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We present experimental evidence for a photothermoelastic response in zincblende crystals illuminated by quan-
tum cascade laser sources in the frequency range 2.2–2.9 THz. Results obtained using an optically balanced sam-
pling arrangement indicate a mechanism whereby the stress distribution established through localized heating of
the crystal induces a change in optical birefringence via the photoelastic response of the crystal. A full mathematic
model of this photothermoelastic mechanism in (110)-orientated crystals is presented, and shown to agree well
with experimental measurements of the magnitude, and the orientational and spatial dependencies of the sampled
signal in ZnTe and GaP crystals. © 2013 Optical Society of America

OCIS codes: (040.2235) Far infrared or terahertz; (140.5965) Semiconductor lasers, quantum cascade;

(160.1190) Anisotropic optical materials; (350.5340) Photothermal effects.

http://dx.doi.org/10.1364/JOSAB.30.003151

1. INTRODUCTION

The use of optically sampled crystals for the detection of tera-

hertz (THz) frequency radiation has become widespread

within applications such as THz time-domain spectroscopy

(THz-TDS) [1–5]. The most commonly adopted detection

scheme exploits the linear electro-optic (EO) (or Pockels) ef-

fect in noncentrosymmetric crystals whereby the THz field in-

duces a birefringence in the crystal (typically ZnTe) that can

be probed optically [6–9]. In addition to THz-TDS, EO sam-

pling has similarly been applied to THz-pulsed imaging

schemes employing both raster-scanning of the sample [10]

and full-field CCD detection [10–12]. In each of these cases,

and by virtue of the ultrafast timescales of the EO mechanism,

the THz field can be sampled coherently using fs laser pulses

that are synchronized with the THz emission [7].

EO crystals have more recently been applied to incoherent

[13,14] and coherent sampling of THz fields generated using a

quantum cascade laser (QCL) source. In the latter case, syn-

chronization of the optical probe with the QCL has been ac-

complished by phase-seeding the QCL emission with THz

pulses generated both externally [15] and internally [16] to

the QCL cavity, as well as by electrical stabilization of the

QCL using a phase-locked loop [17]. The use of these coherent

EO sampling schemes has led to the study of active mode-

locking [18], gain clamping [15], and more generally, the sam-

pling coherence [19] of THz QCLs.

However, an alternative incoherent interaction mechanism

between a ZnTe crystal and radiation from a THz QCL source

has recently been demonstrated in a standard EO sampling

arrangement [20]. Based on the dependence of the measured

signal on the modulation frequency of the THz source, this

previous study identified that this interaction has a thermal

origin. As such, this incoherent response was reported

to be much slower than the picoseconds time response

indicative of an EO mechanism such as that reported in

[19]. Nevertheless, the specific mechanism of this thermal

response was not established unequivocally in this pre-

vious study.

In this paper, we further investigate this interaction in ZnTe

and GaP crystals illuminated by QCL sources in the frequency

range 2.2–2.9 THz. We show that the measured response can-

not be accounted for using the simple thermo-optic descrip-

tion proposed in [20], whereby the crystal refractive indices

vary proportionally to the local temperature change. Rather,

our results indicate a photothermoelastic origin whereby the

stress distribution established through localized heating of

the crystal induces a change in optical birefringence via the

photoelastic response of the crystal. In addition to being of

fundamental interest, an understanding of this incoherent in-

teraction mechanism and its implications for EO sampling

schemes is important for future studies involving THz QCLs

as well as other THz sources.

This paper is organized as follows. In Section 2.A, we de-

scribe the experimental arrangement for optical sampling

of the thermally induced birefringence in noncentrosymmet-

ric crystals. Measurements of the response obtained from

ZnTe crystals, under illumination by QCL sources emitting

in the range 2.2–2.9 THz, are then presented in Section 2.B.

In Section 2.C, we develop a simple model to describe the

thermal response of these crystals to the absorption of THz

radiation, and relate this to the measurements obtained. It

is shown that the measured response cannot be fully

accounted for using a simple thermo-optic model. In

Section 3.A, a full model of the photothermoelastic response
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of zincblende crystals to THz illumination is presented. Mea-

surements of the magnitude and spatial dependence of the

sampled signal are shown to agree well with the predictions

of this model for ZnTe and GaP crystals, in Sections 3.B and

3.C, respectively. Finally, the possible presence of a thermally

induced EO response in zincblende crystals is briefly dis-

cussed in Section 4, before conclusions are drawn in Section 5.

2. INVESTIGATION OF THERMALLY
INDUCED BIREFRINGENCE IN ZINC
TELLURIDE

A. Experimental Arrangement
Figure 1(a) shows a schematic diagram of the experimental

apparatus, which is based on a standard balanced electro-

optic sampling arrangement [7]. In this study, three separate

QCL devices were used: two bound-to-continuum (BTC) QCLs

[21] tailored to emit at 2.2 and 2.6 THz, and a 2.9 THz QCL

based on BTC active region with a phonon extraction/

injection stage [22]. Each of the three devices was processed

into a 150-μm-wide semi-insulating surface plasmon ridge

waveguide with lengths 4.5, 3, and 4.6 mm, respectively.

The devices were cooled to ∼25 K using a helium-cooled

continuous-flow cryostat and the THz radiation was colli-

mated, passed through a rotatable wire-grid polarizer, and

focused onto the detector crystal using parabolic reflectors.

