
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a conference paper presented at 1st
Workshop of the Service-Oriented Software Research Network (SOSoRNET)

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/78061

Paper:
Wang, H, Brodlie, KW and Wood, J (2006) Evolving dataflow visualization to
service-oriented architectures on the Grid. In: Proceedings of 1st Workshop of
the Service-Oriented Software Research Network (SOSoRNet). 1st Workshop of
the Service-Oriented Software Research Network (SOSoRNET), 28th-29th June
2006, Manchester. , 25 - 31.

 Evolving Dataflow Visualization to Service-Oriented Architectures on the Grid

Haoxiang Wang, Ken Brodlie, Jason Wood
School of Computing, University of Leeds, Leeds UK LS2 9JT

haoxiang@comp.leeds.ac.uk

Abstract

In this paper, we describe the way in which the
dataflow visualization may be carried over to a Service-
Oriented architecture, using Web services in a Grid
environment. Previous related work in dataflow
visualization is reviewed, and used to motivate the idea of
a Service-Oriented dataflow pipeline. The concepts of
static and dynamic Service-Oriented visualization
dataflow are introduced. A demonstrator is used to
illustrate static Service-Oriented dataflow – where the
dataflow pipeline is fixed- and we also report progress
towards dynamic Service-Oriented dataflow – where the
pipeline is configurable. Collaboration is an integral part
of the design.

1. Introduction

Visualization is concerned with generating virtual
images from data gathered by observation or simulations,
helping scientists to achieve better understanding,
analysis and presentation of their data. Haber and
McNabb [1] proposed an elegant visualization reference
model in the early days of visualization (1990),
abstracting visualization as a set of simple processes
linked together in a dataflow pipeline. This dataflow
paradigm has proved an extremely useful model over the
past fifteen years, and has formed the basis of a number
of important visualization systems, known as Modular
Visualization Environments. Several have been extended
to provide for collaborative visualization, where a group
of researchers can exchange data and images across a
network.

In parallel with the development of visualization, we
have seen the emergence in distributed computing of
Service-Oriented architectures and Grid computing. The
idea of distributed computing is to split the system into a
set of processes and allocate these onto different
computers or clusters. Service-Oriented Architecture can
be regarded as a paradigm of distributed computing,
which implements distributed computing tasks as services
with standard interfaces.

The aim of this paper is to explore how we can evolve
dataflow-based visualization systems into a Grid-based
Service-Oriented architecture. We begin with a
description of the dataflow concept, how it has been used

in visualization and how it has evolved to support
collaborative visualization. In Section 3, we describe the
benefits of moving to a Service-Oriented architecture for
visualization, and present some details about developing
the Service-Oriented visualization pipeline in Section 4
and 5. An extension of an XML-based language for
describing pipelines in the Service-Oriented scenario is
also included in this paper.

2. Related previous work

A visualization pipeline is composed of a sequence of

procedures that operate on data to generate geometry that
can be rendered by the graphics engine – essentially
transforming numerical data by some metaphor into a
visual representation. Haber and McNabb [1] elegantly
described this visualization pipeline in a reference model
shown in Figure 1. The data module imports raw data
into the visualization pipeline from a data file. With a
simulation module instead of a data module, we can also
feed the visualization pipeline with dynamically
generated data from simulations. The filter module refines
the raw data, for example by selecting a portion of
interest. The map module converts data into a geometric
representation (e.g. an isosurface or a slice). The render
module turns the geometric expression into visual
graphics that provides more explicit understanding of the
raw data.

Data Filter Map RenderData Filter Map Render

 Figure 1. Haber-McNabb reference model

A number of visualization systems have been

developed from the Haber and McNabb model –
including IRIS Explorer [2][3] and IBM Open Data
Explorer [4]. They are typically called Modular
Visualization Environments (MVEs), since they
provide a set of modules each implementing some step in
the pipeline.

