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Abstract

A new filter structure known as the NARMAX model (Nonlinear AutoRegressive
Moving Average model with eXogenous inputs) is introduced as a basis for the design
of a class of nonlinear filters which can be used for noise cancellation. The new design
is an extention of the classical IIR filter and it is shown that the filter parameters can
be estimated using a suboptimal least squares algorithm originally developed for sys-

‘tem identification. Conditions for the convergence of the algorithm are briefly dis-

cussed and simulation results are presented which show the effectiveness of the new
structure.

introduction

One of the most important problems in signal processing is the estimation of sig-
nals from noisy measurements. Whilst the optimal filter designs of Wiener and Kalman
can be used to provide a solution to this problem both these algorithms are computa-
tionally demanding especially if the noise characteristics are nonstationary and adaptive
noise cancellation can be implemented as an alternative. Noise cancellation (Widrow et
al, 1975; Harrison, Lim and Singer, 1986; Kang and Fransen, 1987; Widrow and
Stearns, 1985) consists of using a reference noise source to predict the noise com-
ponent and substract it from the noise corrupted signal. This latter approach is compu-
tationally cheap when compared with the Wiener and Kalman designs and has been
successfully applied to many problems including echo cancellation, speech signal pro-
cessing, featal heart monitoring etc (Kang and Fransen, 1987; Harrison, Lim and
Singer, 1986; Hill, 1985).

Although noise cancellation is now an established branch of signal processing
which has been widely studied almost all the designs are based on linear filters.
Clearly linear filters are much easier to study than nonlinear design and provided the
nonlinear distortion is mild linear designs which can adapt to changing characteristics
will yield an acceptable performance. In general however, linear filters will be inade-
quate when applied to systex‘i{;- where the nonlinear characteristics dominate and a few
authors have begun to consic;l;éi' nonlinear design based on the Volterra series and the

LMS algorithm (Sicuranza, Bﬁﬁconi and Mitri, 1984; Coker and Simkins, 1980). The
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disadvantage of this approach is the large number of parameters which are required to

characterise even mildly nonlinear systems.

In the present study a new nonlinear filter design is presented. This is based on
the NARMAX (Nonlinear AutoRegressive Moving Average model with eXogenous
inputs) which can be interpreted as an extention of a linear IIR filter. The advantage of
the NARMAX filter is that it can provide a concise description for a wide class of
nonlinear systems using just a few nonlinear terms. Because the number of terms
required in a NARMAX filter will typically be similar to the number of terms required
for a linear FIR design the potential of real time adaptation is clearly much higher than
for a Volterra design. It is shown that the estimation of the NARMAX filter parame-
ters can be interpreted as a system identification problem and can be solved using a
suboptimal least squares algorithm. The convergence properties of the algorithm have
been studied in the control engineering literature and consequently only a brief sum-
mary will be provided in the present study. Simulated examples are presented to
demonstrate the effectiveness of the new filter and to compare the performance with
Volterra based designs.

2 The Concept Of Adaptive Noise Cancellation

The structure of an adaptive noise canceller is illustrated in Fig. 1 where the sig-
nal of interest s(r) is cox:ruptcd by noise n() to yield the measusured signal
d(t)=s(r) + n(t) . It is assumed that n(1) and s() are uncorrelated and that the noise
n(npasses through a second sensor with unknown transfer function 7() to yield the
reference input x(). The objective of the design is to estimate the parameters of the
filter F(.) which operate on x(r) to produce y() which cancells the noise in d(—t,) by
minimising the mean squared error E[*(r)]. A delay block ¢, is inserted in the primary
channel to ensure that the filter F() is causal. Mathematically the idea can be
expressed very simply. Assume that all the signals are zero mean and wide sense sta-

tionary, then from the diagram

£(r) = d(1-1) — ¥(1) (1)



= 5(t—tg) + n(t—tg) — y(1) (2)

such that

E[eX(0)] = El(s(t~t2) + n(t—1) = y())}] 3)

s(t)

~ [ Y ,

d(t-t ”)1
t &)

/ y(t)

DR Ty x(t) F()