The focused spot sizes on the crystal were measured to be

∼395, ∼330, and ∼340 μm for the 2.2, 2.6, and 2.9 THz devices,

respectively. Three crystals were investigated in this work,

namely a wedged (110) ZnTe crystal with thickness

L ∼ 1.9 mm, a 0.5-mm-thick (110) ZnTe crystal, and a

1-mm-thick (110) GaP crystal. QCL devices were driven either

in continuous-wave, employing mechanical modulation, or in

pulsed mode with 100 kHz pulse trains electrically modulated

in the range 10–4 kHz, with lock-in detection of the photo-

diode output in both cases used to improve the detection

sensitivity.

The crystal was optically sampled using the combined

beams from two external cavity diode lasers at 778.3 nm,

providing a combined power of ∼20 mW. The use of two

lasers in this experiment is solely to provide greater optical

power. Control of the polarization direction of the combined

beams was achieved using a rotatable Glan–Thompson

polarizer, with a rotatable half-wave plate being used in each

of the individual beams to maximize the power delivered to

the crystal. The diode lasers were focused onto the crystal col-

linearly with the THz beam and a balanced sampling arrange-

ment was used. Initially, the polarization of the sampling beam

and THz beam were set to be parallel to the [−1, 1, 0] direction

of the crystal, giving θ � 0 [see Fig. 1(b)]. The sampling posi-

tion of the probe beam relative to the THz beam was adjusted

to give the maximum response on the balanced photodiodes.

B. Optical Sampling of Birefringence
In a standard EO sampling arrangement [7], the ellipticity of a

linearly polarized near-infrared probe beam is modified by the

optical anisotropy induced in a detector crystal by THz radi-

ation. The relative phase delay δ between the orthogonal

polarization components of the probe beam that result from

this birefringence is obtained by integrating along the beam

propagation axis,

δ �

Z

L

0

2πΔn�x�dx

λ
: (1)

Here, λ is the probe beam wavelength and L the crystal thick-

ness. This phase delay is typically sampled using either a

crossed polarizer and photodiode arrangement [23] or a

quarter-wave plate, Wollaston prism, and pair of balanced

photodiodes [7] [see Fig. 1(a)]. The dependence of the bal-

anced photodiode signal on the orientation of the crystal

relative to the THz electric field, as well as the orientation

of the probe beam polarization has been described elsewhere

[24] for the case of a (110)-cut cubic crystal with point group

−43 m, in which the optical anisotropy is induced through the

EO response. This analysis can also be applied to the gener-

alized case of optically sampling a refractive index ellipsoid,

whose origin may not be EO, but whose major axis is orien-

tated at an angle α to the [−1, 1, 0] direction. The final expres-

sion for the balanced signal ΔI in terms of the phase delay and

probe intensity Ip is

ΔI � Ip sin�2�α − θ�� cos�2θ� sin�δ�; (2)

in which the factor cos�2θ� accounts for the more general case

of the incident probe beam polarization being orientated at an

Fig. 1. (a) Experimental apparatus for optical sampling of the birefringence induced in a crystal by THz radiation. C, crystal; λ∕4, quarter-wave
plate; WP, Wollaston prism; P, optical polarizer; TP, THz polarizer. (b) Geometry of the (110) zincblende crystal showing the crystallographic axes
(x0–y0–z0), the Cartesian (y–z), and cylindrical �r;φ� axes in the (110) plane of the crystal, and the principal axes of the index ellipsoid (Y–Z). The x0

and y0 directions are bisected by the normal to the page. All other axes shown are in the plane of the page. Also shown are the angles ψ and θ of the
polarization directions of the THz and probe beams relative to the [−1, 1, 0] direction.
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angle θ to the polarization axis of the Wollaston prism, which

in turn is defined as being parallel to the [−1, 1, 0] direction of

the crystal [see Fig. 1(b)].

For the experimental arrangement described in Section 2.A,

the phase delay can be inferred from the measured

photodiode signal using Eq. (2) with θ � 0 and α � π∕4.

Figure 2(a) shows the phase delays obtained using each of

the three QCL devices with the ∼1.9 mm ZnTe crystal, and

also for the 0.5 mm ZnTe crystal with the 2.2 THz laser.

For these measurements the QCL powers were set to be ap-

proximately equal and were measured using a THz power me-

ter to be 845, 800, and 805 μW for the 2.2, 2.6, and 2.9 THz

lasers, respectively. As can be seen, the measured response

decreases with modulation frequency and tends toward an

inverse relationship at higher frequencies. A similar behavior

has been observed previously [20] using a 3.2 THz QCL, and is

symptomatic of a thermal mechanism [25]. By rotation of the

wire grid polarizer it has also been confirmed that, after cor-

rection for the variation of the transmitted THz power arising

from the elliptically polarized QCL output, the measured

phase delay is independent of the polarization direction ψ

of the THz field. This is as expected for a thermal mechanism,

and in agreement with observations reported elsewhere [20].

C. Simple Thermal Model and Analysis
In order to characterize the optically sampled signal it is

necessary first to evaluate the temperature increase arising

from local heating of a crystal under THz illumination.