A strand of the research is to enable MVEs to support
collaborative visualization amongst distributed users.The
early version of IRIS Explorer only supported the
building and running of a visualization pipeline on a local
desktop by a single user. However Wood et al [5]
developed an extension to IRIS Explorer which allows

mailto:haoxiang@comp.leeds.ac.uk

collaborative working. As shown in Figure 2, by using
COVISA modules, a pipeline created by one user can
share parameters and dataflow with the pipeline of a
collaborator. This allows us to distribute the dataflow
between different computational resources and different
human expertise. For example, in a meteorological
visualization, the data provider runs a data module and a
filter module at the location where data is stored to avoid
extra network traffic; the visualization expert runs a map
module to generate geometry on a powerful Grid cluster,
as this is usually the most computational customized
process in the pipeline; and the meteorologist runs a
render module on his desktop to explore the graphics with
his expertise.

The emergence of the Web as a distributed computing

platform in the 1990s allowed the visualization
community to evolve the dataflow concept further. It
became possible to execute all, or part, of the
visualization pipeline on a server, and transmit images or
geometry for rendering in a browser.

Wood et al [6] described several scenarios for Web-

based visualization. One of the most useful is shown in
Figure 3, where the data, filter and map processes execute
on the server, and geometry is transferred in VRML
format to the client for rendering in a viewer. Notice that

the parameters of modules in the pipeline can be
controlled from the browser.

This Web-based visualization is an early example of
one aspect of the Service-Oriented concept, namely the
separating of the dataflow pipeline into a client and server
framework. The traditional dataflow visualization
paradigm can also be an excellent match to the concept of
a Service-Oriented architecture: the modules simply
become services. Charters [7][8] has described the design
of a visualization system based on these concepts, in
particular using Web Services. Some ideas from Charters’
work are used in our Service-Oriented visualization
pipeline, but we take this approach further, by using
notification Web Services and enabling dynamic
composition of visualization services.

Share parameter

User A

User B

Share dataflow

Filter Data Render Map

Map Render

COVISA

COVISA

Figure 2. Collaborative visualization by using
COVISA

COVISA

COVISA

3. Visualization pipeline in a Service-
Oriented architecture

3.1 The benefits of Service-Oriented approach to
visualization in Grid computing

By moving the dataflow visualization pipeline to a
Service-Oriented architecture, we gain a range of
benefits:

Ability to interoperate - Different individuals and
companies can develop visualization services using
different technologies and on different platforms and
connect them together to generate the visualization result
they require.

Ability to extend – There are two aspects here: first, as
long as the service interface remains the same, we can
change the implementation or working environment of
the service according to the requirements, without
affecting other parts of the system; second, when a new
visualization function is required, we can simply build it
as a new visualization service which will be easily linked
into the visualization pipeline by using a SOAP message
to invoke its interface.

Filter Data

Render

Map

Image

WWW

Web Interface

Controls

Ability to collaborate – Again there are two aspects to
collaboration. First, Visualization specialists can
collaborate to provide a global repository of visualization
Web services, built and deployed by different specialists
at geographically distributed locations. Second,
visualization users can collaborate in a session, by
connecting to the same services and sharing dataflow and
parameter settings.

Figure 3. Web-based visualization architecture Additionally, by implementing the visualization
modules provided by MVEs as Web Services or
packaging several relevant modules as a Web Service, the
transfer from MVEs to Service-Oriented visualization
systems can be quite straightforward.

Grid computing is not only the deployment of large-
scale computational resources, but also standard, open,

general-purpose protocols and interfaces. By moving
dataflow visualization into the Grid environment, the
benefits are: for visualization, particularly for large scale
scientific visualization and real-time simulation, we can
achieve higher performance from powerful Grid
computational resources; on the other hand, for
collaboration, we can benefit from the “standard, open,
general-purpose protocols and interfaces” and also some
other Grid middleware facilities.

3.2. Static and dynamic Service-Oriented pipeline

We define two types of Service-Oriented visualization
pipeline: static and dynamic.

