(x(t)) + Gx; + By, (3.19a)
w(t) = Kx, (3.19b)
V= W + h(I-A)K,Xk, x(t)=xp w(t)=w,, € [te e, A20 (3 19C)

The purpose of introducing the dummy variable w is to build a mathematical
model in the similar fashion to the previous model (3.12) in the hope that the stabil-
ity analysis may be carried out in the similar fashion too. Comparing (3.19a) and
(3.19b) with the model (3.12), it can be seen that the only difference between them
is: w, in (3.12) is now replaced by v, in (3.19a). The two systems have the same

underlying continuous system, and from (3.19c),
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v hI-0)K; 1| |x
- [

The analysis below is based on the following observlation. Suppose that as
k—eo , ||(x, wy)ll=0. This implies from (3.20) that ||(vx0)(|—0, olr |lvill=0 as k—e. There-
fore, it may be possible that by restricting the behaviour of the dummy state vector
(x,w), the behaviour of the actual state vector (x,v,) of the feedback sampled-data

system can be controlled.

As before, the first step in the study is to find a domain on which the underly-
ing continuous system of (3.19) is stable. Let X, and K; be chosen such that A +G, is
stable. Then from lemma 2.1, there exists a domain D on which the underlying

continuous system of (3.19) is asymptotically stable. Denote z=(x,w)" so that the

domain D; is given by the connected region

5 5 321
1 2% MV( S — - .
{z 5 V(z) ) El (.21}
of the form
Dy={z/V(z)<d:} ] (3.22)
where 4; is evaluated from
2y Mt =L ¢ (3.23)
,Z:z ST Ee '

Here, P is determined by

(Ac"'Gc)TP +P (Ac"'Gc) == dpat

where A, and G, are as defined in eq.(3.13). M, is defined as

Mj= sup IFfxw)lp (3.24)
llzll=1
where
Ffew)= [F ,gr)] (3.25)

Now denote x, w, and v, as the sampled data for x(r), w(r) and {v;} at =, respectively
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and write the eq.s (3.19a) and (3.19b) as

(1) | _ x(t) x~x(1)
[:’(1)} = (A.:"'Gc) [W(I)] e F(x,w) + Gc [V:—W(f)] (3-26)
The argument for the stability of this system on D; follows exactly from sec-

tion 2 that if there exists an 4* such that for all re [0,4*[ and =(x,w)eD;,

=rt

@il < &2 lizls (3.27)
for some r20, then z(r) would be a stable solution in D;. Here, only the case =0 will
be discussed as it sufficiently illustrates the modifications involved in searching for
the h*. The case r>0 merely adds more restrictions on the value of A* but the

mathematics is much more involved.

The procedure of finding an h* follows from the previous section. The crucial
|

difference is that the error term cannot be written as z-z(r), but as

e(0)=(x=x(1), ve=w (1) | (3.28)
and correspondingly, the definition for n, becomes
M= sup  ||(x—x(),vew(®))llp (3.29)
O<r'<e
The upper bound for |iz(1)ll, is found as before, but because e(r) is no longer
equal to z-2(s), the upper bound for the term ||z(7)|, during the time period re[0,1]
has to be written in terms of n, and ||z, according to the following inequalities.

[
First,

llzlle = lICeWllp = l(xeWs) = (x=2x,w=w)||p
= [|Enws) = (xxv~w) + (O,ve-w,)llp
< [|GEawlle + IGx=x,v=w)llp + 11(0,v—w,)llp (3.30)
From (3.19¢),

Ov,~w,)" = h(0, (I-A)Kx,)T

“+lebe ]
- (—A)Ki 0 W,

=hK, (x, w) (3.31)
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where

_ 0 0
K,= [(!—A)Kf 2 (3.32)
Thus the last term in (3.30) is bounded by
IQvewllp < AlKlp lI(xaw))llp (3.33)
and therefore for 0 <7 <1, r<h, |l2()|» is bounded by
llzllp < (1+AIK,lIp) lizglle + M (3.34)
The upper bound for |iz(1)l, hence becomes
Ut lizlem) = e PP |zp + 28(P)(1-e 2P|
N .
2 M (1+AIK Allp)lzoll+ Y + Gl (3.35)
=

Clearly, U depends on the sampling period 4 and increases monotonically with it,
whereas in section 2, the upper bound U for |ix(1)|, is independent of k.. This induces
major modifications in the process of searching for a maximum sampling period A*,

as will be seen below.