We consider the case of a THz beam of radius w0 incident

on a crystal of density ρ and specific heat capacity C. The

modulated THz power at a depth x below the crystal surface

is assumed to take the form P � �1 − R�P0e
−αxeiωt, where α is

the absorption coefficient, R is the Fresnel reflection coeffi-

cient, P0 is the incident power and ω is the modulation

frequency. From conservation of energy we arrive at the heat

equation for the temperature rise T�x; t�

ρCπw2
0

dT�x; t�

dt
� �1 − R�αP0e

−αx
− GT�x; t�: (3)

Here, G is the thermal conductance per unit thickness of crys-

tal, and the third term accounts for heat conduction radially

away from the irradiated volume, although any radial temper-

ature variation within this volume has been neglected for

simplicity. Heat conduction along the x direction has also

been neglected in this model, since the probe beam samples

the cumulative phase delay incurred along this direction [see

Eq. (1)]. It is also assumed that there is negligible radiation

into free space. The steady-state solution to Eq. (3) is

T�x; t� � T�x�eiωt, which by substitution gives the amplitude

of the temperature modulation

ΔT�x� �
�1 − R�αP0e

−αx

�������������������������������������

G2 � �ρCπw2
0ω�

2

q : (4)

This relation is characteristic of the Lorentzian frequency re-

sponse of a thermal detector [25] and reduces to an inverse

relationship between ΔT�x� and ω at high modulation

frequencies.

In the simple thermo-optic model [20,26] it was assumed

that this temperature modulation gives rise to a modulation

of the optical birefringence Δn through the linear relation

Δn�x� � βΔT�x�: (5)

The validity of this relation will be further discussed in

Section 3. In fact, it will be shown that the coefficient β is

spatially inhomogeneous in the y–z plane of the crystal by

virtue of the spatial distribution of the THz beam intensity

and the resulting stress distribution established in the crystal

through spatially inhomogeneous local heating. Nevertheless,

for a given sampling position on the crystal, the simple model

described by Eqs. (4) and (5) can be used to quantify the varia-

tion of optical birefringence in terms of material parameters

and the THz power, modulation frequency, and spot size.

In the present case of a thermally induced birefringence,

the phase delay δ can be obtained by applying Eqs. (1), (4),

and (5) to give the result

δ �
2πβ

λ

�1 − R��1 − e−αL�P0
�������������������������������������

G2 � �ρCπw2
0ω�

2

q ; (6)

which can be expressed in terms of the temperature modula-

tion at the crystal surface as

Fig. 2. (a) Phase delays measured as a function of modulation frequency for a ∼1.9 mm-thick ZnTe crystal, using QCL devices emitting at 2.2 THz
(red), 2.6 THz (blue), and 2.9 THz (black), and also for a 0.5 mm ZnTe crystal at 2.2 THz (green). The error bars have been calculated based on three
repeated measurements. The solid lines are fits to Eq. (6). (b) Corresponding temperature modulation at the crystal surface predicted using Eq. (7).
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δ �
2πβ�1 − e−αL�

αλ
ΔT�0�: (7)

Thus, through Eq. (6) the measured phase delay can be used

to obtain the coefficient β.

Figure 2(a) shows fits of the data to Eq. (6), in which the

values β and G are treated as free parameters. The absorption

coefficients and Fresnel reflection coefficients used in these

fits were obtained using THz-TDS, with α being found to

increase from 15 cm−1 at 2.2 THz to 31 cm−1 at 2.9 THz. As

such, the factor �1 − e−αL� ≈ 1 for the crystal with L ∼ 1.9 mm,

indicating almost complete absorption of the THz radiation at

all three frequencies. Similarly, only ∼47% is absorbed in the

case of the 0.5 mm crystal at 2.2 THz, which gives rise to the

smaller optical phase delay observed. For ZnTe the value

ρC � 1.54 Jcm−3 K−1 was also used [27]. The fits are seen

to agree well with the measured data and yield the average

values β � 1.1 × 10−6 K−1 and G � 77 Wm−1 K−1. As a matter

of interest, the data can also be expressed in terms of the am-

plitude of temperature modulation at the crystal surface pre-

dicted via Eq. (7). This is shown in Fig. 2(b) and reveals

temperature rises on the order of ∼10 mK at low modulation

frequencies for the experimental conditions described here.

D. Analysis Based on Simple Thermo-Optic Model
One mechanism proposed to explain the origin of the

observed modulation of optical birefringence is through a

simple temperature dependence of the refractive indices

[20]. Under this model the modulation of the birefringence

can be expressed in terms of the temperature modulation

according to Eq. (5) in which the coefficient β is given by

β ≈

�

JF �HF2

2

��

n2 − n3

n2n3;

�

; (8)

in which n2 and n3 are the refractive indices of the two prin-

cipal axes of the crystal. As described elsewhere [28], J (de-

fined asG in [20] and [28]) andH are optical constants relating

to the thermal expansion coefficient and the temperature co-

efficient of the excitonic band gap, respectively, and F is re-

lated to both the sampling wavelength and the isentropic band

gap lying in the UV region. Values of J, H and the isentropic

band gap have not been reported previously for ZnTe,

although these are known for CdTe [28]. In order to evaluate

Eq. (8), though, it is also necessary to obtain the “residual”

birefringence n2 − n3 induced by strain naturally present in

the crystal in the absence of THz radiation [23].