/

Fig. 1 Typical noise canceller

= E[s’(—1] + El(n(t-1) = Y(0)*] + 2E[s(t-1)(n(t~tg) = y(1))] (4)
Since s(r) is uncorrelated with n(s), it is also uncorrelated with y() aﬁd therefore the
last term on the RHS of eqn.(4) is equal to zero and
E[€*(0)] = E[F(-1] + E[(n(t-t) = y())’] (5)
Clearly
min(E[e*(1)]) = E[*(t-12)] + min(El(n(t—tg) - y(1)*]) (6)

which shows that E[e*(s)] is minimised when E[(n(~ty) - y())?] is a minimum or when

y(t) the output of the filter cancells the noise n(+~t,) in the primary channel.

For the class of filter structures which are linear in the parameters it is possible to

write y(r) = (@ where @7(r) is a regression vector containing past data measurement
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and 6 represents the vector of optimal filter parameters which are estimated to satisfy
eqn.(6).

The type of filters for which @7(s) can contain only lagged values of x(r) include the
well known FIR filters in the linear case, and the finite Volterra series in the nonlinear
case. The set of equations which yield the optii_nal filter coefficients are obtained by
expanding E[e*(1)] as a function of the sequences d(t-tz) and y(1)

E[eX(1)] = Eld*(~1p)] + Ey*(1)] - 2E[d(t-1)y(0)] (7)
Substituting for y(r) by (6 and rearranging gives
E[eX(1)] = E[d*(1-1p)] + 6TE[D()DT(1)]6 - 207E[d(1-1)D()] (8)

Defining P=E[®(1)®7(1)] and R=E[d(-t)d(1)] and differentiating with respect to the filter
parameter vector 0 gives

%{E[ezmn - 2P8 - 2R )

The minimum is achieved by setting the gradient of the mean squared error function to

ZEro

2 (Ere2]) =
) (Ele 0D =0
or assuming that P is invertible
6=pP'R (10)

Various recursive algorithms have been derived to implement eqn.(10) and to estimate
6 including stochastic gradient algorithms such as LMS. When the vector &(r) contains
lagged y(n and x(r) values it is convenient to reformulate the problem of estimating the

filter parameters into a system identification formulation and this is considered in the

next section.

3 Noise Cancellation And System Identification

Previous authors (Eweda and Macchi, 1987; Cioffi and Kailath, 1984; Cowan,
1987) have considered the design of FIR filters using the RLS algorithm as an alterna-
tive to the LMS method and have demonstrated the superior convergence time of the

former approach. Other authors have interpreted the design of linear ITR filters in terms
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of an output error identification form using variants of the Steilgliz-McBride (Hong,
1986; Hong and Jenkins, 1987), recursive maxmimum likelihood and hyperstability
algorithms (Friedlander, 1982; Larimore et al, 1980). The advantage of the IR designs
is the reduced number of filter parameters required to describe the system and hence
the possibility of a rapid convergence rate. The problems of convergence of IIR
designs which were noted in earlier studies based on the LMS algorithm have been
partly mitigated by invoking results from system identification which contain extensive
investigations into the convergence of the RLS algorithm and variants of it. An exel-
lent discussion of these concepts was recently provided by Soderstrom and Stoica

(1988) who proposed an instrumental variable algorithm for linear adaptive filtering.

If nonlinear noise cancellation is to be successful then the filter will need to be
described by a small parameter set and this tends to exclude Volterra based FIR
designs and points to nonlinear IIR filters. This in turn suggests that the results from
system identification should be modified to apply to this problem and RLS type algo-
rithms should be utilised. It is for these reasons that a suboptimal least squares (SOLS)

estimator which is a variant of the RLS is introduced in the present study for a class of

nonlinear ITR filters.

The interpretation of IIR filter design as a system identification problem and the
introduction of the suboptimal least squares algorithm will be considered below for the

general filter structure in Fig. 1 and then adopted for the NARMAX model design in
section 4.