The static Service–Oriented visualization pipeline
packs the entire visualization pipeline as a visualization
service or a set of distributed visualization services. The
client can be a Web portal for users to control the
visualization by setting parameters to the visualization
services and view the visualization results produced. End-
users do not need any special visualization software or
powerful computational resource on their desktops, and
the visualization pipeline will be transparent to them, but
on the other hand end-users lose the flexibility to
customize the visualization pipeline, as the connections
between visualization services are fixed when the system
is deployed.

To offer users more flexibility, we propose the idea of
dynamic Service-Oriented visualization pipeline. This
will give end-users the ability to link services to generate
customized dataflow pipelines. Compared with the static
pipeline the dynamic pipeline can also be modified after it
is generated. It gives end-users more flexibility to make
best use of their expertise, skills and knowledge, but at
the same time it may not be so useful for less experienced
users.

There is also a compromise to balance the flexibility
and usability for end-users. With a dynamic dataflow
visualization system, advanced users can generate a
visualization pipeline for a particular visualization task or
a set of visualization tasks, and encapsulate the pipeline
as a static pipeline with an easily accessible interface, i.e.
a Web portal, for non-expert users. Through this
interface, non-expert users do not need to know the
details about visualization pipeline, but can still feed in
parameters to the control the pipeline and get the
visualization result generated from the pipeline.

4. Static Service-Oriented pipeline

Based on the concept of the static Service-Oriented

visualization pipeline introduced in section 3, a
demonstrator was built to explore the idea further.

4.1 Demonstrator

Background: The experiment was demonstrated at the
UK e-Science All Hands Meeting 2005. It was
cooperatively developed by the University of Leeds in the
UK and Beihang University in China. The application
was based around a heart modeling simulation which was
used in gViz e-Science project [9]. The simulation aims to
help scientists to investigate re-entrant arrhythmia and
irregular heartbeat by simulating the electrical behaviour
of cardiac virtual tissue. The experiment sought to
investigate the potential of static Service-Oriented
visualization, and also to investigate the interoperability
of Grid systems in the UK and China. CROWN [10],
short for China Research and development environment
Over Wide-area Network, is a middleware and testbed for
Grid and e-Science applications in China. Both CROWN
middleware, which is an extension based on GT4, and
CROWN Grid network are used in this experiment. The
Grid environment of the experiment in Leeds is the White
Rose Grid [11] and Leeds TestGrid, which is a trial Grid
environment within the University of Leeds.

Scenario: The scenario is a group of computational
biologists at different locations around the world who are
not skilled in visualization or Grid computing, but want to
collaboratively investigate the behaviors of the human
heart by running a large number of heart modeling
simulations concurrently on a cluster. Simulations are
considered “private” to the scientists who are running
them, and so they are executed locally on their own
computer clusters, keeping all the data confidential.
However, they share the resulting visualization and also
share in the control of the simulations. During the
collaborative session, all the participating scientists use
their Web browsers to access the Web portal of a trusted
third party static visualization pipeline which will retrieve
raw data from simulations and generate a graphic
representation of the simulation data. Through the Web
portal the scientists can investigate the images of
simulations and control the running of simulations,
without being concerned about the details of generating
the visualization.

Implementation: As shown in Figure 4, in the
experiment, simulations are geographically distributed to
make use of the computational resources both in the UK
and China. They generate raw data and pass it to other
visualization services in the pipeline. The visualization
pipeline processes the raw data step by step and converts
it into a graphical form. To keep them updated with the
latest data from simulations, participants have to request
these images from the static visualization pipeline
through the Web portal.

In the experiment, the heart model simulations were
deployed on both White Rose Grid and CROWN Grid,
which reflects the scenario that scientists run their

simulations locally. In theory, as a Service-Oriented
system, the visualization pipeline itself can also be
distributed, but the network bandwidth prohibited this. In
the real practice, the dataflow transfer between UK and
China turned out to be very time consuming, to achieve
relatively acceptable performance, we kept both of the
visualization Web services on the same Grid network, the
CROWN Grid. Again, to reflect the scenario that
participating scientists may be located anywhere, a Web
portal access to the visualization pipeline is provided. As
long as the scientists can access the Web portal over the
Internet, they can view the images of the running heart
modeling simulations and also control the simulations
collaboratively. Figure 5 shows the screenshot of the Web
portal and figure 6 is the simulation images returned from
the static Web-Service-Oriented visualization pipeline -
generated from simulations running at WRG in UK and
CROWN Grid in China. The Web page contains
simulation images, some simple interactions with
simulations are also provided, such as starting, pausing,
killing simulation and viewing the parameters of
simulations.