Briefly, and following the analysis in [23], the signal ob-

tained in a crossed sampling arrangement with no THz radi-

ation, and with the wave plate adjusted (in the absence of the

crystal) to give minimum signal transmitted through the

crossed-polarizer, is given by

I � Ip

�

η� sin2
�

δ0

2

��

; (9)

in which η is the contribution to the photodiode signal arising

from optical scattering. The residual phase delay δ0 can be

compensated using a correctly adjusted quarter-wave plate,

which minimizes the transmitted intensity to the value

I � ηIp, thereby enabling the scattering contribution in

Eq. (9) to be evaluated. A value η � 5.8 × 10−4 is obtained from

our measurements for the L ∼ 1.9 mm ZnTe crystal. Con-

versely, the transmitted signal can be maximized by adjusting

the wave plate orientation, as in a balanced sampling configu-

ration, to give a photodiode response I ≈ Ip∕2 (since η ≪ 1).

Using this value of Ip in Eq. (9) allows δ0 to be estimated,

from which the birefringence n2 − n3 � δ0λ∕2πL �

4.3 × 10−6 is obtained. Inserting this value into Eq. (8) with

J � −9.2 × 10−5 K−1, H � 6.0 × 104 K−1, F � 1.8 [28], and n2 ≈

n3 � 2.86 [29] yields β � 4.7 × 10−10 K−1. This value predicted

by the thermo-optic model is several orders of magnitude

smaller than that observed experimentally, which indicates

that the measured response does not arise principally from

the simple thermo-optic mechanism proposed through

Eq. (8). This will be further demonstrated in Section 3.B

through measurements of the spatial inhomogeneity of the

signal.

3. PHOTOTHERMOELASTIC EFFECT IN
ZINCBLENDE CRYSTALS

A. Theory of Photothermoelastic Effect
We next consider the presence of a photothermoelastic

modulation of the optical birefringence in zincblende

crystals under THz illumination. Such a response may be

present owing to the thermal stresses induced in the

crystal by localized heating. To evaluate this stress distribu-

tion we make use of the model developed for the case of

an isotropic thin disk subject to a radial temperature distribu-

tion ΔT�r; x�, where r is the radial coordinate. The radial σrr
and tangential σφφ components of the thermally induced stress

are given as [30]

σrr�r; x� � αthY

�

1

b2

Z

b

0

ΔT�r0; x�r0dr0 −
1

r2

Z

r

0

ΔT�r0; x�r0dr0
�

(10)

and

σφφ�r; x� � αthY

�

1

b2

Z

b

0

ΔT�r0; x�r0dr0

�
1

r2

Z

r

0

ΔT�r0; x�r0dr0 − ΔT�r0; x�

�

; (11)

in which Y is Young’s modulus, αth is the linear thermal ex-

pansion coefficient (which is isotropic in the case of cubic

crystals [31]), and b is the disk radius. The faces of the disk

are assumed to be unconstrained, giving a zero axial stress

component. For the case of a Gaussian radial temperature dis-

tribution, inspection of Eqs. (10) and (11) reveal that the radial

stress is everywhere compressive whereas the tangential

stress component changes from compressive in the center

of the disk to a tensile stress beyond a certain critical radius.

We project the radial and tangential components of the sec-

ond rank stress tensor onto the Cartesian laboratory axes

y–z [see Fig. 1(b)] using the standard tensor transformations

[32]. Owing to symmetry its components can be expressed in

single suffix (matrix) notation as
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0

B

B

B

B

B

B

@

σ1
σ2
σ3
σ4
σ5
σ6

1

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

@

0

σrr cos
2�φ� � σφφ sin

2�φ�

σrr sin
2�φ� � σφφ cos

2�φ�

�σrr − σφφ� sin�φ� � cos�φ�
0

0

1

C

C

C

C

C

C

A

; (12)

in which the matrix components are related to the tensor com-

ponents according to the standard conventions [31,32]: 1↔11;

2↔22; 3↔33; 4↔23, 32; 5↔13, 31; 6↔12, 21.

For a crystal of any symmetry a stress field will induce a

perturbation to the refractive indices via the photoelastic

mechanism [31]. This effect can be described in terms of

the perturbation to the optical indicatrix according to

ΔBi � pijsjkσk; (13)

where pij are the components of the fourth-order photoelastic

tensor and sij are the components of the fourth-order elastic

compliance tensor in matrix notation. The matrices pij and sij
can be calculated for the case of a (110) crystal through

rotation of the matrices p0ij and s0ij corresponding to the

crystallographic coordinate system (see Appendix A). Apply-

ing Eqs. (A7), (A16), and (12) to Eq. (13), and imposing the

condition that the axial strain s1kσk � 0 for free expansion

along the (110) direction, gives the result

0

B

B

B

B

B

B

B

@

ΔB1

ΔB2

ΔB3

ΔB4

ΔB5

ΔB6

1

C

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

@

σ2�p12s11 � p13s13� � σ3�p12s13 � p13s33�

σ2�p11s11 � p13s13� � σ3�p11s13 � p13s33�

σ2�p13s11 � p33s13� � σ3�p13s13 � p33s33�

σ4p44s44
0

0

1

C

C

C

C

C

C

A

:

(14)

The optical indicatrix ellipsoid under the applied stress

field thus becomes

x2
�

1

n2
1

�ΔB1

�

�y2
�

1

n2
2

�ΔB2

�

�z2
�

1

n2
3

�ΔB3

�

�2yzΔB4�1:

(15)

The presence of the mixed term in Eq. (15) indicates that the

main axes of the ellipsoid do not coincide with the y–z axes. In

order to evaluate the optical birefringence experienced by the

probe beam as it passes through the crystal we must therefore

identify a coordinate system that aligns with this ellipsoid.