From Fig. 1 and the analysis of section 2 the optimal design of the filter F(.) will
be the inverse of T(.) such that

Y1) = n(t~t)) = T (x(r) = F(x(1)) (1D

where F(.) and T(.) are to be interpreted as operators to be defined later and where it is
assumed that T™! exists and is stable. Since

d(t—ty) = n(t—ty) + s(t-t) . (12)
using eqn.(11) yields

d(t—tg) = T (x(2)) + s(t—ty) (13)



In system identification studies eqn.(13) would be interpreted as a system T~'(x(t)) = F(.)

with input x(s), measured output d(~:;) and an unobservable coloured noise s(t-ty) as
illustrated in Fig. 2

x{(t) . -1

Fig.2 Interpretation of eqn.(13)

Estimation of the operator T7!(.) can be considered as a parallel identification
scheme as illustrated in Fig. 3.

s(t-ta)
T
d(t-t )
x(t) ¥ E(I)
{ y(t)
> F()

/

Fig. 3 Parallel system identification

N
Minimising the sum of the errors squared %EEZ@ and assuming convergence

=1
would yield F(.) = T7(.) and () would be the optimal prediction of n(r~t,). Interpretation
of the identification is dependent upon the form of F(). If a linear FIR filter is selected
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eqn.(13) can be expressed as
d(1—tg) = F(x(t) x(t—1),....x(t—n,) + s(t—1p)
or more concisely
d(t-tg) = OT(1)8, + s(t—1y)
where
@I() = [ 2(OX(=1)suwrex(=1,)]

GI = [ bo,b]_,bz, ....... b"x]

(14)

(15)

Because s(r) and x(++t) are zero mean uncorrelated for all T an LMS or RLS algo-

rithm can be applied to yield umbiased estimates of the parameter vector 6,. The RLS

algorithm for the model of eqn.(15) is defined by the choice
D(1) = Dy (1)
B(r) = 8,()

22(1) = @y (1)

(16)

In the following unified algorithm (Soderstrom,Ljung and Gustavsson, 1978;

Ljung and Soderstrom, 1983)

8() = 6(-1) + K(De(r)

P(t=1)zz(1)

K() =
@ A0 + OT()P(-1)22(1)
. P(t=1)zz2(ydT ()P (1-1)
PO= 30 FY " X0+ 00Pe-Dzm0)

&() = d(t-1p) — ®T(1B(-1)

AD) = AA(-1) + 1 - A9

a7

(18)

(19)

(20)
21)

where A(r) is a variable forgetting factor which usually takes values between 0.9 and

1.0.



If a linear IR filter is selected eqn.(13) takes the form

Bz

d(t—t)) =
U = 2D

x(t) + s(t—tg) (22)

where

A =14az + ..+ a,‘dz-”"

B Y=by+ bzt + .o+ byz *

X

Expanding eqn.(22)
d(t—tg) = [~d(t—t1)yeeeer=d(t—t 1) X(1),....X(t-n))] [ay,as, . . . , b0, -+ a7

+ A(ZDs(t-ty) (23

= OL(N64 + Az V)s(1-1y)
and the elements of ®() are now correlated with s(—,). Application of the RLS algo-
rithm would therefore provide biased estimates. This is analogous to the identification
problem in the presence of coloured noise and whilst several solutions have been pro-
posed the suboptimal least squares algorithm introduced by Moore (1982) for linear

systems and Billings and Voon (1984) for nonlinear models matches the requirement

of the IIR noise cancellation filter exactly.

If the output y(s) could be monitored eqn.(23) could be expressed as
d(t=19) = [=Y(=1)serrrs=Y (D X(Osewex(t=n)] [a1,ay, - . . By bg . . ., b,
+ 8(i—tg (24)
= ®f(1)04 + s(t—1)

and the elements of ®I(t) are no longer correlated with the noise s(t-ty). Although the
signal y(») is unavailable for measurement it can be estimated by recursively comput-
ing the predicted output using

$(t) = DY (1) (1) (25)

where 6.() denotes the estimated parameter vector at the most recent iteration. Thus

the estimation algorithm now becomes eqns. (17)-(21) followed by eqn. (25). 5 is
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considered to be a better estimate of y() than if it was estimated using the estimated

parameter vector from the previous iteration 8,(¢-1) and
DT(1) = F-F(=1)s e F 1D (D) X1

