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Abstract: The recent Global Inventory Modeling and Mapping Studies (GIMMS) LAI3g 

product provides a 30-year global times-series of remotely sensed leaf area index (LAI), an 

essential variable in models of ecosystem process and productivity. In this study, we use a 

new dataset of field-based LAITrue to indirectly validate the GIMMS LAI3g product, 

LAIavhrr, in East Africa, comparing the distribution properties of LAIavhrr across biomes and 

environmental gradients with those properties derived for LAITrue. We show that the 

increase in LAI with vegetation height in natural biomes is captured by both LAIavhrr and 

LAITrue, but that LAIavhrr overestimates LAI for all biomes except shrubland and cropland. 

Non-linear responses of LAI to precipitation and moisture indices, whereby leaf area peaks 

at intermediate values and declines thereafter, are apparent in both LAITrue and LAIavhrr, 

although LAITrue reaches its maximum at lower values of the respective environmental 
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driver. Socio-economic variables such as governance (protected areas) and population 

affect both LAI responses, although cause and effect are not always obvious: a positive 

relationship with human population pressure was detected, but shown to be an artefact of 

both LAI and human settlement covarying with precipitation. Despite these complexities, 

targeted field measurements, stratified according to both environmental and socio-economic 

gradients, could provide crucial data for improving satellite-derived LAI estimates, 

especially in the human-modified landscapes of tropical Africa. 

Keywords: hemispherical images; tropical landscapes; field assessments; Kenya; Ethiopia; 

Tanzania; East Africa; essential climate variables 

 

1. Introduction 

Leaf area index (LAI) is defined as one half of the total leaf surface area per unit ground surface 

area (projected on the local horizontal datum). It is a key biophysical vegetation property describing 

biome-specific canopy structure [1], and an essential variable in models of ecosystem processes and 

productivity [2,3], crop productivity [4] and hydrology [5]. Prescribing these models with accurate 

LAI parameters is, however, challenging due to the scarcity of landscape scale LAI measurements for 

most part of world’s vegetated biomes. Data deficiencies are especially acute in tropical regions and 

across degraded woodlands [6,7]. 

Earth Observation (EO) data can be exploited to fill these data gaps [8,9]. LAI products derived 

from EO data describe variation in regional and global vegetation leaf area at 250 m to 6 km  

spatial resolutions and at 8-day to monthly temporal resolutions. Some are generated via inversion of 

physically-based models against observations of surface-leaving radiation [10,11]. Others are produced 

using empirical and semi-empirical relationships between LAI and spectral vegetation indices [12,13]. 

The Global Inventory Modeling and Mapping Studies (GIMMS) LAI3g product was derived from 

the Advanced Very High Resolution Radiometers (AVHRR) sensors. It provides one of the longest 

LAI time-series currently available for canopy structure trend assessments [8], spanning the period 

from July 1981 to December 2011 at 15-day intervals and at 1/12 degree spatial resolution [14]. 

Applications to date include the assessment of latitudinal vegetation growth trends [15] and trends in 

vegetation greenness for pastures [16]. The GIMMS LAI3g product was generated using a feed-forward 

neural network, using AVHRR third generation normalized difference vegetation index (NDVI3g) 

between 1981 and 2011. The neural network itself was trained through back-propagation using 

MODIS LAI between 2001 and 2009, and GIMMS data over the same period [14]. Validation of the 

GIMMS LAI3g product was carried out using field data from just 29 sites, predominantly in northern 

latitude cropland, grassland and boreal forest biomes. There have been no validation studies of 

GIMMS LAI3g in tropical biomes. 

Here, we use a new dataset of ground-measured LAI (hereafter, LAITrue) [17] to validate the 

GIMMS LAI3g product (hereafter, LAIavhrr) in East Africa. We compare biome-specific LAI values, 

and test whether both LAITrue and LAIavhrr capture similar trends in environment-LAI response. In so 
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doing, we characterize LAI within and between East African biomes, and quantify spatial variation in 

response to climate, topography and disturbance. 

