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Abstract 

Recent results from a number of UK academic inkjet research studies advance the 

understanding of complex fluid jetting behaviour and may be of interest to the wider 

digital fabrication community for the enhancement of inkjet printing applications.  
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Introduction 

Digital fabrication using inkjet printing techniques usually relies upon accurate 

delivery of fluid drops onto a substrate, when and where directed by the print head, 

with a controlled speed and a fixed gap maintained between the print head and the 

substrate. Inkjet print head arrays in machines are often assessed optically, nozzle by 

nozzle, for in-flight drop speed and (2-D) directionality. For digital fabrication rather 

than graphics printing, the drop speed, volume and directionality have to be known 

for every timed actuation of a nozzle, but failure to take account of complex fluid 

jetting behaviour can degrade performance and reduce product quality. 

 

The viscosity η of jettable fluids can be within quite a wide range (1-50 mPa s); 

individual fluid viscosity depends on temperature and for complex (non-Newtonian) 

fluids on the instantaneous shear rate experienced and the shear rate history. Complex 

fluids may show viscoelasticity, shear-thinning and other complex aspects of 

rheology. The ranges of typical fluid density ρ (800-1200 kg/m³) and surface tension σ 

(20-70 N m-1) are far smaller, so the highest jet speeds produced by DoD print heads 

are usually limited by the extensional viscosity of the fluid within the neck of the 

nozzle (of diameter D). Lower speed limits may be needed in practice to help avoid 

satellite production (see below), aerodynamic effects and drop splashing on impact. 

 

For complex fluids based on Newtonian solvents, additives reduce the jet speed at 

constant print head drive, in comparison with the Newtonian solvent; this reduction is 

often proportional to the concentration of the additive (often below 0.1 - 10 wt% or 20 

vol%), and compensation to maintain jet speed requires raising the print head drive 

voltage (or choosing a shorter nozzle), which increases shear stresses in the fluid. 
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(a)      (b) 

Figure 1. Fluid with high polymer content may never break off from the nozzle but form very long thin ligaments. The jets in 

(a) have no added polymer but the jetted fluid in (b) contains high molecular weight polymer. The Xaar 126-200 print head 

used for this work has a 137 µm spacing of 50 µm diameter nozzles (just above the top of both images shown).   

Inkjet printing is degraded by the presence of satellite drops (see Figure 1a) following 

break up of long ligaments produced when jetting at high jet speed U (which is often 

used to improve jet directionality. Techniques to reduce satellite formation in DoD 

printing include selection of nozzle geometry, the control of the waveform applied to 

the print head actuator and deliberate modification of the fluid behaviour. The focus 

of the present paper is on the fluid.  

 

Higher ratios of viscosity to surface tension can help to limit satellite production: 

empirical approaches commonly used include polymer additives to increase fluid 

viscosity, surfactants to reduce surface tension, and shear thinning fluids which relax 

fast enough to restore the low shear-rate viscosity in the jet after it emerges from the 

nozzle. However, as Figure 1b vividly demonstrates, too much polymer can prevent 

jet break off from the nozzle and simply produce long continuous filaments of liquid. 

Achieving a balanced fluid formulation in order to produce drops of high speed 

without satellites is difficult and such “sweet spots” may not exist despite using 
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quality assessment and control (QA, QC). Some of the high frequency fluid 

assessment techniques developed for QA and exploited in earlier work1-3 are 

discussed later in this paper. Other related work based on videos of the break-up of 

colliding mm-scale jets of dilute polymeric fluids, appears to correlate well with 

inkjet scale jetting behaviour and rheological assessments, as reported elsewhere.4,5 

 

Fluid jets passing at speed U through short DoD nozzles (length/D ~ 1) experience 

high extension rates of ~ 8U/D. At fluid speeds ~10 m/s for D ~50 µm, nozzle shear 

rates exceed ~ 106 s-1. As such rates exceed the upper frequency limit for conventional 

rheology test methods (1 s-1 – 104 s-1), more specialised methods are needed to 

determine fluid properties to contribute to improvements in both print head design, 

ink formulation and QC. Knowing the rheology at very high shear rates can provide 

input to models and simulations, particularly for jetting but also for impact and initial 

spreading phases in deposition.  