The noise free output y() in eqn.(24) is therefore replaced by the prediction y(r). The
algorithm is computationally simple and can be implemented as a variant of RLS using
the following definitions in (17)-(21)

(1) = Dy(1)
0(t) = 8,.(1) (26)

22(t) = (1)

The advantage of SOLS compared with the alternative algorithms is that unbiased
estimates of F(.) can be obtained by operating on the predicted filter output j(). This
can only be achieved when the noise s(t-t,) in Fig. 3, is additive at the output but this
corresponds exactly to the noise cancellation problem and means that it is unnessecary
to consider the problem of estimating a noise model which would both increase the
complexity of the algorithm and the size of the parameter vector. Whilst these are

desirable properties for linear designs they become virtual necessities in the nonlinear

case.

Convergence properties of the SOLS and related output error schemes have been
extensively studied by Moore (1982) who showed that the algorithm will achieve glo-
bal convergence in the presence of persistently exciting input signals and for A(H=1 in

eqns. (17)-(20) providing [A"(z“)—%] is strictly positive real . Moore also showed that

the convergence of the algorithm will not be critically sensitive to the colour of the

noise as are related extended least squares type schemes which require simultaneous

noise model estimation.

Whilst egns. (17)-(20) represent the standard formulation given for RLS based
estimators numerical ill conditioning of the algorithm may arise if the equations are
coded directly. This problem occurs because the covariance matrix P() may become
nonpositive definite due to roundoff errors and can be avoided by using a numerically
stable implementation such as the UD factorisation algorithm of Bierman (1977).
(Appendix I )



4 Noise Cancellation for Nonlinear Systems

The design of noise cancellation methods for nonlinear systems depends criticaly
on the model that is used to represent F() in the reference path of Fig. 1. Three possi-
ble choices for F(.) are considered below together. with details of how the linear estima-

tion algorithms of section 3 can be modified in each case.

4.1 The Volterra Model

The Volterra series
Ll L ¥

!
¥(0) = hg + Zhx(=0) + XX A )x(-Dx(t=) + ... 27)
=0 i=0/=0

is a generalisation of the linear convolution integral and was introduced by Volterra
early in the twentieth century. The functionals hk;,...k) which are referred to as Vol-
terra kemnels are bounded, symmetric functions of their arguments and for causal sys-
tems Aik,,....k)=0 for any k<0. Inspection of Fig. 2 shows that if the Volterra model

were used to represent T7(.) then

ny it
d(t-tg) = by + Y by(Dx(t=i) + T3 by(i)x(t=Dx(t=)) + .... + s(t=t) (28)

where b(.) = h{.)

Eqn.(28) can be interpreted as a nonlinear extension of the FIR filter of eqn.(14) and
could readily be implemented within an adaptive noise cancellation scheme by rewrit-

ing eqn.(28) as
d(r-t) = OBy + s(t—1) | 29)
where
DL(O) = [LAOXI1)ne (111 P () XX 1),0...0.]
87 = [b6:b1(0),51(1),..0b1(11),65(0,0),55(0, 1),........]

The filter parameters could then be estimated using an LMS algorithm or the RLS
algorithm of eqns. (17)-(21) could be used by setting

= 1



(1) = Du(?)

B(1) = 6y (1) (30)

zz(t) = D4 (1)

Whilst Volterra models have been extensively studied in both system
identification and nonlinear noise cancellation they require a very large parameter set
to represent even simple nonlinear systems and this is often not compatible with the
need for fast adaptation. This curse of dimensionality arises because in the Volterra
model the output is expressed as a function of past inputs only. It is 2 nonlinear FIR
filter. The advantage of using the Volterra model is that the linear estimation results
whether based on LMS or RLS carry over directly with a simple redefinition of the
relevant matrices. The disadvantage is that the enormous number of terms may prevent
a real time implementation without very fast processors. On balance it would seem that

the disadvantages will dominate and an alternative design must be saught.

