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Abstract

In standard analysis of simulations of the heart, usually only one state variable — the trans-
membrane voltage (or action potential) — is visualized. While this is the ‘most important’ vari-
able to visualize, all but the most basic cardiac models have many state variables at each node;
data that are not used when visualizing the output. In this paper, we present a novel visualization
technique developed within the Integrative Biology project that uses the entire state of the car-
diac virtual tissue to produce images based on the deviation from normal propagation of action

potential.

1 Introduction

The current generation of high performance
computers enable complex simulations of car-
diac tissue with anatomically detailed geome-
tries [2, 10] — yet the output of these simula-
tions are usually visualized using a single out-
put from the models; the trans-membrane volt-
age, or action potential. This leads to images
such as those shown in Figure 1 (see also, for
example, [8].) In a normal heartbeat the ac-
tion potential propagates from cell to cell as a
plane wave across the tissue (Figure 1 (a)), but
this propagation can break down into the cir-
culating pattern of re-entry (Figures 1 (b) and
(c)), a potentially lethal malfunction of heart
function. Cardiac arrhythmias such as this
are an important cause of premature death in
the industrialised world, yet the mechanisms
that initiate and sustain the lethal arrhythmias
of ventricular fibrillation (VF) and ventricular
tachycardia (VT) remain poorly understood.

Experimental and clinical studies of VF
mechanisms are limited because it is difficult
to record electrical activity throughout the 3D
ventricular wall, and so most studies are lim-
ited to surface recordings — membrane volt-
age can be imaged on the surface of experi-
mental preparations of heart tissue using volt-
age sensitive fluorescent dyes. Computational

models, however, allow us to examine the
whole tissue, and models of action potential
propagation in cardiac tissue (cardiac virtual
tissues - CVT) have been used extensively in
the last decade to probe the mechanisms of

VF[7].
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Figure 1: Example visualizations of 2D car-

(a)
diac virtual tissues with (a) normal propa-
gation, and re-entrant propagation with (b)
one and (¢) many re-entrant waves visual-
ized using a colourmap where large values
are represented by brighter colours.

The action potential is the most important
state variable in the models to visualize — the
action potential propagates from cell to cell,
and acts as a signal for cardiac tissue to con-
tract, i.e. it causes the heart to beat. However,
the propagation of the action potential is mod-
ulated by the conductance of ion channels in
the cell membrane. Slowing or blocking of the
action potential can result in re-entry, and so
the contribution of these ion channels is impor-
tant. These cannot be imaged in experimen-



tal preparations, but are available in compu-
tational models via state variables. Including
these variables in visualizations should provide
insight into abnormal cardiac function, such as
arrhythmias. In this paper we discuss the is-
sues of visualizing all the state variables, and
present a technique for doing so.

2 Visualizing Cardiac Virtual
Tissue

In the CVT used throughout this paper, action
potential propagation is modelled by a reaction
diffusion partial differential equation [1]. Sev-
eral different excitation models can be used,
and these range from simplified models with
3 or 4 state variables, to more detailed models
with large nonlinear, stiff systems of ODEs and
tens of state variables [6]. The equations are
solved across a grid, and typical grid geome-
tries are a 2D sheet, a 3D slab, or an anatom-
ically detailed representation of the heart ven-
tricles.
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Figure 2: A snapshot of re-entry in a 2D
model with excitation described by the 4
variable Fenton Karma model [4]. The four
state variables are shown individually using
the ‘hot’ colourmap where low brightness
corresponds to low values.

The visualization challenge can be grasped
very quickly through looking at the outputs of
two different 2D cardiac virtual tissues. Fig-
ure 2 shows a snapshot of the state of a 2D
CVT in which a re-entrant wave is rotating.
In this model excitability is simulated with the
simplified 4 variable Fenton Karma model [4]
and in this visualization each state variable is
visualized separately. Figure 3 shows a sim-
ilar snapshot of a re-entrant wave in a CVT
where excitability is modelled using a modifi-
cation of the biophysically detailed Luo Rudy
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Figure 3: Snapshot of re-entry in a 2D
model with excitation described by the bio-
physically detailed Luo Rudy 2 model [3].
As with Figure 2, each state variable is
shown individually, except in this model
there are 14 state variables.

2 model [3], which has 14 state variables. It
is much more difficult to assimilate the 14 im-
ages of Figure 3 into a single mental model of
the state of the simulation than the four images
of Figure 2.