Figure 6. Screenshot of the simulation images
generated from the gViz Web portal

4.2 Discussion

Figure 4. The gViz CROWN experiment architecture

 Simulation
 Simulation

Viz Service A

Viz Service B Web portal

User A User B

Leeds Grid China Grid

Pipeline across
Grid networks

Pros: The experiment was developed with a Service-
Oriented architecture, so it provides ‘Service-Oriented’
features such as extensibility, interoperability, platform-
independence, and so on. Grid computational resources
on two Grid networks are utilized in the experiment, and
the visualization dataflow is distributed on a global scale.
Collaboration has been achieved in two aspects: data
providing - users can run different simulations
geographically distributed, but investigate them at the
same time; visualization interaction – although only
simple interactions with simulations have been
implemented in the experiment, such as starting, killing or
pausing a simulation and viewing current parameters of
the simulations, in theory, we can provide more
interactive functions including setting colour map
schema, setting graphic size and quality, etc.

Cons: As a static Service-Oriented visualization, end-
users cannot modify the pipeline, preventing them from
visualizing simulation data in a different way. Users can
only share awareness of each other’s actions by using
screen-sharing tools such like Virtual Network
Computing (VNC). Another disadvantage is end-users
cannot be notified with the latest visualization result
generated from running simulations. In order to update
the result, users have to ‘pull’ the visualization result out
from the system, by sending request via Web portal again
and again.

Outcomes: The experiment demonstrates the ability to
combine the computational resources on the multiple Grid
networks on a global scale. Because of the restrict of the
network bandwidth between UK and China, the
distribution of services comes to be an important aspect

Figure 5. Screenshot of the gViz Web portal

of the implementation of such global-scaled Service-
Oriented systems to reduce the network traffic. However,
it might be difficult to predict network traffic, as the size
of the data passed along the pipeline varies, largely
depending on the data we process. If users can
dynamically distribute the visualization pipeline across
different Grid network at run-time, users might be able to
find a best solution in practice to make the visualization
pipeline work most efficiently.

5. Dynamic Service-Oriented pipeline

In order to address the problems described in the static

version of Service-Oriented visualization, a framework of
dynamic Service-Oriented collaborative visualization is
introduced in this section. This will enable users to create
a visualization pipeline collaboratively and dynamically,
sharing awareness of other participants’ actions and
getting notified with the latest generated visualization
results.

5.1 Design of the framework

Instead of using basic Web services, we use
notification Web services to build up a dynamic Service-
Oriented visualization pipeline. WS-Notification, which
includes a set of specifications [12] and a whitepaper [13],
defines a standard Web services approach to enable
notification by following a topic-based publish/subscribe
pattern. The WS-Notification is partially implemented by
GT4 currently. However, notification Web services in
GT4 allow us to publish a resource property (RP) as a
topic. Each time the value of the RP topic changes, it
triggers a notification to deliver the change to all
subscribed clients.

As an example, suppose that we want to pass the raw
data generated from a simulation service to an isosurface
service. On the simulation service, a RP which holds the
simulation data should be published as a notification
topic. When a user wants to connect the two services,
he/she needs to send ‘require’ to the isosurface service to
let it subscribe to the simulation data topic on the
simulation service. Whenever the simulation service
creates new data, the isosurface service will be notified
and will get the latest data automatically delivered from
the simulation service. By using notification services to
build an entire visualization pipeline, the mechanism of
visualization dataflow can be achieved.

The reasons for choosing notification Web services
are: all notification services have a ‘subscribe’ interface
which provides a unique interface for various
visualization services and makes it possible to link them
dynamically to create a dataflow; linking a pipeline in the
pattern of subscription/notification enables ‘pushing’
visualization, as any changes of visualization dataflow,

published as RP resource, will be delivered to all the
subscribers; collaborative features, such as sharing
parameters and visualization dataflow in the Modular
Visualization Environments, can also be implemented in a
notification Web service pipeline.