By inspection we note this can be accomplished by a rotation

about the x axis [the (110) direction] through an angle α

given by

tan�2α� �
2ΔB4

ΔB2 − ΔB3

: (16)

Thus, the new coordinate system X–Y–Z that aligns with the

axes of the ellipsoid [Fig. 1(b)] is related to the crystallo-

graphic axes through the relations

x � X; (17)

y � Y cos�α� − Z sin�α�; (18)

z � Z cos�α� � Y sin�α�: (19)

Substitution of Eqs. (17)–(19) into Eq. (15) gives the trans-

formed equation for the ellipsoid

X2

�

1

n2
1

� ΔB1

�

� Y 2

��

1

n2
2

� ΔB2

�

cos2�α�

�

�

1

n2
3

� ΔB3

�

sin2�α� � 2ΔB4 sin�α� cos�α�

�

� Z2

��

1

n2
2

� ΔB2

�

sin2�α� �

�

1

n2
3

� ΔB3

�

cos2�α�

� 2ΔB4 sin�α� cos�α�

�

� 1; (20)

whose minor and major axes lie along the Y and Z directions,

respectively. To calculate the corresponding modulation of

the indices experienced by the orthogonal components

of the probe beam we use the differential relation

Δni � −�n3
i∕2�Δ�1∕n

2
i �, where the subscripts i � 1, 2, 3 relate

to the X , Y , and Z axes, which gives the results

ΔnY � −

n3

2
�ΔB2 cos

2�α� � ΔB3 sin
2�α�

� 2ΔB4 sin�α� cos�α��; (21)

ΔnZ � −

n3

2
�ΔB2 sin

2�α� � ΔB3 cos
2�α� − 2ΔB4 sin�α� cos�α��:

(22)

The resulting modulation of the birefringence is therefore

Δn�r; x� � ΔnY − ΔnZ

�
−n3

2

�

�ΔB2 − ΔB3�
2

2ΔB4

� 2ΔB4

�

sin�2α�; (23)

where use has been made of Eq. (16). It should be noted that

in the above analysis ΔBi and hence Δn�r; x� are both func-

tions of x due to attenuation of the THz power as the beam

propagates through the crystal, as well as functions of the

transverse position �y; z� [or equivalently �r;φ� in cylindrical

coordinates] by virtue of the spatial distribution of the stress

field described by Eq. (12). As such, it emerges that the optical

birefringence induced through the photothermoelastic mecha-

nism cannot be characterized fully using the simple model de-

scribed by Eqs. (4) and (5). In order to account for this spatial

distribution of the stress field properly, we model the THz in-

tensity as a Gaussian beam, Ir�r; x� � �1 − R��2P0∕πw
2
0�

exp�−2r2∕w2
0� exp�−αx�. By analogy with Eq. (4) the ampli-

tude of the spatially dependent temperature modulation is

then assumed to take the form

ΔT�r; x� �
2�1 − R�αP0e

−αxe−2r
2∕w2

0

�������������������������������������

G2 � �ρCπw2
0ω�

2

q : (24)

Thus, we may model the balanced photodiode signal ac-

cordingly. The stress field tensor σi can be obtained from

Eq. (12), making use of Eqs. (10), (11), and (24). These tensor

components thereby enable calculation of the modulation of
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the birefringence via Eq. (23), and by applying Eqs. (14) and

(16). The total phase delay can then be obtained from Eq. (1),

from which the balanced photodiode signal can be calculated

using Eq. (2). An important characteristic of this signal is that

it exhibits spatial inhomogeneity originating from both the ra-

dial stress distribution, arising from localized heating in the

crystal, and also through the α-dependence of Eq. (2), which

accounts for the orientation of the indicatrix ellipsoid relative

to the probe beam polarization. This spatial dependence is

confirmed experimentally in the next section.

B. Experimental Results and Analysis for ZnTe
The spatial inhomogeneity of the photothermoelastic signal

was investigated experimentally using the experimental ar-

rangement described in Section 2.C, with the 2.2 THz QCL

and the ∼1.9 mm ZnTe crystal. For these measurements the

QCL was driven in pulsed mode and electrically modulated

at a frequency of 40 Hz. In order to adjust the position of

the probe beam focus relative to the focused THz beam,

the focusing lens was manually scanned in the plane

perpendicular to the beam axes using translation stages, with

the balanced photodiodes being realigned for each measure-

ment. Figure 3(a) shows a contour plot of the photodiode sig-

nal ΔI∕Ip measured across an area of 1.4 mm × 1.4 mm using

a step size of 0.2 mm in both y and z directions. For compari-

son the spatial variation of the photodiode signal, calculated

using Eq. (2) as described in Section 3.A, for the same exper-

imental conditions is shown in Fig. 3(b). For this calculation

the following values of the photoelastic constants [33]

and stiffness matrix components [27] have been used for

ZnTe: p011 � 0.144, p012 � 0.094, p044 � 0.046, and c011 � 7.1 ×

1010 Pa, c012 � 4.1 × 1010 Pa, c044 � 3.1 × 1010 Pa. As can be

seen, for both the theoretical prediction and experimental re-

sults, the sign of the signal alternates in adjacent quadrants of

the crystal surface and reaches a maximum magnitude at a

critical radius along the φ � �π∕4 diagonals. The intensity

is also seen to vanish toward zero at the origin. This radial

variation of the signal originates from the radial dependence

of the factor (σrr − σφφ) appearing in Eq. (12), which exhibits

its maximum magnitude at some critical radius beyond that at

which the tangential component of the stress tensor becomes

tensile (σφφ > 0), as described by Eq. (11). It should be noted

that such a spatial dependence of the measured response

would not arise through a simple temperature-dependence

of the refractive indices, as described by the simple

thermo-optic model.