There are many existing techniques for vi-
sualizing multi-variate data, such as parallel
coordinates, iconic representations or ‘glyphs’,
and a review of these and other approaches to
the visualization of complex data can be found
in [9], however none of these techniques suc-
cessfully handle data that are, and need to re-
main, four dimensional (i.e. three spatial di-
mensions and one temporal) while also being
(highly) multi—variate. In this paper, therefore,
we concentrate on attempting to reduce the
data to an uni—variate space, which can then be
visualized easily in four dimensions (using an-
imations of isosurfaces, volume rendering, and
SO on).

Fortunately the dozens of state variables
in CVT are not entirely independent, which
makes the visualization process easier. This in-
terdependence has two main impacts;

1. Not every state variable will contribute
extra information, and some therefore



may be left out of the visualization, and

2. A collection of state variables can be col-
lapsed into a single ‘meta-variable’ which
represents the value of all its constituent
variables. For example, the parameters
m,h, and j in Figure 3 all depend on mem-
brane voltage and time, and determine
the magnitude of current through the Na™
channel in the cell membrane, which is
needed for an action potential to propa-
gate.

The first point can be seen if the correlation
co-efficient is calculated between each pair of
variables in the four variable Fenton Karma
model at each point in time. The correlation
used every pixel in a pairwise fashion between
each pair of state variables, and can be seen
in Figure 4. Note that U and D are almost
perfectly correlated across the whole simula-
tion, which suggests there would be little extra
information gained through including both of
these variables in a visualization.
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Figure 4: The correlation coefficients of
each pair of state variables in the Fenton
Karma four variable model across an en-
tire simulation. The two letters at the right-
hand end of each trace indicate which pair
the correlation refers to.

In this paper, we focus on forming visualiza-
tions based on every state variable, with the ap-
proaches above highlighted as a future refine-
ment.

3 Visualizing in Phase Space

The nature of the propagation of action poten-
tial through the heart imposes a structure of
sorts on the data, as each cell goes through a

cycle of excitation and recovery. This struc-
ture becomes apparent, at least with more sim-
ple models, when the data is visualized in
phase space. In the case of a tri-variate model,
if the standard visualization at time ¢ is to
generate three n by m pixel images U;(x,y),
Vi(z,y), and Wi(z,y), for 0 < = < n
and 0 < y < m, the phase space visual-
ization is a single 3D scatter-plot image ob-
tained by plotting n x m ‘dots’, one at each
(Ue(z,y), Vi(z,y), We(x,y)). Figure 5 shows
examples of phase space plots from a Fenton
Karma three variable model exhibiting normal
propagation.
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Figure 5: A phase space plot of the 3 param-
eters from a 2D Fenton Karma three vari-
able model, showing the normal propaga-
tion of a wave of action potential at various
intervals. The insets show the false colour
images of the three variables. (a) rest state
— the points occupy [U =0,V =1, W = 1],
(b) 30 ms after wave initiation along the left
edge of the medium, (c) 90 ms, (d) 150 ms,
(e) 210 ms.

In Figure 5 the inherent structure is clearly
visible as a ‘snake’ traversing a circuit in phase



space. While this ‘snake’ is entirely expected
— it occurs as cells depolarise then recover —
it nevertheless provides an interesting view on
wavefront propagation, and should be present
even in higher variate models.
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Figure 6: A phase space plot of the 3 param-
eters from a 2D Fenton Karma three vari-
able model, showing re-entrant behaviour.
(a) The initiation of the second stimulus —
the stimulus that causes re-entry. (b) 145 ms
later, when re-entry is well established. (c)
A plan view of (b).

Perhaps more interesting effects are ob-
served when re-entry is induced in the model.
As Figures 6 (b) and (c) shows, the points that
previously followed a nominal circumference
have now collapsed to almost entirely fill the
enclosed space.

Even this simple phase space ‘snake’ pro-
vides a novel view of the structure of the
model, particularly when re-entrant behaviour
is starting or stopping, and it is should be use-
ful with higher-variate models through judi-
cious choice of the subset of variables plot-
ted. It should be noted that adjacent points in
real space can be joined in phase space, but we
found this cluttered the images without provid-
ing any further insight — an intuitive ‘join—
the—dots’ interpretation being the correct one.