4.2 The NARMAX Model

The nonlinear difference equation model

Y(8) = f QU= (=) X(0), e X(t=15)) (31)
where f () is some nonlinear function which was originally introduced by Billings and
Leontaritis (1981). A rigorous derivation of eqn.(31) together with conditions for its
existence were given by Leontaritis and Billings (1985). An equivalent description for
nonlinear stochastic systems can be derived by considering input-output maps based on

conditional probability density functions to yield, in terms of the variables of Fig. 2,

d(t—t) = dc + flA(t—t1)yeernsd(t~tgnQ) X(0)yrr X (B=13),S (=t 1)y S (=t D) + S(1=22) (32)

where dc represents a dc level.

This model is referred to as the NARMAX model (Nonlinear AutoRegressive Moving
Average model with eXogenous input). The Hammerstein, Wiener, bilinear, Volterra
and other well known nonlinear models can be shown to be special cases of eqn.(32).
In the original derivation of eqn.(32) f(.) was defined as some general nonlinear func-
tion but it will suffice to expend fi.) as a polynomial in the present analysis.

11 &



The NARMAX model is just a nonlinear IIR filter. The advantage of this descrip-
tion is that the NARMAX model will require a very small parameter set compared
with the Volterra model because it is an expansion in terms of past inputs and outputs.

For example a model of the form

d(t—tg) = a1d(i-tz=1) + ayd®(t=t~1) + byx(t) + bpx(t-1) + s(t—ty) (33)

would require the estimation of four parameters aj,a,,b,,b, to describe it as a NARMAX
model. A Volterra series expansion of eqn.(33) would however contain many many
more terms because lagged outputs cannot be modelled directly but have to be approx-
imated by a possibly infinite expansion in terms of lagged inputs only. The NAR-
MAX model thus provides a very concise description of nonlinear systems, often with
fewer parameters than a linear FIR filter. The disadvantage of the NARMAX model,
for noise cancellation, is that like the linear IIR designs the parameter estimation is

more involved because the regression vector is composed of lagged inputs and outputs.

Notice that even though in the noise cancellation problem the noise is additive at
the output, Fig. 2, the NARMAX model description will take the general form of
eqn.(32) where the noise s(—r,) appears in the model expansion as multiplicative with
both d(+-i) and x(+—)). This is a direct consequence of using lagged outputs in the model.
Expanding eqn.(32) as a polynomial NARMAX and grouping terms yields

d(t-ty) = dc + GH[d(t~t4-1),..c,d(t=t 71 ), X(2), ... X(=n,)]
+ G d(t~t 1), Bt~ 1) X)X (1=P), S (b1 Yy oy St 1)

+ G[s(t~t~1),0csS(—t 1)) + 5(t=ty) (34)

where G*[] is a function of d() and x(r) only, G**[.] represents all the cross product
terms involving s(r) and G[] is a function of s() only. All functions are polynomial.

Separating out the unknown parameters gives
d(—ty) = OO + s(t—12)
0
= [OL() DL() DIO] (Bu| + s(t—t0) (35)
6,

where

-



GH*[] = Du(1)Bu
G*[] = (10 s (36)
G'L.] = ®I(ne,
Any design based on eqn.(35) directly would involve estimating 8, and the noise
parameters 04 ,0, to ensure unbiased estimates of the cancellation filter parameters 6.
Although parameter estimation algorithms which achieve this objective are available

fortunately in the noise cancellation application this complexity can be avoided using
the suboptimal least squares algorithm derived by Billings and Voon (1984).

Following the same arguments as in section 3 if the output y(r) could be moni-

tored eqn.(32) could be expressed as

d(t—tg) = dc + fY(1-1),uees (=) X (1), 0enx(t—11y)) + 5(t=15) 37

and the cross product noise terms are eliminated. The signal y(r) cannot be measured

directly but it can be predicted using
31y = D (D8(0) (38)

where

2(0).x(0x(t=1).....]] (39)
The estimation algorithm is given by eqns (17)-(21) with the definitions
(1) = Dy (1)
8(1) = B4(r) (40)
zz(1) = P(1)

so that unbiased estimates of the nonlinear canceller are obtained without the need to

estimate a noise model. The maximum number of entries in the 6, vector is given by
n=M+1

where

=18 =



n,-_l(nd—+ R+ i- 1)

i , ng=1

14

and ! is the degree of polynomial expansion for f.) in eqn.(37). To ensure a parsimoni-
ous model description and hence to minimize the computational load of the parameter
estimator it is preferable to detect the correct structure or which terms to include in the
NARMAX model prior to final estimation. Several parameter estimation, structure
detection algorithms which achieve these objectives have been derived but in the
present study it will be assumed that these have been applied prior to implementing a

NARMAX noise canceller or that the structure is known a priori.