Pipeline

 Notification visualization service

 Pipeline controller

Collaboration participant

Figure 7 graphically shows what the proposed

framework looks like. A controller service is added in
between the end-users and the visualization pipeline on
the Grid, in order to enable dynamic and collaborative
building of the pipeline, and provide more collaborative
features. The controller works as a centralized proxy for
visualization services, through which users can send
requests to the visualization pipeline to create/destroy,
connect/disconnect service instances and set parameters
to visualization services. The controller also functions as
a shared workspace for participants. It keeps a description
of the current pipeline (we will talk about the pipeline
description in section 5.2) which can be retrieved for the
later joiners in the collaborative session. The controller is
implemented as a notification service as well, so
participants can share detailed awareness of each other’s
actions if a RP about users’ actions is published as a
notification topic on the controller.

5.2. Representation of visualization pipeline

As the visualization pipeline is generated dynamically
and collaboratively, this raises the requirement of

Figure 7. Dynamic service-oriented
collaborative visualization architecture

Subscription/Notification

representing the visualization pipeline in an appropriate
way in order to keep the information of the pipeline and
change it at run time.

skML is an XML-based dataflow description language
[14] which describes visualization pipelines in a generic
way, so that the skML description can be independent of
the implementation of the pipeline. It fits well in Modular
Visualization Environments such as IRIS Explorer, but it
lacks some features to describe characteristics of
collaborative Service-Oriented visualization pipelines.

In order to represent the dynamic Service-Oriented
pipeline, we simply extended the skML language. An
‘instance’ element replaces the ‘module’ element in the
skML to represent visualization service instances, but the
‘link’ element in skML is kept to represent the
subscriptions to notifications.

In our extension, the description records richer
information about the visualization pipeline including all
the output and input ports for each service and all the
parameter settings. Another difference is the addition of
new properties such as ‘owner’ and ‘sharable’, which
identify who owns this visualization service instance and
who are allowed to access this service instance. These
new properties are added for the purpose of secure
collaboration, so that it will be possible to put access
restrictions on visualization services created by different
users in the collaboration.

5.3 Dynamic Service-Oriented collaborative
visualization experiment and global vision

We implemented four visualization services as a
simplified visualization service repository: a data service;
an isosurface service; a slice service; and an inline service.
A pipeline controller service is created which knows how
to launch instances from these visualization services and
how to invoke functions provided by these instances. A
GUI client is provided for end-users to connect onto the
pipeline controller service so that they can choose the
appropriate services from the service repository. This
allows them to build up visualization pipeline by linking
them in a notification/subscription mode to produce the
visualization they expected.

The pipeline can be modified collaboratively after it is
created. For example, as shown in figure 8, firstly, only
the slice service is chosen to visualize the dataset, but
some participants are not satisfied with the result, so they
try to enhance the visualization by adding an isosurface
service into the pipeline, and finally combines both
geometries together by using an inline service.

Imagine a group of scientists geographically
distributed round the world, some of them have expertise
in mathematics or chemistry, some are experts in
visualization. These specialists can use their own
knowledge to build up simulation services and
visualization services in their familiar local Grid

environment. With the dynamic Service-Oriented
collaborative visualization framework, they can
collaboratively choose the most appropriate services to
generate the best visualization result.

 Figure 8. Dynamic modification of the
visualization pipeline

6. Conclusions and future work

This paper describes the implementation of dataflow
visualization in a Service-Oriented architecture in the
Grid environment by using Web service technologies.

A demonstrator is used to explain the static Service-
Oriented collaborative visualization, in which
visualization pipeline is implemented as a fixed
composition of a set of distributed visualization services.

 A notification-service-based framework is also
proposed for dynamic Service-Oriented visualization
pipeline. The publish/ subscribe pattern is used to link the
visualization services into a pipeline. A prototype of the
proposed system has been implemented as a proof of
concept.