We may further validate the photothermoelastic model

through comparison of the magnitude of the predicted modu-

lation of the birefringence with that observed experimentally.

As noted previously, the optical birefringence arising through

the photothermoelastic mechanism cannot be described fully

using the simple model described by Eqs. (4) and (5). Never-

theless, to aid comparison with the experimental results pre-

sented in Section 2.C, it is convenient to cast the birefringence

Δn�r; x� in terms of ΔT�x� defined by Eq. (4). In this case

spatial-dependence of Δn�r; x� becomes absorbed into the

coefficient β. Figure 4(a) shows the simulated modulation

amplitude calculated using Eq. (23), as described in

Section 3.A, and cast in terms of the spatially dependent

coefficient β. Here, the value of the linear thermal expansion

coefficient αth � 8 × 10−6 K−1 [27] has been used, and the

Young’s modulus for ZnTe has been obtained from the stiff-

ness constants using the relation Y � �c011 � 2c012��c
0
11 −

c012�∕�c
0
11 � c012� [31]. It can be seen that the modulation is

greatest away from the center of the THz beam and exhibits

local maxima at positions φ � mπ∕2 on the crystal surface

(i.e., along the y and z axes). It should thus be noted that,

by suitable rotation of the probe beam polarization away from

θ � 0, the photodiode signal could attain a maximum at these

positions of maximum birefringence. Nevertheless, for these

positions the indicatrix component ΔB4 � 0 and hence the

main axes of the indicatrix ellipsoid become aligned with

the probe beam polarization [i.e., α � mπ∕2, see Fig. 4(b)]

for the case when θ � 0, giving zero sampled signal. Con-

versely, at the position of maximum signal [see Fig. 3(b)], a

value β � 3.2 × 10−6 K−1 is predicted by the model. This

agrees well with the value β � 1.1 × 10−6 K−1 obtained exper-

imentally at the position of maximum response, which further

confirms the proposed photothermoelastic origin of the

signal. The discrepancy between simulated and measured

values could be attributed to a number of assumptions made

in the theoretical model. First, the approximation was made

that the THz beam and radial temperature distribution follow

a Gaussian distribution. We note that any asymmetry in the

THz beam would cause deviation from the radial and tangen-

tial stress components described by Eqs. (10) and (11), and

therefore to the optically sampled birefringence. Further-

more, a simple proportional form was adopted in our thermal

Fig. 3. (a) Contour plot showing the spatial variation of the photodiode signal ΔI∕Ip in the y–z plane of the ZnTe crystal. The origin (0,0) cor-
responds to the center of the THz beam. For these measurements θ � 0 and the polarization direction of the THz field ψ � 0. (b) Spatial variation of
the (normalized) photodiode signal calculated using the photothermoelastic model for the same experimental conditions.
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model to describe the radial conduction of heat away from the

irradiated volume, and axial heat conduction was neglected.

The consequences of the latter assumption may be negligible,

however, by virtue of the fact that the measured signal arises

from the integration of the phase delay accumulated along the

probe beam axis. A full numerical model of the temperature

distribution within the crystal would nevertheless be feasible.

Further discrepancies of the simulated response will have

arisen due to uncertainties in the material parameters used,

for example the photoelastic matrix components, which were

taken from measurements at a slightly different optical wave-

length of 633 nm.

As noted above, for the case of the probe beam polarization

being aligned parallel to the [−1, 1, 0] direction of the crystal,

the maximum measured response is observed at positions for

which φ ≈�π∕4,�3π∕4. According to the photothermoelastic

model the stress component σ4, and hence ΔB4, attain maxi-

mum amplitudes in these cases and also ΔB2 ≈ ΔB3. There-

fore, at these positions of maximum response, the

orientation of the ellipsoid is predicted to be α ≈�π∕4,

�3π∕4 from Eq. (16). This can be verified experimentally

by monitoring the photodiode signal for different orientations

of the probe beam polarization θ, with the quarter-wave plate

being adjusted in each case to recover the a balanced

signal in the absence of THz radiation. From Eq. (2) the opti-

cally sampled signal should then vary according to

ΔI ∼ cos2�2θ�. Figure 5 shows this measured response, and

also a fit to an offset form of this functional dependence.

The angular variation of the measured signal can be seen

to agree well with that expected for the photothermoelastic

response described.

C. Experimental Results and Analysis for GaP
In order to evaluate the photothermoelastic model further,

measurements were also performed using a 1-mm-thick

(110) GaP crystal, which also belongs to the −43 m point

group. Figure 6 shows the phase delays measured using the

2.2 THz laser for electrical modulation frequencies in the

range 10 Hz–3 kHz. For these measurements the same exper-

imental procedure described in Section 2.C was used, with the

sampling position of the probe beam again corresponding to

the position of maximum response on the photodiodes.