Clearly the phase space is trivial to visual-
ize with two or three variables, but in the case
of the Luo Rudy 2 model, with 14 variables,
this approach is non-trivial. If the dimension-

ality reduction techniques from section 2 re-
duced the phase space even by a factor of three,
there would still be too many variables to visu-
alize directly. One approach is to create multi-
ple phase space plots, which has the advantage
that all the data are shown, but the disadvan-
tages of still having to visually combine many
data sources (see Figure 8, for example). The
phase space plots also have the disadvantage of

. removing spatial information from the visual-

ization.

One way forward is to form visualiza-
tions based on the density and/or location
of the points in the phase space, through
‘hyper-histogram’s [5], but we found this to
be a less promising approach than using the
propagation-model described in this paper.

4 Propagation-Model Based Vi-
sualization

The phase space ‘snake’ provides an expected
behaviour of normal propagation, which in
turn suggests the possibility of measuring the
deviation from this behaviour. A number of
metrics are possible for measuring this devia-
tion — in this study we normalised the output
from the simulation so that the range of each
state variable was [0 — 1], and then measured
deviation as the Euclidean distance to the near-
est point in the model. Ideally, the deviation
would be measured as the distance from where
the simulation point ought to be, but once re-
entry is established the concept of the expected
state for any given cell becomes meaningless.
The nearest ‘normal’ point acts rather as an ap-
proximation to where the point would be if all
were normal.

The model of normal propagation was built
by capturing every point in n-dimensional
phase space for a heart model simulation dis-
playing normal action potential propagation
from one edge of the domain to the oppo-
site, for three stimuli. This model was then
decimated in phase space to reduce the size
of the model from several million points to
a few hundred points. This decimation was
motivated by two factors; firstly a large num-
ber of the points in the model were co-located



in phase-space, at least in part due to the
deterministic and quantised simulations being
used. Secondly, the computational overhead of
performing several hundred thousand distance
calculations for every node of the simulation at
every point in time would be prohibitive.

The decimation was carried about by itera-
tively combining all model points within a ra-
dius p of one another into a single point at the
mean location of all those points. p was cho-
sen empirically to be the largest value that vi-
sually captured, in phase space, the essence of
the model. Note that in this application it is not
desirable to decimate by phase-space density,
as the model is trying to capture a path through
space, not a relative expectation of position in
phase-space.

Figure 7 shows the complete and decimated
models of normal propagation for the Fen-
ton Karma three variable simulation. p was
0.02, which reduced the model from 5.4 mil-
lion points to 528 points. Clearly the deci-
mated model fails to capture the entire region
of ‘valid’ phase space; but the essence is cap-
tured, and we found the results with this model
to be insightful, as described in Section 5.1.

(a) (b)

Figure 7: The model of normal propagation
for a Fenton Karma three variable simula-
tion. (a) The full model, and (b) the deci-
mated model capturing the essence of figure

(a).

The same process was used for the Luo
Rudy 2 simulation, except that a radius of
0.01 was used, resulting in a model of 831
points. The model is partially shown in Fig-
ure 8, which displays the model by projecting
it onto each of 13 axes formed by the action
potential and every other state variable. Note
that this figure offers some support for the exis-
tence of the phase space ‘snake’ in higher vari-

ate models.
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Figure 8: The model of normal propagation
for a Luo Rudy 2 fourteen variable simu-
lation. Only a small subset of the model is
shown, by plotting the action potential pair-
wise with every other state variable. The
action potential (v) is on the x-axis in every
subplot.

Each data point of CVT is assigned a value
based on its Euclidean distance from the near-
est point of the propagation model. The result-
ing scalar values, in the range [0 — +/n] for an
n-dimensional model, can be used, at least in
this 2-D case to generate false colour images
using a standard colourmap.

5 Results and Discussion

As expected, the visualizations of normal prop-
agations were nearly uniform images of black,
as all the distances were around zero. This can
be seen in Figure 9. The small deviations from
zero where due to the decimation process in-
troducing errors.
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Figure 9: The visualization of the deviation
from the model of normal propagation for
a normal propagation in the Fenton Karma
three variable simulation. (a) The action po-
tential output, and (b) the deviation from
the model.

As re-entry was introduced in the models,
the deviations from the model grew larger, and
more interesting images resulted.