2. Material and Methods 

2.1. Study Region 

Natural vegetation in East Africa (here defined as Tanzania, Kenya and Ethiopia) ranges from very 

open to very dense shrub (plants ≤ 2 m tall), deciduous bush of varying tree densities (plants 2–7 m 

tall), deciduous broad-leaved woodlands (plants > 7 m tall) of varying species compositions 

(e.g., Miombo in Tanzania and Acacia woodlands in Kenya and Ethiopia) and broadleaved  

semi-deciduous and evergreen forests (hereafter referred to as forests). As elsewhere in the tropics, 

these natural biomes are increasingly being degraded and converted to other land uses, particularly 

plantation and cropland. The primary drivers of land use change are high population growth and 

associated demand for land and resources, nationally and internationally [18–20]. Pressure is higher 

near centers of demand, such as major towns, and in areas that are easier to access, such at low- to 

mid-altitudes, on flatter slopes, outside protected areas and close to roads [19,21]. Consequently, the 

majority of forest that remains is in mountainous regions, with villages often clustered around the 

foothills [18]. Drier, fire-prone woodlands and xeric low to high density bushlands dominate at lower 

altitudes, and are more susceptible to small-scale resource extraction (e.g., for charcoal production) 

and pressure from livestock grazing [7]. 

2.2. Ground-Measurements of LAI 

We measured LAITrue at 274 sites across East Africa during ten field work campaigns, carried out 

between 2007 and 2012 (Figure 1, Table 1) following standard protocols [7,22]. At each site, we took 

high-resolution images through digital cameras equipped with hemispherical (fish-eye) lenses. The 

cameras were mounted on tripods at 1 m above ground, looking vertically upward from beneath the 

canopy [23]. The ―levelled‖ hemispherical photographs were acquired normal to a local horizontal 

datum, orienting the optical axis of the lens to local zenith [24]. We measured under overcast 

conditions whenever possible to minimize anisotropy of the sky radiance [23]. On average, 19 images 

(median, 13) were taken at each site, distributed within plots according to VALERI design [25] 

(VAlidation of Land European Remote Sensing Instruments) or along linear north-south transects if 

field conditions required. 

Hemispherical images were pre-processed by first extracting blue-channel pixel brightness values 

and then applying a threshold algorithm for separating sky from vegetation [26]. Resultant binary 

images were analyzed using the free canopy analysis software CAN-EYE V6.3.8 [27]. For each site, 

we derived LAI corrected for foliage element clumping [28], limiting the field of view of the lens to 

values between 0° and 60° to avoid mixed pixels. 

2.3. Validation of GIMMS LAI3g 

Direct validation of the LAIavhrr product with LAITrue was not possible, primarily because of the 

mismatch in spatial resolution between field data and AVHRR data [29]: each LAIavhrr pixel is likely to 
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be a composite of different biomes, depending on the heterogeneity of the landscape. Instead, we 

indirectly validated LAIavhrr by comparing its distribution properties across biomes and environmental 

gradients with those properties for LAITrue. We thereby assume that the coarse resolution product is 

able to capture LAI variation and its underlying drivers at landscape scales. 

Figure 1. Distribution of 274 field sites in relation to the Global Inventory Modeling and 

Mapping Studies (GIMMS) LAI3g product, rainfall and major biome types in East Africa. 

(a) Distribution of field sites located in shrub, bush, woodland, forest, crops and 

plantations overlaid on Earth Observation (EO) derived LAIavhrr map (for details see Text). 

(b) Rainfall environment in East Africa derived from WORLDCLIM (1 km pixel 

resolution). (c) Distribution of biome pixels with no change in biome between 2007 and 

2011. (d) Rainfall environment of field sites. 

 

First, we grouped LAIavhrr pixels belonging to a particular biome using MODIS land cover products 

for the years 2007 to 2011 (MCD12Q1v51 [30]), i.e., the time period of our field data, excluding those 

pixels that switched biome type during this time. We computed LAIavhrr as the average across the dry 

season months (December through February, June through August). Biomes of the MODIS land cover 

product were matched to biome types recorded in the field: evergreen broadleaf forest (=forest), 

deciduous broadleaf forest and woody savannas (=woodland), savannas (=bushland), closed and open 

shrublands (=shrubland), croplands and cropland/natural vegetation mosaic (=cropland), evergreen and 

deciduous needle-leaf forest (=plantation). 
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The geographic extent was set to the borders of Tanzania, Kenya and the southern part of Ethiopia, 

to match the regions sampled in the field. We created artificial ―plots‖ using a random points 

generator, limiting the number of points within each biome to 1000. We specified a minimum distance 

of 8 km between points to minimise spatial autocorrelation and to exceed the pixel resolution of 

LAIavhrr maps. This algorithm created 80 plots in forest, 624 in woodland, 705 in bush, 995 in shrub 

and 294 in crop. Plantations are not well delimited within the MODIS land cover product and so the 

spatial extent of this biome was too low to generate a sufficient number of plots. For plantation only, 

we therefore increased the geographic extent to the west, thereby increasing the number of plantation 

―plots‖ to 11. 