 

The range of complex fluids used in manufacturing far exceeds that for graphics 

printing, and so the effects of complex fluid properties on jetting need to be further 

explored. Recent results from a number of our academic research studies are brought 

together in this paper to help inform the digital fabrication community of advances in 

understanding of the jetting of complex fluids in comparison with, and beyond, the 

simple Newtonian fluids. The paper discusses the jetting behaviour of complex fluids, 

experimental methods for shadowgraph imaging of jets and drops, dilute polymer 

solutions, colloidal dispersions and shear thinning fluids intended for functional 

material deposition, ligament break-up, validation and application of simulations, high 

frequency rheology and results from filament stretching and thinning equipment.  
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Behaviour of complex fluids in jetting 

The rheology of complex fluids at high extension rates has a significant influence on 

jetting. In early work4 on the high speed (6 m s-1) jetting of high molecular weight   

(MW ~110-488 kDa) dilute linear polystyrene (PS) in the viscous solvent DEP (diethyl 

phthalate) the maximum jettable concentration was linked to the measured elastic 

modulus G′ of linear viscoelasticity (LVE) for PS solutions in DEP. This conclusion 

has been discussed in a recent study of Xanthan gum jetting,6 where the non-linear 

finite extensibility involved in drop formation has been separated from the effects 

within the nozzle, although both effects act together to control the final drop speed. 

 

At concentrations below 0.01 wt% these PS solutions had Newtonian behaviour but, 

at somewhat higher concentrations (0.1 wt%), elasticity significantly restrained the 

jetting until a concentration level beyond which no jetting could be produced by the 

piezoelectric actuation of the Xaar XJ126-200 print head (50 µm nozzle diameter) at 

its maximum drive voltage. The experimental MW (molecular weight) dependence of 

the maximum concentration agreed with results of the numerical simulations which 

had included viscoelasticity7. Both results disagreed with the predictions from FENE 

(finitely extensible non-linear elastic) models of long chain polymer molecules, which 

otherwise provide reasonably successful representations of linear polymer behaviour. 

 

Other workers8,9 jetted a range of dilute solutions of PS in less viscous solvents, but 

found no obvious correspondence of limiting PS concentration vs. MW with the 

expected elastic response from polymer theory. Significant geometrical differences 

(long vs. short nozzle) between the print heads used in the different studies4,8,9 also 

greatly complicated simple model predictions of dilute polymer fluid jetting. This is 
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because the time taken by molecules in passing through regions of high shear has to 

be compared with a typical relaxation time for a stretched molecule to coil up. 

 

Experimentally, the extraction of relaxation times for dilute polymeric solutions has 

proved difficult, and until recently10 had proved inaccessible for PS. From the Zimm 

“dumbbell” model for polymers, isolated molecular chains would be expected to show 

relaxation times ~ 7-80 µs for MW = 110-488 kDa PS in DEP, which are rather short 

times for filament thinning. Effective relaxation times are known to be dramatically 

increased when the polymer concentration approaches the critical concentration c* at 

which the chains overlap under static conditions. However in jetting the chains can 

become uncoiled and even fully stretched within the flows in the nozzle and/or the 

necking ligaments. For PS in DEP the critical concentration c* is typically 1.0-0.2 

wt% dependent on MW, and relaxation time enhancements especially influence the 

lower molecular weights. For lower viscosity solvents6 such effects may be smaller. 

 

While the elastic modulus G′ and viscous modulus G″ are linear viscoelastic (LVE) 

properties, the finite chain length L of a fully stretched chain is a contribution to the 

non-linear viscoelastic (NLVE) response of the polymer chain to the imposed fluid 

flow. Once the polymer chains are stretched, if the flow continues they behave like 

rigid rods and the fluid exhibits a fixed high viscosity11. Since constant viscosity is 

characteristic of Newtonian fluids, high speed flows produce a Newtonian-like 

behaviour in the fully stretched “dilute” polymer solution, albeit with a very much 

higher viscosity than for the same fluid under stationary conditions. By contrast only 

in the intermediate flow regime will dilute polymer fluids show an elastic response.  
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This is one key underlying reason why finding a “sweet spot” for polymer additives is 

difficult. The time required for polymer chains to become fully stretched is also very 

important, because the highest shear stresses only apply to the chains still within the 

nozzle.12 The eventual reconciliation of all these issues and the implications for jetting 

of dilute polymers, applications and print heads are discussed below. This constitutes 

a major advance in the understanding of the jetting of complex fluids. 