5.1 Fenton Karma three variable

Re-entrant behaviour was introduced in the
Fenton Karma three variable simulation by
changing the tissue type in the central region
such that the recovery following an excitation
was delayed. In this way spiral waves are initi-
ated when two stimuli are applied in close suc-
cession. The onset of re-entry is shown in the
sequence of images shown in Figure 10, which
are images of the action potential and the devi-
ation from the model at 10 ms intervals,

The first feature to note in Figure 10 is that,
even when re-entry is well established, nearly
all the tissue in the simulation is operating
within the expected model for normal propaga-
tion, that is it appears dark. The tissue that is
deviating from the normal model is very clear
at the leading edge of waves of propagation.
This is the tissue that has not yet fully recov-
ered from an early excitation, and is therefore
inhibiting or slowing the propagation of the
current excitation. This suggests the combin-
ing of the three state variables into a single
image is providing an insight into the entire
state of the model, in that it becomes possible
to predict how the action-potential will propa-
gate in the immediate future — something that
is not easily assessed from the action-potential
images alone. The second feature that can be
seen on close inspection of Figure 10 is that the
circular heterogeneity in the centre of the do-
main has become visible in this visualization,
whereas it can not be seen in action potential

images alone.
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Figure 10: The visualization of the deviation
from the model of normal propagation for
re-entrant behaviour in the Fenton Karma
three variable simulation. The pairs of im-
ages show the initiation of re-entry follow-
ing an early stimulus. The left hand image
of each pair is the action potential, and the
right-hand the deviation from the model.
The colour-bars, shown at the bottom, cor-
respond to the action potential images (left),
and the deviation images (right).



5.2 Luo Rudy 2 fourteen variable

Re-entrant behaviour was introduced in a dif-
ferent way for the Luo Rudy 2 simulation —
instead of using heterogeneous tissue, the sim-
ulation was started in an initial condition where
are-entrant spiral wave immediately forms and
continues. The formation of the wave from this
artificial start condition was not of interest, so
the visualizations were only generated after a
settling down period. Figure 11 shows snap-
shots at 10 ms intervals of a single revolution
of the re-entrant wave, with the action poten-
tial and the deviation from the model being dis-
played ass before.

The features of this visualization observed
in the previous section are present here, in that
the re-entrant wavefront shows the largest de-
viation from normal, and in particular the tip
of the spiral wave. This again represents the
regions where propagation is being blocked or
delayed. It is interesting to note the very slow
drop off of this deviation behind the wave-
front — behaviour which contrasts with the very
sharp drop-off on the Fenton Karma simula-
tion. This may be due a failure of the prop-
agation model to capture normal behaviour, or
or that this form of re-entry genuinely does dif-
fer to this extent from normal propagation. In
case, the deviation from the model seems to
be far less specific than for the Fenton Karma
model.

In these visualizations, the deviation from
the model gives a very good impression of the
excitation state of any given region of tissue;
so much so the action-potential images are not
really required in this figure.

6 Conclusions and Future

Work

This paper has presented a novel method of
visualizing cardiac virtual tissues, through the
generation of a model of normal propagation in
phase space, and measuring the deviation from
this model. In the resulting visualizations, re-
gions of CVT where the propagation of ac-
tion potential is being delayed are highlighted.
When combined with the visualization of ac-
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Figure 11: The visualization of the deviation
from the model of normal propagation for
re-entrant behaviour in the Luo Rudy 2 sim-
ulation. The images show a complete revo-
lution of the single spiral wave, with the ac-
tion potential on the left, and the deviation
from the model on the right. The colour-
bars are shown at the bottom, with the left
colour-bar corresponding to the action po-
tential images, and the right colour-bar to
the deviation images.

tion potential, this provides insight into how
the action potential will propagate through the
tissue.

The method for calculating the deviation
from the model has scope for further inves-
tigation. For instance, it might be possible
to calculate the trajectory of a point in phase
space during re-entry, and find the nearest
model point along this trajectory (either for-
wards or backwards). There is also further
work required on issue of normalisation —
for instance is a simple intra-variate normali-



sation technique appropriate. There may also
be scope in normalising the results between
simulations, in that the range of possible dis-
tances increases with increasing numbers of
state variables.

This visualization technique can be ex-
tended to three-dimensional simulations fairly
easily. The distance metric is dimension in-
dependent, as it is based in phase space. The
significant distances occur at the wave-front of
action potential, so an interesting visualization
might be to form an iso-surface of action po-
tential, and colour it according to the deviation
from the model.
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