Convergence analysis of the linear SOLS algorithm derived in section 3 does not
apply directly to the nonlinear case because there is no simple generalisation of the
positive real condition. A discussion of the concepts involved has been given by Chen

and Billings (1988) in a study of a recursive prediction error estimator for nonlinear

models.

Notice that the SOLS algorithm is preferable to an extended least squares or
recursive prediction error method because both these alternatives would introduce the
additional complexity of noise model estimation. Whilst instrumental variable (IV)
offers a viable alternative if the model is linear, subject to some restrictions noticed by
Moore, IV will in general yield biased estimates when the system is nonlinear
(Billings,Voon, 1984).

4.3 The ARNX Model

A subclass of the model eqn.(32) for which the convergence results of the linear
SOLS algorithm are still applicable is the ARNX ( AutoRegressive model with Non-
linear eXogenous inputs)

F X0 x(t=1), ... x(t-1)

d(r-ty) = AH

+ s(t—tp) 41)

where f*.) is a polynomial in lagged x(r)’s only. This model can be viewed as a linear
IIR filter with nonlinear FIR terms.The ARNX filter is somewhat between the NAR-
MAX model and the Volterra series with the advantage that the convergence of the
SOLS will be dependent upon a positive real condition of the denominator as in linear
IIR designs.

w Td=



5 Simulation Results

The estimation of a saw tooth signal varying between -1 and 1 which was burried
in a white noise signal was tested on the noise path models which were introduced in

the preceding sections.
Fig. 4(a)-4(c) show a trace of 1000 sample‘s of the noise n(t), the signal s(t) and

the measured signal d(t). These signals remain the same for the three simulated cases

considered in this analysis and it is the noise path model which takes a different form

in each case.

5.1 Simulation S1

A linear system explicitly given by
x(r) = =0.5x(-1) + n(r) — 1.722n(+=1) + 0.9n(t-2) 42)

called simulation S1 was used to generate the pair n(1),x(s) at each time sample ¢ where
n(r) was a uniformly distributed signal varying between -2 and +2. The optimal noise

cancelling filter F(.) is the exact inverse of the noise model eqn.(42)

¥(8) = x(2) + 0.5x(+—1) + 1.722y(s~1) — 0.9y(=2) (43)
or
-1
F ~1y 1+ 0.5z
= T e 092 “44)

So in this case ¢, in Fig.1 is zero. The poles of this optimal transfer function are close

to the unit circle and in the time domain the impulse response is given by
h(f) = 0.95° { cos(0.4361) + 3.45in(0.4361) } (45)

whose magnitude decreases to 10% only after 44 terms. F(z™') was modelled by an IR
filter of the form

$(8) = de(®) + ay(Ox(0) + Gy(0x(t-1) + by(NF(-1) + ba(O)F(1-2) (46)

where the parameters were updated using the SOLS algorithm with P(0) = 10%, I is the
unit matrix and A(0) = 0.95 , A5 = 0.99. A high degree of noise suppression, around 18 dB
improvement, is acheived in about 2000 adaptations. The parameter estimates and the
trace of 1000 samples of the estimated signal s, are shown in Table I(a). and Fig.
5(a) respectively.