 

For many digital fabrication applications with aqueous formulations, the fluids 

contain surfactants intended to better promote drop spreading on the substrate. This 

spreading takes place on sub-second timescales13-15, prior to drop drying or curing, 

that are accessible to measurements of dynamic surface tension (DST) using standard 

bubble tensiometers (>0.015 s bubble life). These may provide a rough guide to 

behaviour at the much shorter (~150 µs) timescales involved in DoD jetting, but leave 

some doubt as to the value of the surface tension applicable to the drop compared 

with the liquid which may have wetted the inkjet nozzle plate due to the jetting 

processes (or during nozzle plate cleaning).  

 

As very short surface ages are easier to establish for continuous ink-jet (CIJ) jets and 

for free drops (in CIJ or DoD), rather than for pendant drops and bubbles, the DST at 

timescales relevant to DoD jetting can be determined for aqueous Newtonian fluids 

from CIJ jet oscillations16 or from free drop oscillations17,18. Such methods can also be 

used to access dynamic viscosity, because free drops will tend to oscillate at a 

measurable frequency. Recently, free drops resulting from stretching of ~1 mm 

diameter filaments of complex fluids have been analysed to estimate both the DST 

and viscosity18. 
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Other recent methods for assessing the surface tension of (Newtonian) fluids at short 

timescales are to measure free filament or DoD ligament retraction speeds19 or the 

critical geometric length to width ratio for free ligaments that just avoid break-up20,21.  

While such methods have limitations they can easily discriminate between the high 

values of  DST for pure aqueous solutions and the lower value EST (equilibrium 

surface tension) for fluid formulations containing surfactants. Some further data and 

explanations are provided below (experiments and modelling). 

 

Suppression of satellite drops in DoD jetting might be assisted by dynamic non-

Newtonian effects. Numerical simulations for the geometry of a particular print head 

(Length/D =1; D = 50 µm) at fixed actuation drive predict7 that for the linear PS in 

DEP system a “sweet spot” without satellites exists at MW ~ 100 kDa (100 kg mol-1). 

It is expected that the polymer elasticity at a particular concentration would permit 

single drop formation but later prevent ligament break-up. However, simulations 

based on a constant final drop speed of ~ 6 m s-1 rather than a constant drive voltage 

show no “sweet spot”, so that the practical value of using polymer elasticity to 

prevent satellites is questionable. There may, however, be benefits for deposition from 

the higher viscosity of the polymer solutions, provided that the complex fluid 

behaviour is predominantly Newtonian-like. Lowered jetting viscosity at a given 

additive concentration within the DoD nozzle could permit even higher additive 

concentrations to be jetted, within the constraints of the print head drive voltage for a 

given actuation waveform. However this lower viscosity would normally be 

associated with earlier production of the satellite drops, unless the fluid viscosity η 

recovers rapidly in flight, to such a high value that the ligament necking speed gets 
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slowed down significantly. This fluid would then be classed as a shear thinning fluid. 

Highly shear thinning effects have been reported22 for the complex fluid PEDOT:PSS 

commonly used in digital fabrication of organic electronics23,24. The shear thinning 

and recovery timescales eliminated satellite production within 0.8 mm of the print 

head at drop drive speeds between 2 and 15 m s-1. Newtonian fluids with similar 

viscosity produced on average several satellites in the gap, and at a rate that increased 

as the drop speed was increased. Diluted aqueous PEDOT:PSS solution produced 

intermediate numbers of satellites, increasing with drop speed and dilution. 

Experimental equipment and methods 

High resolution, high speed imaging forms the basis for our detailed studies of jetting. 

Shadowgraph imaging with systems comprising High Speed Photo-Système nanolite 

spark flashes (20ns) with either Nikon D-series DSLR cameras, or Prosilica CCD 

cameras as shown schematically in Figure 2, or alternatively Adept Electronics long 

duration (2ms) flash lamps with 1 Mfps Shimadzu Hyper-Vision HPV-1 camera as 

shown schematically in Figure 3. Print head systems used include Xaar XJ126-200 

with PCI+ control, MicroFab ABP with MicroJetIII control, Spectra Dimatix SX3 

with Inca Digital controller, and Xaar XJ1001 with XUSB controller. Stanford 

Research Systems SR620 time interval counters and DG535 gate and delay generators 

were also used wherever sub-µs timing precision was required with flash imaging. 