Now, the sampled-data system will have solutions on D; if there exists an 4*>0
such that for all A < h*, 1e [0,4], |

UG, h, lizlle, 1) < lizillp Vz,eD; (3.36)
Substitute the definition for U, define

_ n:
M= G

and after rearranging, (3.36) becomes

N . -
28(P)[X, M; (1+hIIKlle+AY Nzl + Gl A) s 1 (3.38)
=2

Now, define 2 mapping ¢ as

N . .
b, Ay, lizdlp) = 28(P)[T M; (1+AIK sl Nzt + IGlle A, ) (3.39)
=2

which is a modification of the mapping ¢ defined by (2.32) and is again dependent
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on the sampling period 4. Hence (3.38) becomes

&k, A llzllp) < 1 (3.40)
According to corollary 2.4, z(i, z;) will be a stable solution on D if there exists an 4*
and a corresponding A* such that (3.40) holds for all zeDe , h<h* and re[0.h. To
prove that such h* and A* exist, note first that ¢ is continuous and monotonically
increasing with respect to all of its arguments. Also, A, is nondecreasing with r.
Hence on the domain Dy, (3.40) will be satisfied for all re [0, [, A&[0, A4l if

Ok, My dt?) < 1 (3.41)

Furthermore, because

(0, 0, di?) = 25(P) g_‘z,Mj dffL =1- E5(P) (3.42)
F
there exists a compact domain Q on RxR such that for all (4 A)e, (3.41) is
satisfied, and the boundary of Q is given by
oK, My dlhy =1 (3.43)
To search for a relationship between A, and : in terms of the system parame-
ters, the same procedure as that of section 2 is carried out. But due to the way the

error term e(r) is defined in this case, the inequality (2.39) is modified, yielding

llzs—z(Dllp
llzllp

< W, B A lizlp) (3.44)
where

1

W, by A llzllp) = 28(P)(1—e 0 [JA+G.llp +

N . .
2 M; (I+RIKAlAAY Nzt + 1Glp A (3.45)
=2

Now, it would be desirable if the left-hand side of (3.44) could be written in terms

of A, This can be done by noting that
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”(I_,'-I,V:—W)”P = “(Is_wis—w) + (Osv;_w.r)”P
< fix=xwe—wlllp + 110, ve—w)llp
< llze=zllp + h |IKallp llzllp (from (3.19¢)) (3.46)

which, when divided by |iz)l> on both sides, taking the supremum during the time

interval [0,7], yields

M S WG A, Ay llzdle) + AIK e (3.47)
for all zeR*" |0, te[0, A, k>0. Note ¥ is continuous and increases monotonically
with its arguments, and that A, is nondecreasing with «. Hence (3.47) also implies

that

M S WA, by Ay, lizillp) + KK llp, 2,&R™ |0 (3.48)
By defining

Wslh, M) = Wk, by Do lzgllp) + HIIKllp
it can be shown from Appendix II that provided & is sufficiently small, there exists
a 4,50 such that for all A<k, (3.48) holds. Thus, if A’ and #, as given by (3.43), are
such that on the domain Dy,

?ﬂ.’j‘ 2 ‘:‘l](h’, h’q l,ﬁu éﬂ) =+ h’ ”KA“P

A

= (e BP) @BEA+GC,lp + 1)+ K IK,llp (3.49)
then (3.41) will be satisfied for all A, bounded in the range 0<h,<4,, A<\’ The max-

imum of such an k', denoted by &*, is obtained when

h*

A* = (1me ) QBPIAGdp + 1)+ h* IKle (3.50)
where A* is given by

o*, k¥, i) = 1 (3.51)
In other words, 4* is obtained by solving (3.50) and (3.51) simultaneously, eliminat-
ing A*. It can therefore be concluded that z(:) is stable on D; provided the sampling
period h<h*. However, this is not quite the end of the stability study because w() is

just a dummy variable. The next step is to find a domain on which the state vector
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(xpvy) 1s stable. By noting from (3.18) that

Xg In 0 X =
M = [h(],‘—A)K,- I, wJ (3.52)

there exists a domain D of the form

D={0/06=Rz, VzeD;} {3.53)

where

I, 0
R= [h(I—A)Kj 1,] (3.54)
on which (x,v) is stable provided h<h*. Note that D is dependent on both the choice

of A and the system’s sampling period .