- 15 -



For comparison, a conventional FIR noise cancelling filter of the form

3) = deto) + Eﬁéi(m(r—n (47)
was applied to the same data. Table I(b) illustrates the improved performance as the
number of adaptive weights is increased but only at a severe computational cost. Fig.
5(b)-(c) illustrates the traces of the estimated signal for 1000 adaptations, which were
taken between iteration A° 1000 and 2000. The filter length considered was 40 in Fig.
5(b) and 30 in Fig. 5(c) respectively.

dc x(t) | x(e=1) | y(=1) | y(=2)

True Values 0.0 1.0 0.5 1.722 -0.9

Estimated Values | 4.34e-03 0.9793 | 0.4875 1.709 -0.87

Standard Deviation | 0.397e-02 | 0.5e-02 | 0.3e-02 | 0.4e-02 | 0.14e-01

Table I(a). IIR filter parameter estimates at iteration N® 2000 for simulation S1

Nadaptive | n=8 |n=18 |n,=28 | n,=38
weights n=10| n=20 | n=30 | n=40

Noise Reduction| 9.6 | 142 | 19.8 | 22.7

Table I(b). Noise Reduction in dB obtained in 2000 adaptations for simulation §1

5.2 Simulation S2

A Wiener model with.third order dynamics and third degree nonlinearity
described as

w(1) = 0.5v(t-1) + n(t-1) = 1.722n(1-2) + 0.9n(+-3) (48)

x(f) = 0.1v(f) + 0.02v3(r) + 0.005v(r)

defined simulation S2 which used the same input data as S1 but with ¢, in Fig.1 equal
to one. The adaptive filter was modelled by three different structures namely, the

« 1B =



nonlinear IR filter, the ARNX model and the nonlinear FIR filter. Fig. 6 shows the
traces of the estimated signal §(+—t,) for each choice of filter and Table I7 illustrates the
noise power reduction obtained in each case. The structure for these filters used in the
simulations is specified in Table Il where n is the total number of terms in the parameter
vector, ! represents the degree of polynomial eipansion and n, and n,; represent the
maximum lag in the input and output respectively. As expected, improved performance
is achieved when the filter model incorporates past output terms. The best performance
obtained in this case is when the filter is of an ARNX type because this structure

matches closely the inverse model of the Wiener system.

NP adaptive n=3 |n=1, ngs=5(n=2, n=1
weights [=3,n=35| I=3,n=15 | I=2,n=15

Filter Type NFIR ARNX NIIR

Noise Reduction 14.8 16.2 15.8

Table II. Noise Reduction in dB obtained in 2000 adaptations for simulation S2

5.3 Simulation S3

An implicit NARX model with second order dynamics and second degree non-

linearity described by
x(f) = 0.25x(—1) + 0.1x(t=2) + 0.5n(r-1) + 0.1n(t-2) - (49)
0.2n(t=3) + 0.1n%(--2) + 0.08n(+=2)x(1—1)

defined simulation S3 which used the same input n() as S1 but with ¢,=1. The optimal
noise cancelling filter F() is given by the exact inverse of the noise channel model
eqn.(49)

y(£) = 2x(1) — 0.5x(t—1) — 0.2x(t-2) — 0.2y(r~1) + 0.4y(:-2) (50)
- 0.2y2(t=1) = 0.16y(+—1)x(t-1)

if the filter structure matches the noise channel inverse model then the filter will be of

the form

o I



P(t) = ay(Ox(r) + dp(Nx(1-1) + da(x(t-2) + (51)

Bie)p(i=1) + ba(0)5(1-2) + &(0F2(=1) + Ex(t)P=1)x(t-1)

The parameter estimates associated with the filter structure of eqn. (51) and the trace
of the estimated signal $(—,) are shown in Tablelll(a). and Fig. 7(a) respectively. A high

degree of noise suppression giving around 25 dB reduction was achieved.

x() | x(=1) | x0-2) | yo-1) | y-2) | Y(-1) |p(-1)x(e-1)

True Values 2.0 -05 -0.2 0.2 0.4 0.2 -0.16

Estimated Values | 197 | -0.5477 | -0.2457 | -0.1795 | 0.4347 | -0.1862 -0.1652

Standard Deviation | 0.016 0.02 0.0156 0.014 0.01 0.019 0.039

Table Il (a), NIIR filter parameter estimates al ileration N 2000 for simulation S3

For comparison, an ARNX noise cancelling filter and a nonlinear FIR filter were suc-

cessively applied to the same data. The results obtained are illustrated in Tablelll ().