 

Image analysis software for extraction of jet and drop shapes included IrfanView and 

ImageJ, with additional Visual Basic, LabView and MatLab programs. Automated 

experiments used a LabView interface and a National Instruments DAQ card to 

trigger a MicroFab print head, provide controlled delays to the spark flash power 

supply and to handle CCD image capture, transfer to PC and file naming. 
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Figure 2. Schematic for complex fluid jetting studies using an automated shadowgraph imaging system25. 

Calibration of the spatial resolution (µm/pixel) in the recorded images was achieved 

by placing known calibration scales and wires in the image plane of the cameras at the 

same magnification setting as the experiments. Visible nozzle diameters and the 

known nozzle pitch spacing provided alternative calibrations and cross-checks. 

DoD drop speed measurement errors were < 0.1 m s-1 in our jetting work. The drop 

speed is normally assessed ~ 1.0 mm downstream (beneath) the nozzle exit, while 

displacement of the jet tip is always used for the determination of jetting speed. 

Holographic measurements of jetted drop sizes, 3-D position and velocities over large 

fields of view are described elsewhere25. 

 

Figure 3. Schematic for shadowgraph imaging with Adept flash and 1 Mfps Shimadzu HPV-1 camera.27  
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Shadowgraph imaging of jets, ligaments, drops and satellites with variable light 

source intensity from image to image (e.g. due to flash variations) and within an 

image (e.g. due to shadowing by the print head nozzle plane) requires careful 

consideration of optical phenomena, such as fringing and image burn-out, that can 

affect the deduced drop size or shape. Small particles, satellites and thin filaments can 

easily have dimensions well below the optical resolution, but in comparisons between 

the successive images in a timed sequence they can be readily detectable by eye. 

Satellites can cause problems for the users of inkjet systems by reducing print quality, 

and small satellites (mist) can contaminate equipment causing failure. Empirical 

assessments of satellite production in jetting have classed visible DoD satellites as 

being either large or small, since they had appeared to fall into a cascade of scales.28 

The majority of inkjet mist production is from thin sub-micron diameter ligaments. 

 

When DoD jets break off from the nozzle meniscus with a sizable fluid ligament, the 

recoil of this ligament into the main body of the fluid can cause free drop oscillations 

if the viscosity is not too high. As these drops are typically 20-50 µm diameter, drop 

oscillations occur at frequencies > 10 kHz. High speed images allow measurement of 

the frequency and determination of the surface tension at very short (<10-4 s) time 

scales and the viscosity of the fluid if the drop size and the fluid density are known. 

Alternatively, the fluid properties can be deduced from oscillating drops remaining 

briefly between the separated pistons of filament stretching devices (e.g. 

TrimasterII)3. Our oscillating drop studies are discussed elsewhere17,18. 

 

Complex fluids were prepared on a small laboratory scale, with concentrations 

determined by weighing. Room temperature ultrasonic baths were used to mix 
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polymeric and colloidal fluids, and magnetic stirring for Laponite RD. All solvents 

were filtered to 0.45 µm prior to use and large debris were removed by 5 µm filtration 

before small (20-50 µm) diameter nozzles were used for jetting experiments. Fluids 

were assessed with a Malvern Instruments Bohlin C-VOR150 rheometer with parallel 

plates < 50 kHz, piezo axial vibrator (PAV) < 10 kHz and torsion resonators ~ 70 kHz  

that are sensitive to the linear viscoelastic response and a Trimaster II filament 

stretching device for the viscoelastic relaxation time τ. Spot checks of solution 

viscosity were made with a Hydramotion Viscolite 700 rheometer at 3.3 kHz, velocity 

of sound measurements used a Karl Deutch Echometer model 1071; DST was 

measured using a SITA pro-line T15 bubble tensiometer down to bubble lifetimes of 

0.015 s. Material densities were determined from the literature or manufacturers 

specifications. Concentration limits and jetting speeds were determined as a function 

of print head drive voltages for polymer solutions and colloids go/no-go jetting tests. 

Fully analyzable and prolonged observations of free and DoD ligament recoil (or drop 

oscillations) always rely upon good repeatability and controlled forward speed, which 

often depended on successful avoidance of nozzle clogging and the break-off timing. 

In practice many observations had to be discarded in favour of “valid” events; even 

these had to be scrutinised for consistency with assumptions of the models for the 

fluid and process.  