It is quite obvious that the choice of A should be such that it gives the ’best’
control action. From the point of view of system stability, the choice of A should
result in the largest sampling interval possible upon the same estimated DOA, or
the largest DOA for the same maximum sampling interval. As it can be seen from
both (3.50) and (3.51), by keeping A* unchanged, a decrease in ||K,|[» increases h*,
which means that by choosing A so that |[I-A|, is closer to zero, k* can be increased.
It is not difficult to see that if A=/, then ||k,|l>=0 which gives the maximum possible
h* on the same domain D;. Hence as far as the dummy state variable (x, w) is con-

cerned, the choice of A=/ gives the optimum stability behaviour.

For the real state vector (x,, v however, D is dependent on A. The effect of A
is to transform the domain D; by 'distorting’ it along some direction, and the degree
of such distortion is increased by choosing A such that /-A =1, increasing the effect
of the off-diagonal terms. The resultant domain D is shaped differently from D; that
the two domains cannot in general be compared in size, except in the case A=/ in
which D = D;. Note that when A=/, the system (3.19) is converted back to the system

(3.12) and hence both theorems 2.6 and 2.8 can be applied to examine the stability

of the system.
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4. Conclusions

The stability study carried out in this part of the paper established a relation-
ship between sampling rate and some estimated DOA of the systems for a class of
nonlinear sampled-data systems. The analysis allows variable sampling rate in the
system. Two types of control strategies were considered: proportional-control and
proportional-plus-integral-control.

Through examples, it was seen that the results could be rather conservative.
The conservativeness was caused mainly by the use of norms throughout the study.
It may be possible to reduce the conservativeness by using a different normed

space. For instance, the matrix P was defined by

(A+G)TP + P(A+G) =~ I,

It is evident that a more general equation which can be used to determine P is

(A+G)P + P(A+G)=- Q
where Q is some positive definite matrix. P thus can be varied by varying the matrix
Q in the hope that a larger DOA could be resulted without significantly increasing
the sampling rates of the system, or a wider range of sampling rates could be
obtained over the same domain. Nevertheless, the simplicity of finding a sampling
period in terms of the system parameters and its estimated DOA with little compu-
tation necessary makes the above result valuable as a first approximation to the real

or a less conservative evaluation.
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APPENDIX 1

Five Inequalities

Let the mapping V: R®—R, be defined as in (2.8), the P-matrix be defined as in

(2.7), and F(x) be defined as in (1.2) respectively.

Inequality 1.

-xx<- 1 ALl
x P (x) ( )
where
G(P) = the largest eigenvalue of the matrix P. (AL2)
0

Proof. Since P is a real positive definite matrix, its eigenvalues A, > 0, ¥i. Hence,
8(P)= max{\(P)}, i=1,2,...n. Furthermore, its eigenvector matrix U is an unitary matrix,

ie., UUT =1, Write

P =UAUT
where
A= dlag { A'!.: )\.2, ceey ;\.,, }
Then,
XP x = xTUAUx
= TA y

where y = U'x. But,
YAy=3 L < 8P T
=1 =1
=38(P) y'y=8(P) XU U'x

=B(P) x'x



Hence, 27P x < 3(P) x"x, or,

-xx<- ! P x
3(P)
1
== —V
) (x)
Inequality 2.

Rl < lxltp M,

where

Mj= sup |Flp

[Ixllp=1
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QED.

(AL3)

(AL4)

Proof. From the definition of Fj(x) in (1.2), it is clear that

IF )l = I s FX —— ) llp
[bxl p

Sl sup  IIF;O)p

Iyll=1
= It M;
where

M= sup |IF0)llp
I¥ilp=1

But this M; is exactly the same as the M; defined by the eqn.(AL4).

Inequality 3.

TP F; < |WlpliF e

QED.

(ALS5)
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o)

Proof. The operation <.|>p: xy—x"Py is known as an inner product. Hence, from

Schwartz inequaliry,

XP Fj= <xlFpp < <dooh? <FjIF K2
= (P x)" (F]P F)'"
= |kxllpllFlle

QED.