Figure 6 also shows a fit of the data to Eq. (6), in which

the values β and G are treated as free parameters. In the case

of GaP, the following material parameters were used:

α � 4 cm−1, R � 0.30 (calculated from THz–TDS measure-

ments), and ρC � 1.78 Jcm−3 K−1 [34]. The fit is again seen

to agree well with the measured data and yields the values

β � 1.8 × 10−6 K−1 and G � 79 Wm−1 K−1.

Using the same approach as described for ZnTe, the coef-

ficient β can be quantitatively estimated at the position of

maximum sampled signal using the photothermoelastic

model. In this case a value β � 4.9 × 10−6 K−1 is predicted,

which is again in good agreement with that measured. For this

calculation the following values were used for GaP:

p011 � 0.161, p012 � 0.088, p044 � 0.073; c011 � 14.1 × 1010 Pa,

c012 � 6.3 × 1010 Pa, c044 � 7.0 × 1010 Pa [35]; αth � 4.7 ×

10−6 K−1 [34]; and n � 3.20 [36]. This predicted value also

overestimates the measured result by a similar factor to that

found for ZnTe, which can be explained by consideration of

the approximations adopted in the photothermoelastic model,

as discussed previously.

Whereas the coefficient β characterizes the photoelastic re-

sponse of a crystal to a particular temperature distribution (or

equivalently a particular stress field), the choice of sampling

crystal will also influence the measured response through the

Fig. 4. (a) Spatial variation of the modulation of the birefringence in the y–z plane of the ZnTe crystal, calculated using the photothermoelastic
model and cast in terms of the coefficient β defined by Eq. (5). (b) Spatial variation of the angle α obtained via Eq. (16). The origin (0,0) corresponds
to the center of the THz beam.

Fig. 5. Photodiode signal ΔI∕Ip (black squares) measured for differ-
ent polarization directions θ of the probe beam. Also shown (blue line)
is the functional form ΔI ∼ cos2�2θ�. These measurements were taken
at the position corresponding to the maximum signal attained in
Fig. 3(a), and with the polarization direction of the THz field ψ � 0.
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magnitude of the temperature modulation induced by the in-

cident THz radiation, as well as the crystal thickness. We may

define a figure-of-merit F that determines the maximum mea-

sured response for a general (110)-orientated crystal with

point group −43 m. Retaining only the crystal physical param-

eters, and assuming a modulation frequency ω ≫ G∕ρCπw2
0,

we arrive at the relation

F �
αthYn

3p44s44�1 − e−αL�

ρC
: (25)

For ZnTe and GaP we obtain the valuesF � 6.9 × 10−12 J−1 m3

and 3.0 × 10−12 J−1 m3 at 2.2 THz, respectively. By comparison,

the measured phase delays for these crystals are α �

6.7 × 10−7 and 3.0 × 10−7 at ω � 1 kHz, respectively, in good

agreement with the ratio of the figures of merit.

4. THERMALLY INDUCED ELECTRO-OPTIC
EFFECT IN ZINCBLENDE CRYSTALS

It is interesting to note that an additional incoherent mecha-

nism for modulation of the optical birefringence under THz

illumination may be present in the zincblende crystals consid-

ered in this work. It is known that cubic crystals do not exhibit

primary pyroelectricity owing to their nonpolar crystal struc-

ture [31]. Nevertheless, a secondary pyroelectric response

[31] may occur in noncentrosymmetric crystals under local-

ized heating, whereby the thermally induced stress field re-

sults in an electric displacement through the piezoelectric

response of the material. This in turn can induce a change

in the optical birefringence through a linear (Pockels) EO ef-

fect, which is also exhibited by noncentrosymmetric crystals.

To estimate the magnitude of this response we start by cal-

culating the electric displacement vector Di arising from the

piezoelectric response to the thermally induced stress field in

the form [31,32]

Di � dijσj: (26)

For (110)-orientated crystals with point group −43 m the only

nonzero matrix components of the third-order piezoelectric

tensor are d15 � −d24 � 2d31 � −2d32 � d014, where d014 is

the piezoelectric strain coefficient [32]. Applying Eq. (12)

gives the electric field components as

E2 � −

d014
ε

�σrr − σφφ� sin�φ� cos�φ� (27)

and

E3 � −

d014
2ϵ

�σrr cos
2�φ� � σφφ sin

2�φ��; (28)

where ε is the permittivity. The resultant field magnitude ET

and its direction ψE relative to the (001) z axis are given by

ET �

������������������

E2
2 � E2

3

q

; (29)

tan�ψE� �
−E2

E3

: (30)

The optical birefringence arising from the EO response to

this electric field can be obtained following the analysis pre-

sented elsewhere [8,24]. The final modulation of the birefrin-

gence is found to be

Δn�r; x� �
n3r41ET

2

�������������������������������

1� 3 sin2�ψE�

q

; (31)

in which r41 is the EO constant. In this case, the

minor axis of the indicatrix ellipsoid is orientated at an angle

α relative to the [−1, 1, 0] direction given by

tan�2α� � −2 tan�ψE�: (32)

The balanced photodiode signal can again be obtained from

the birefringence through Eqs. (1) and (2). Figure 7 shows the

spatial variation of this EO signal ΔI∕Ip calculated using the

values d014 � 0.9 × 10−12 mV−1 and r41 � 3.9 × 10−12 mV−1 [27]

for ZnTe, in which the signal amplitude is shown on the same

numerical scale as Fig. 3(b). As for the photothermoelastic

case, this signal exhibits spatial inhomogeneity originating

from both the radial stress distribution in the crystal and also

through the geometrical dependence of the optical sampling

Fig. 6. Phase delays measured as a function of modulation frequency
for a 1-mm-thick GaP crystal, using a QCL device emitting at 2.2 THz.