NP adaptive n=3 |n=2, n=5|Filt. egn.(51)
weights 1=3,n=35| I=2,n=15 n=7
Filter Type NFIR ARNX NIIR
Noise Reduction 12.5 12:7 25.0

Table I (b) Noise Reduction in dB obtained in 2000 adaptations for simulation 3

Inspection of the results in Table IIi(b) shows that whilst the Volterra (NFIR) and
ARNX filters have produced a noise reduction of just over 12 dB the NARMAX
(NIIR) design has performed significantly better with a 25 dB noise reduction. This
was achieved using just seven estimated parameters for the NARMAX filter compared

with thirty five or five times as many parameters for the NFIR design and twice as

- 18 -



many parameters, fifteen, for the ARNX filter.

In simulations S1 and S2 the cancellation filter could be realised by all the
designs NFIR, ARNX and NIIR. With different parameter sets they all provided com-
parable noise reductions. In simulation S3 however the NFIR and ARNX filters, even
with a considerable number of filter parameters, cannot realise exactly the required
cancellation filter and this is why they perform so badly compared with the NARMAX
which can represent a much wider class of noise cancellers.

Conclusion

A new design for nonlinear IIR filters has been proposed based on the NARMAX
representation. It has been shown that the parameters in both linear and nonlinear IIR
designs can be estimated using a suboptimal least squares algorithm and the NAR-
MAX filter has been shown to perform significantly better than alternative designs for
a wide class of nonlinear systems. Extensions of this work to include alternative
designs for nonlinear systems and the formulation of a subsumption architecture for
detecting the filter structure and implementing the filters will be considered in forth-

coming publications.
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Appendix I

UD updating algorithm

The matrix P(t) is factorised as U()D()U”(r) where D is a diagonal matrix [diag(d))] and U is a
unit upper-triangular matrix, i.e u;=1, i=1,2,...,n and #;=0, i>j. From the updating eqn. (19) for
P(t):

- a1 o o P=-DROOTOPU - 1)
P(ny =UNDMOUNr) = ) [P(t 1) 2@ + BR300 ] (A1)

Y0 A(D) + DT(OP-1)D()

Denoting UT(-1)D(1) by f and D(+~1)f by g and a(r)= A(r) + OT(P-1)D(t) = A1) + fTg then
eqn.(A.1) becomes:

Ty, T T
1 U(t—l)[D(t—l)— DU -1)OOD DU D@) ]UT(:—D

ey = —L (e PR -4l
UnDOU(t) 0 U(-1)|D(-1) a(r)]U (r-1) (A.2)
If U° and D* are found such that
T
1y B8 _ .

D(t-1) i U'nD'v (A.3)

then from (A.2)
_D e
D@t = D , Uy = Ue-)U" (A.4)

The factorisation (A.3) is performed by the Agee-Turner algorithm, giving D" explicitly and U”
implicitly (Giordano and Hsu, 1985)

kf'__ 0, ku = 0, Bg = A.(f)

for j=1,2,...,n
fi= o0

for i=1,...,j-1
Plik=k+1

=5+ cb(i)ukf
end

Vi = I
Bi= By + vifi
_
Pi= ‘E""
j=1
o B
TOMD B
for i=1,...,j-1
jPlik, =k, +1
wy= U+ K (D)p;
Kg(i) = Kg(l) + ukuVj
Uk“ =Wy
end

end

K
Notice that, B, coincides with a(¢), the updating of the algorithm gain K(t) is £,

n
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Fig. 5 Estimated signal taken between iterations

Fig. 4 Form of the signals

1000 and 2000 for simulation S1
4(c) d(z
4(a) n(2), 4(6) s(0), o %) 5(a) IIR filter described in eqn.(46)

5(b) FIR filter with 40 weights
5(c) FIR filter with 30 weights



Fig. 6 Estimated signal taken berween iterations
1000 and 2000 for simulation S2

6(a) NFIR filter described in Table II.

6(b) ARNX filter described in Table II.

6(c) NIIR filter described in Table II.
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!
Fig. 7 Estimated signal taken between iterations J

1000 and 2000 for simulation S3 ‘
7(a) NFIR filter described in Table III(D). ‘
7(b) ARNX filter described in Table III(b).

7(c) NIIR filter described in Table III(a),(b). ;
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