Inequality 4. Let P be a Lyapunov function matrix of the stable autonomous linear

system

x(1) = dx, x(0) = x, (AL6)
such that

OP+PO=-1 (ALT)
then,

i[ e@( HP g 8-2_3(;)- (Al.g)

where &(P) is defined in (AL2)

0
Proof. With P given by (AL7), V=x"P x is a Lyapunov function of the linear system

(AIL6). Then along the motion of the system,

V(z) = (TP + PO}

=-dx s - V(x) (AL9)

B(P)
from inequality 1. By denoting V(xg)=V,, (AL.9) implies

V) se 3 v, (AL10)
As the solution to the system (AL6) is

x(1) = %'xg
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and that V(x)=x"Px, (AL.10) becomes

L™ TP(e®x, < e 9P P x, (AI.11)

Hence,

le®llp= sup |l e®xllp

[xllp=1
= sup ( II(EO')TP e@ix )11'2
lixilp=1
< sup (e 3O LTpyin (from (AL11))

Il =1

1

= e TP
Q.ED.

Inequality S. Consider again the stable system (AIL6) and let P be still defined as in
(ALT). Then,

11-e®p <23P) Ol (1-e PP ) (AL12)

o}

Proof. Transform the autonomous system (AL6) by introducing a new state variable

9 =Xy - X
Then,
0=xy-e¥x=( - e®x (AL13)
and
f=-i=-Ox
= ®(8 - xp)

By noting that 6, = 0, the above differential equation has the solution



< B8

t
9=-je°<"“’¢>xgdr
0

Thus,

NI-e® |lp = sup || (I-e®)xp |Ip
llxollp=1

By comparing (AI.13) and (AL14), the above equation can be written as

!
W=e®llp = sup | [ e & xg dt |}p
0

[xollp=1

Now, use the familiar property of integrals that

I ffmyatll s [Ifoll de
T fo

the P-matrix norm of (/-e®) is bounded by

-e®p < sup _[ 1€ lp (Dlp IIxollp 2
0

[begy,=1
Thus from inequality 4,

-t

t o T m———
I1-e*llp< [ @ |@llp ar
0

!

= 23(P) |0l (1-e =P )

(AL14)

Q.E.D.
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APPENDIX I

A Lemma

Lemma. Let ¢(c, B) be a mapping ¢: RxR—R with the following properties:

(1) ¢ is defined and continuous Vo0, ¥B=0, with continuous first partial derivative
with respect to B;

(2) ¢ increases monotonically with respect to a and B, with ¢(0, 0) = 0;

(3) g—g also increases monotonically with respect to a and B, with

3(00) _
3B 0

then, for small enough o, there exists a p* dependent on a such that

B < o(.B) ¥Be [0,8%)

where

B* = ¢(c,p*)

Proof. Define

©(o, B) = ¢(c, B) - B (AIL1)
on a compact domain LxL where

L={x/0<x<1}
and ! can be arbitrarily large. Then & is continuous on LxL and hence it is uni-
formly continuous on LxL. The following proof first shows that for some small
enough «, there exists a B’ such that at B, ®<0. It then shows that for the same o,
there exists a B such that for all p<p”, ®>0. It then concludes that there must exist
a B* lying in the region B"<B*<p’ such that for all B<p*, ®>0 and at B=p*, &=0. The

proof is thus complete.

Consider now
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o _ 2
B op
From the properties of ¢, it is clear that 2 g continuous on LxL, and hence uni-

of
formly continuous on LxL, and that it increases monotonically with respect to a and
B, with
o®(0,0) _ 9¢(0,0)
ap ap
Thus, for each §>0, there exists an £>0 such that

-1=-1

3DO.B) _ 3D(0,0)
op B

provided B<e and BeL. Set 5=% where 0<A<l, and let the corresponding e=e,.

<d

Then, provided B<e,,

3008 _ %_1 _—

op
Observe that because kL increases monotonically with B, this inequality holds for

op
all B<e,. Thus, by integrating both sides,

O0B) <~ (1 - %)B . VB[Ol
In other words, there exists an e, such that for all B<e,, @(0,B) is negative. Now,
from its definition (AIL1), the mapping @ increases monotonically with o, and @ is

uniformly continuous on aeL. Hence at some fixed p=p'<e,, for each &0, there exists

an &0 such that

D(ap) - ©0B) < &
provided a<e and oeL. Now, set &(1-A)p’ and let the corresponding e=¢’. Then at

B=P’<e,, provided a<e’,

D(LB) < § + BO,B)
< (-8 - (1—‘2‘)B'

A ’
skt (AIL2)