Fig. 7. Spatial variation of the photodiode signal ΔI∕Ip in the y–z

plane of the ZnTe crystal, calculated assuming only a thermally in-
duced EO effect. The signal is displayed on the same numerical scale
as Fig. 3(b).
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described by Eq. (2). However, as can be seen, the EO signal

magnitude is everywhere <4% that of the photothermoelastic

signal, confirming that the latter is the dominant effect con-

tributing to our measured response.

5. CONCLUSIONS

We have presented, for the first time, evidence of a photother-

moelastic response in zincblende crystals under THz illumina-

tion. Using THz QCL sources emitting in the frequency range

2.2–2.9 THz, the optical birefringence induced in ZnTe and

GaP crystals have been measured using a balanced sampling

arrangement. The dynamic behavior of this response demon-

strates a mechanism of thermal origin, although we have

shown that the measured response cannot be accounted

for using a simple thermo-optic description whereby the in-

duced birefringence is proportional to the temperature rise

in the crystal. Rather, our results indicate a photothermoelas-

tic origin whereby the stress distribution established through

localized heating of the crystal induces a change in optical bi-

refringence via the photoelastic response of the crystal. A full

mathematic model of this photothermoelastic mechanism in

(110)-orientated zincblende crystals has been developed,

and shown to agree well with experimental data. Specifically,

measurements of the magnitude, and the orientational- and

spatial-dependence of the sampled signal are found to agree

well with the predictions of this model. In addition to being of

fundamental interest, an understanding of this incoherent in-

teraction mechanism and its implications for EO sampling

schemes is important for future studies involving THz QCLs

as well as other THz sources.

APPENDIX A

Here we calculate the fourth-order photoelastic tensor Pijkl

and the fourth-order elastic compliance tensor Sijkl in the lab-

oratory coordinate system x–y–z [see Fig. 1(b)], for the case

of a cubic crystal with point group −43 m.

The 81 components of the fourth-order stiffness tensor C0
ijkl

can be reduced to 36 components C0
ij in single suffix notation

by noting that the symmetries C0
ijkl � C0

klij � C0
jikl � C0

ijlk ap-

ply. In addition, owing to symmetry considerations, only three

components C0
ij are unique and nonzero for cubic crystals

[31,32]. The stiffness matrix in the crystallographic coordinate

system x0–y0–z0 is given by

c0 �

0

B

B

B

B

B

B

@

c011 c012 c012 0 0 0

c012 c011 c012 0 0 0

c012 c012 c011 0 0 0

0 0 0 c044 0 0

0 0 0 0 c044 0

0 0 0 0 0 c044

1

C

C

C

C

C

C

A

; (A1)

from which the compliance matrix s0 � �c0�−1 may be

calculated as

s0 �

0

B

B

B

B

B

B

@

s011 s012 s012 0 0 0

s012 s011 s012 0 0 0

s012 s012 s011 0 0 0

0 0 0 s044 0 0

0 0 0 0 s044 0

0 0 0 0 0 s044

1

C

C

C

C

C

C

A

; (A2)

where

s011 �
c011 � c012

�c011 − c012��c
0
11 � 2c012�

; (A3)

s012 �
−c012

�c011 − c012��c
0
11 � 2c012�

; (A4)

s044 �
1

c044
: (A5)

The transformed compliance matrix s is given by the

relation

s � Ns0M−1; (A6)

where N and M are the Bond strain and stress transformation

matrices, respectively [32]. In our case these matrices re-

present a rotation of 45 deg about the z axis, for which the

final result is

s �

0

B

B

B

B

B

B

@

s11 s12 s13 0 0 0

s12 s11 s13 0 0 0

s13 s13 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s66

1

C

C

C

C

C

C

A

; (A7)

where

s11 �
�s011 � s012�

2
�

s044
4

; (A8)

s12 �
�s011 � s012�

2
−

s044
4

; (A9)

s13 � s012; (A10)

s33 � s011; (A11)

s44 � s044; (A12)

s66 � 2�s011 − s012�: (A13)

Likewise, for cubic crystals, only three of the components

p0ij of the photoelastic matrix are unique and nonzero [31]

p0 �

0

B

B

B

B

B

B

@

p011 p012 p012 0 0 0

p012 p011 p012 0 0 0

p012 p012 p011 0 0 0

0 0 0 p044 0 0

0 0 0 0 p044 0

0 0 0 0 0 p044

1

C

C

C

C

C

C

A

: (A14)

The transformed photoelastic matrix p is given by the

relation [32]

p � Mp0N−1; (A15)
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for which the final result is

p �

0

B

B

B

B

B

B

@

p11 p12 p13 0 0 0

p12 p11 p13 0 0 0

p13 p13 p33 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p66

1

C

C

C

C

C

C

A

; (A16)

where

p11 �
�p011 � p012�

2
� p044; (A17)

p12 �
�p011 � p012�

2
− p044; (A18)

p13 � p012; (A19)

p33 � p011; (A20)

p44 � p044; (A21)

p66 �
�p011 − p012�

2
: (A22)
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