Models - dilute polymer solution jetting 
 
We have shown elsewhere28 that based on a simple model29 dilute polymer jetting 

behaviour should be predictable from the DoD hardware nozzle size and jetting speed 

and solvent choice for various dilute linear polymer solutions.30 This simple model 

approach has been greatly improved12 by incorporating the proper treatment of 
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polymer chain pre-stretch within the nozzle flows and using measured effective 

relaxation times in extensional flow and not the Zimm predictions10. 

Results – dilute polymer solution jetting 

McIlroy et al12 showed that pre-stretching of molecular chains within a nozzle tends 

to blur the transition between partly stretched (elastic) and fully stretched (rigid rod) 

behaviour at the high jet speed (6 m/s) used in an earlier study by Hoath et al29. The 

lower MW regime is also influenced by the effective polymer relaxation times10 that 

can depend strongly on the ratio c/c*. 32,33 The predictions of 10 lower maximum 

concentrations now agree12 far better with the 6 m s-1 jetting results for viscous 

solvents29 than the original predictions from the simple 1-D model. Polymer jetting 

results at slower speeds, by other groups8,34 who used lower viscosity solvents, remain 

well described. As a result, the effects of the hardware on polymer jetting are now 

well understood, with a successful12 prediction of polymer chain breaking results34 

originating within print head nozzles. 

 

Figure 4. Data for maximum concentrations for jetting PS taken from de Gans et al8 compared with the power law slope 

predictions in the 3 regimes of the simple jetting model of Hoath et al29. Calculations of McIlroy et al12 show very similar 

results for the low jet speed, wide and long tapered nozzle geometry and low viscosity solvent used by de Gans et al8. 
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Models – ligament break up 

Following detachment, a jet from a DoD print head typically forms a massive head 

and one or more ligaments. A simple model19 treats these ligaments as cylindrical 

lengths of radius R which then contract under surface tension towards a central point. 

An important question asked recently by Castrejón-Pita et al20 about free flying liquid 

ligaments is whether they will subsequently contract into a single drop or break up 

into two or more drops. Evidence for the break up of free fluid ligaments from large 

scale experiments showed that there appears to be a geometrical criterion for ligament 

break-up determined by Oh = η/(ρσR), the dimensionless Ohnesorge number, such 

that more viscous fluids tend to support longer filaments without break-up. 

Experiments conducted on the scale of DoD inkjets21 showed that the same criterion 

applied to free ligaments and furthermore that the same criterion could be interpreted 

geometrically for Newtonian DoD ligaments attached to massive heads. The 

geometrical criterion is linear in Ohnesorge number for this simple model21. The 

physical origin of this limiting geometric ratio apparently arises from the independent 

competition between the times taken for ligament shortening at Taylor’s speed (due to 

the surface tension) and for radial necking of fluid (which depends on the ratio η/σ).  

Results – ligament break up 

Figure 5 maps results from HPV-1 video records for a jetted Newtonian solution at 

various temperatures from a MicroFab single nozzle print head. The temperature 

controlled the viscosity value for the Newtonian solution and hence the Oh number. 

The solid line represents the simple criterion established21 from both large scale video 

data20 and DoD scale spark flash data21. 
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Figure 5:  The measured geometrical aspect ratio Λ = L/2R for DoD ligaments vs. Ohnesorge number for Newtonian fluids 

has a predictable21 critical value (red line). Filled symbols (generally above the line) record ligament break up events and 

unfilled symbols (below the line) represent long DoD ligaments that have coalesced without satellite formation. Deviations 

below the critical predictions at high Ohnesorge number are attributed to jet stretching due to excessive high speeds. 

The simple criterion is reasonably accurate if it is applied to Newtonian liquid 

ligaments which immediately start to contract, as the observed trends at higher Oh 

show that jets do break up if they are stretching too fast. For applications to jets and 

ligaments the simple Ohnesorge number-based criterion21 appears very effective. 

Jetting of shear thinning fluids 

A complex fluid commonly jetted for functional electronics applications is aqueous 

poly(3,4-ethylenedioxythiophene):(polystyrene-sulphonate)  (PEDOT:PSS) plus 

surfactants to enhance electrical conductivity in the final transparent film or track. 