The following aspects need to be explored in the next
stage to create a comprehensive collaborative
visualization system.

Security is one of the important aspects for systems
built in Service-Oriented architecture. As the prototype is
implemented with GT4, the GT4 security mechanisms
can be seamlessly applied to it. The security issues are
mainly about who are allowed to access the visualization
services, when they are allowed and what policy should
be adopted.

The discovery of available visualization services is
another important issue. In the prototype, we assume
there is an XML description of the existing four
visualization services. In the real situation, it will be
better to retrieve this information from a UDDI server

which keeps the information about all available
visualization services.

Other issues include the standardization of the data
format passed between different types of visualization
service, and automatic updating of the Pipeline Controller
when new services are brought into the visualization
service repository.

By addressing these issues in the future work, we aim
to provide a Service-Oriented framework for dataflow
visualization to support collaboration on a global scale:
with visualization services distributed across different
Grid networks, utilizating different human expertise
around the world.

Acknowledgements
We thank all the other people involved in this work.

Especially, thank Mr Lei Lei in Beihang University China
who helped the deployment of services and simulations
on the CROWN Grid. Also thanks to Mr Stuart Charters
(University of Durham) for making available an early
version of his PhD thesis; and to Mr John Hodrien
(University of Leeds) for advice on GT4 matters. Thanks
also to Dr James Handley (University of Leeds) for this
help.

References

[1] R.B Haber and D.A McNabb Visualization Idioms: A
Conceptual Model for Visualization Systems, in
Visualization in Scientific Computing. IEEE, pp 74-93,
1990.

[2] NAG Ltd Web Site. See: http://www.nag.co.uk

[3] Jeremy Walton: NAG’s IRIS Explorer. In
Visualization Handbook, pp 633-654, 2004, Academic
Press. Available at:
http://www.nag.co.uk/IndustryArticles/ch32.pdf

[4] IBM Open Data Explorer Web Site. See
http://www.research.ibm.com/dx

[5] Jason Wood, Helen Wright, Ken Brodlie.
Collaborative Visualization. Proceedings of IEEE
Visualization 97, pp 253-259, 1997, available at:
http://www.comp.leeds.ac.uk/vis/jason/vis97/vis97.html

[6] Jason Wood, Ken Brodlie and Helen Wright,
Visualization over the World Wide Web and its
application to environmental data. Proceedings of IEEE
Visualization 1996 Conference, edited by R.Yagel and
G.M. Nielson, pp 81--86, ACM Press. ISBN 0-89791-
864-9

[7] S.M. Charters, N.S. Holliman and M. Munro.
Visualization on the Grid: a Web Service Approach.
Proceedings of the UK e-Science All Hands Meeting
2004, pp 202-209.

[8] S.M. Charters. Virtualising Visualisation. PhD thesis,
University of Durham, 2006.

[9] Ken Brodlie, Jason Wood, David Duce, Musbah
Sagar. gViz: Visualization and Computational Steering on
the Grid. Proceedings of the UK e-Science All Hands
Meeting 2004, pp 54-60.

[10] CROWN Web site. See:
http://www.crown.org.cn/en/

[11] White Rose Grid Web site. See:
http://www.wrgrid.org.uk/

[12] OASIS Web Services Notification TC, 2006.
http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsn

[13] Publish-Subscribe Notification for Web services,
2006. http://www.ibm.com/developerworks/library/ws-
pubsub/WS-PubSub.pdf

[14] D.A. Duce, M. Sagar. skML a Markup Language for
Distributed Collaborative Visualization. EG UK Theory
and Practice of Computer Graphics (2005), pp171-178.

http://www.nag.co.uk/
http://www.nag.co.uk/IndustryArticles/ch32.pdf
http://www.research.ibm.com/dx
http://www.comp.leeds.ac.uk/vis/jason/vis97/vis97.html
http://www.crown.org.cn/en/
http://www.wrgrid.org.uk/
http://www.oasis-open.org/

	WRROcoversheetBrodlie3.pdf
	evolving_dataflow_s_o.pdf