Despite having such a high viscosity at low shear rates that it would not normally be 

jetted from industrial DoD print heads, this fluid actually jets well, helped by a shear 

thinning fluid behaviour unlike the viscoelastic response seen for PS in DEP. There 

are significant delays in the creation of satellites from long ligaments trailing behind 

fast moving heads, proportional to the PEDOT:PSS concentration.22 The long 
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PEDOT:PSS tails behaved as if they had very rapidly regained the high viscosity 

normally associated with low shear rate conditions, thereby raising the effective 

Ohnesorge number and delaying the ligament break up. Figure 6 shows the effect of 

PEDOT:PSS content on the average production rates of satellites within 800 µm of a 

40 µm diameter DoD nozzle, and data for two Newtonian liquids for comparison. The 

effective viscosity for these PEDOT:PSS solutions in the nozzle was 3-10 mPa s. 

 

Figure 6. Average number of satellites visible within 0.8mm of the nozzle as a function of drive voltage ( jet speed) for 

Newtonian G ( glycerol) W (water) mixtures and aqueous PEDOT:PSS solutions showing systematic effects due to complex 

fluid behaviour.22 Newtonian mixtures are labeled with wt% and viscosity while PEDOT:PSS by nominal solid  wt%. 

Validation and application of simulations 

Inkjet technologies often make progress through empirical tests, with computer 

simulations playing a less significant role in the development of a product. Although 

several numerical methods exists that aim to simulate drop formation, in practice only 

a few have been experimentally validated. In addition to this complication, the 

limitations of most commercially available software are often not clearly specified 

and most droplet-based systems operate at printing frequencies and spatial scales that 

are difficult to study experimentally. A recent exception has been presented35. In this 
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work, a large scale droplet generator was used to produce, in a fully characterized 

environment, drops on demand. The system utilizes nozzle diameters of ~ 2 mm and 

can operate under DoD and CIJ modes36. In brief, in DoD mode, the system uses an 

electromagnetic transducer to produce the single pressure pulse that jets the liquid. 

Most of the components of the systems are optically transparent and compatible with 

techniques such as laser Doppler anemometry (LDA) which can extract local fluid 

velocities inside the print head. The system also contains a pressure transducer, and 

thus the jetting pressure is also readily measured. Being on the millimetre scale, the 

nozzle characteristics can be studied by conventional microscopy and the jetting 

recorded by conventional shadowgraph photography. In the study, all the fluid 

characteristics, the nozzle geometry and the driving waveforms were input to a 

Lagrangian model with adaptive mesh nodes. Experimental and simulation results are 

shown in Figure 7.   Qualitative shape and quantitative speed comparisons 

demonstrate that Lagrangian code simulations can accurately replicate the creation of 

Newtonian droplets. We have successfully simulated non-Newtonian DoD jetting for 

solutions of dilute polymers7 and shear thinning fluids, and modelled particulate jets. 

 
 
Figure 7: Comparison of numerical and experimental results of a drop jetted on demand.  Experimental conditions, including 

the geometry of the nozzle and the velocity driving waveform, were introduced to the model. Reprinted with permission35. 
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Summarizing the findings published previously7,37, (i) simulations with FENE-CR 

find the same family of behaviour as experiments (e.g. by Bazilevskii et al30), (ii) 

using parameters extracted from LVE rheometry, good quantitative agreement 

between simulations and experiments was established for solutions of PS in DEP 

jetted through a DoD print head at fixed drop speed, and (iii) shear-thinning (or rather 

deformation thinning) fluids reduce production of satellites in the simulations as well 

as in experiments22. 

Rheological measurements 

A piezo axial vibrator (PAV) technique2,38 was used to study the linear viscoelasticity 

(LVE) of fluid films, which are typically less than 50 µm thick, over a range of 

frequencies. (The films are squeezed by less than 20 nm during the PAV testing.)  

Results are shown in Figure 8 for the “matched” polystyrene in DEP fluids of Table 1. 
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Figure 8. PAV results for the polystyrene in diethyl phthalate solutions of Table 1 showing “matched” linear viscoelasticity.  

Complex modulus G*=(G′²+G″²)= 2π  frequency  η*. Symbols in the legend above Linear represent G″ and those below G′. 

Linear represents the fit to the G″ modulus for PS110. The lines shown with the G′ data are multi-mode Zimm model fits.10,34 
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Fluid Mw 
(kg/kmol) 

c 
(w/w) 

c* 
(g/ml) 

0 
(mPa.s) 

PS110 110000 0.5 2.56 16.3 
PS210 210000 0.4 2.24 16.5 
PS306 306000 0.2 1.9 15.5 
PS488 488000 0.1 1.15 14.8 

Table 1:  Polystyrene in diethyl phthalate solutions with “matched” rheological results for linear viscoelasticity in Figure 8. 

The overlapping sets of G″ (viscous modulus) and G′ (elastic modulus) of Figure 8 

show that the complex fluids of Table 2 had “matched” LVE behaviour below 2kHz. 

 

Figure 9 shows that this low frequency “matching” was insufficient to predict jetting 

behaviour of Table 1 fluids from a 30 µm diameter MicroFab nozzle operated at fixed 

(±35 V) drive voltage. The image strips shown in Figure 9 correspond (left to right), 

to the pure DEP solvent and PS110 after 145 µs, and PS306 and PS488 after 200 µs. 

These striking differences can be ascribed to non-linear viscoelastic effects.39 

 

Figure 9. Jetting of viscous solvent and 3 fluids of Table 1 with matched LVE properties from the same MicroFab nozzle.2,39 

Delays: 145 µs for first 2 strips and 200 µs for the last 2 strips. These differences arise from NLVE behaviour of these fluids. 

The NLVE behaviour determined from measurements in a “Trimaster” filament 

stretching rheometer3 shows that polymeric fluids with matched LVE jetted very 

differently because of the very strong dependence10 of the relaxation time τ on the 

“reduced” concentration c/c*. Jetting produces extensional flow that increases the 
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effective relaxation time τ above the low shear-rate Zimm values by a factor of 20 for 

0.5 wt% PS110 (Fig 9(b)) but by almost nothing for 0.1 wt% PS488 (Fig 9(d)). 

Stretching of molecular chains in highly extensional flow gives other non-linear 

effects as already shown above, which eventually limit the maximum jettable 

concentrations. A more complete description of these dilute polymer solution jetting 

experiments and their interpretation is provided elsewhere39.  

Rheological behaviour of HA09 determined using the PAV: gap = 26.4m, 

Temperature = 25oC
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Figure 10. LVE moduli are both approximately linear in frequency giving a near-Newtonian complex viscosity Eta*. This 

polystyrene colloidal dispersion easily jetted from a 30µm diameter DoD print head. 

 

It was noted2 that the elastic modulus G′ of pigmented inks has almost linear 

frequency dependence, quite different from the quadratic frequency dependence of G′ 

for linear polymer solutions38. Thus pigmented inks show nearly Newtonian 

behaviour. Similarly, Figure 10 for the LVE rheology of mono-disperse stabilized 

polystyrene colloidal dispersion HA09 at 18 wt% solids in ethylene glycol / water has 

a complex viscosity (Eta*) that is almost constant. 
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Figure 11. Viscosity data between 0.1 and 10,000 s-1 measured for various aqueous shear thinning solutions of Table 2. 

Fig. 18  wt% PEDOT:PSS (*) wt%  Water wt% Dynol 607 wt% Zonyl FSO-100 

INK1 99.5 0 0.23 0.27 

INK2 69.5 30 0.23 0.27 

INK3 49.5 50 0.23 0.27 

INK4 29.5 70 0.23 0.27 

WATER 0 100 0 0 

Table 2. Aqueous PEDOT:PSS solutions with surfactants22 corresponding to the comparison of rheology shown in Figure 11.   

* 100 wt% contains ~ 1.1 wt% solids in water, with d50 ~ 25 nm; Clevios PH 1000 from Heraeus Conductive Polymer Division. 

Shear thinning fluids such as aqueous PEDOT:PSS can show a far more marked 

change of viscosity with frequency. For example, PEDOT:PSS shear thins by an order 

of magnitude between zero shear rate and DoD jetting and drop oscillation shear rates. 

Table 2 shows the composition of the aqueous fluids that are compared in Figure 11. 

 

Measurements using various techniques show aqueous Laponite RD fluids at 1-3 wt% 

loadings can have markedly different shear thinning capability. Figure 12 implies the 

fluids should be easily jetted for shear rates > 104 s-1, very typical for DoD nozzles.  
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Figure 12. Complex viscosity data between 0.01 and 10,000 s-1 measured for aqueous Laponite RD samples at 1, 2 & 3 wt%. 

Aqueous Laponite RD at 2 wt% loading has a shear viscosity variation by a factor of 

~ 3 decades between low and high frequency shear conditions, which is ~ 2 orders 

greater than for the aqueous PEDOT:PSS at ~ 0.7 wt% loading. Our measurements 

demonstrate that both fluids, despite their high viscosity under low shear conditions, 

can indeed be jetted from a DoD printhead. 

Discussion 

Manufacturing techniques with inkjet processes have been made more resilient 

against drop placement errors in special cases (e.g. organic transistors23) by using 

surface treatments and self assembly processes; however these and other deposition-

related digital fabrication topics (such as those9 that involve jetting PS solutions) lie 

well beyond the scope of the present work based on high speed jets40.  
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Jetting of polymers has been reported elsewhere (e.g. dilute linear and star polymers 

by the de Gans and Schubert group, poly-disperse mixtures of PEO by Carr and Dong, 

dilute and semi-dilute polymers by Yeates et al41), following early ground-breaking 

polymer jetting work of Basilevskii et al27. Our previous work on novel fluid 

assessment methods using large scale equipment5 also correlated well with DoD 

jetting and PAV rheological assessments4. 

 

We have indicated how dilute polymer jetting studies help explain differences 

between jetting results obtained with a range of print head types and fluid conditions 

including solvent viscosity and quality, over a range of high molecular weights. This 

has allowed a wider picture of the observable maximum concentration limits to be 

established, together with predictions of polymer chain rupture within DoD nozzles. It 

also emphasises the need for QA of polymer additives used in ink-jet formulations, as 

high molecular weight components can produce deleterious effects on DoD jetting. 

Low viscosity solvents will be advantageous for jetting of higher concentration fluids, 

most especially if high drop speeds and higher molecular weight polymers are used. 

 

The simple geometrical criterion found for Newtonian fluid ligament stability also 

provides an empirical upper limit for satellite free jetting of particle loaded fluid; the 

rupture of the jet filament will occur earlier as the ligament radius reduces towards the 

finite dimensions of the particles as is found in dripping and jetting experiments, 

though capture of particles in the thinning ligament provides other break up modes. It 

is also found that high concentrations suppress the average numbers of satellites but 

also prompt the production of much larger satellites than for Newtonian solvents. 
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For satellite-free jetting of polymeric fluids, trailing ligaments remain long and thin 

during the flight due to the relatively long polymer relaxation time, or ligaments 

rapidly recoil forwards into the main drop due to their elasticity; in both these cases 

our Newtonian criterion is not directly applicable. 

 

Others, in particular the groups of McKinley & Clasen, use NLVE filament stretching 

for the extraction of polymer relaxation times for high molecular weight polymers. 

The typical stretching speeds attained with Trimaster II pistons of 1.2 mm diameter 

were ≤ 0.2 m s-1 providing access to ~ 100 µs relaxation times. Vadillo et al10 showed 

that values down to ~ 30 µs can be determined for low viscosity polymer solutions.  

 

Efficient and trustworthy simulations for jetting complex fluids are certainly needed. 

Recent examples for NanoCopper and NanoSilver Inks are provided by Lim et al42. 

At the present time the jetting of complex fluids from a range of DoD print heads 

often provides the most effective route to reliable fluid performance in applications.  

Conclusions 

Several results from the fundamental studies of jetting of complex fluids now impact 

on future applications of digital fabrication: (i) dilute polymeric additives can stretch 

and split into two pieces34,12 within short (length/D ~ 1) industrial DoD nozzles 

working at high shear rates (~8U/D), (ii) polymer chains can be fully stretched outside 

the nozzle in the thinning ligaments29, raising the ligament shear viscosity by >> 10 

low shear solution viscosity and also allowing higher maximum concentrations of 

high molecular weight polymer fluids to be jetted faster than would be predicted from 

lower molecular weight fluids with elastic response; (iii) DoD jetting speeds are linear 

in drive voltage for Newtonian solvents and many dilute complex fluids, providing a 
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straightforward application to jetting speed control for industrial system integration25; 

(iv) satellite control by fluid modification still gives a maximum jet speed giving no 

satellites but this is greatly enhanced by shear thinning behaviour, as shown22 for 

fluids such as aqueous PEDOT:PSS, and even for gels such as Laponite RD; (v) a 

simple physical criterion for break-up of Newtonian fluid filaments21 may be applied 

to predict the likelihood of satellite free DoD jetting for dilute complex fluids; (vi) 

high frequency measurement techniques now available38 have proved very valuable 

for accurate assessment of fluid suitability for DoD printing2; and (vii) existing 

simulations7 and modelling12 can predict the printability of complex fluids with 

improving relevance to industrial inkjet printing and digital fabrication. 
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