In a first step, we compared distribution properties of LAIavhrr and LAITrue for each biome. Secondly, 

we used generalised additive and general linear effects models to parameterise the responses of LAIavhrr 

and LAITrue to environmental gradients. Statistical analyses were carried out using R statistical software 

package [31]. 

Table 1. Ten field campaigns (ID) were carried out between 2007 and 2012. 

Hemispherical images were taken in 20 m × 20 m plots or along linear transects depending 

on environmental conditions in the field. N—Number of plots or transects measured (plots 

including fewer than eight sample points were excluded from analyses). Country—Field 

campaigns took place in Ethiopia (ETH), Kenya (KEN) and Tanzania (TZA). PI—Main 

coordinator of field work campaign.  

ID N Date Country Camera Lens PI 

ID01 37 January 2010 TZA, KEN Nikon D5000 Nikkor F2.8 MP, RAM 

ID02 43 July 2010 TZA Canon EOS 450D Sigma 4.5 F2.8 MP, SW * 

ID03 58 January 2010 KEN Nikon D5000 SLR Sigma 4.5 F2.8 PKEP 

ID04 23 January 2007 KEN Nikon 8800 VR Nikon FC-E9 AG 

ID05 31 June 2011 KEN Canon EOS 450D Sigma 4.5 F2.8 MP, ACS * 

ID06 32 June 2012 KEN, ETH Nikon D3100 Sigma 4.5 F2.8 MP, PJP, ACS * 

ID06a 8 June 2012 ETH Nikon D5000 Nikkor F2.8 RAM 

ID07 20 August 2011 TZA Nikon D3100 Sigma 4.5 F2.8 HS * 

ID08 11 November 2012 KEN Nikon D800 Sigma 4.5 F2.8 RAM 

ID10 31 May to June 2012 KEN Nikon D800 Sigma 4.5 F2.8 MP, RAM, PJP, LJ * 

ID12 14 June 2012 ETH Nikon D5000 Nikkor F2.8 DD 

* See Acknowledgements. 

2.4. LAI Response to Environmental Gradients 

Rainfall and temperature estimates were extracted using WORLDCLIM interpolated climatology [32]. 

From these, we derived five weakly inter-correlated predictor variables (Table 2): mean annual rainfall 

(PPT), potential evapotranspiration (PET) [33] and an associated moisture index (MI = PPT/PET), 

precipitation of the driest quarter (PPT_DQ) and an associated moisture index for the driest quarter 

(MI_DQ), and annual temperature range (TE_R). For topographic predictors (elevation, ELEVATION, 

and slope, SLOPE), we used data from the 90 m spatial resolution Shuttle Radar Topographic 

Mission [34]. 
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As a surrogate for the effects of natural grazing pressures on LAI, we used maps of herbivore 

browser richness (HERBIVORES) derived from International Union for Conservation of Nature range 

maps [35]. To quantify the effects of human pressures, we recorded whether a sampling site was 

located within or outside a protected area using the World Database on Protected Areas [36], 

calculated the (Euclidean) distance to roads (ROADS) and towns (TOWNS) using AFRICOVER 

data [37] and Open Street Map projects), and used maps of human population density 

(AFRIPOP [38,39]) to generate population pressure grids at 1 km spatial resolution (POPPRESS [40]). 

Pressure on a location i increases linearly with number of people p in a remote location j, such that 

                
 
   , where N is the number of locations across which the pressure accumulates. 

The weight w exerted by a remote population decreases exponentially with distance d, according to a 

half-normal distribution:                   
  . Increasing values of ơ increase the weight given to 

relatively distant populations. In exploratory analyses,   = 5 yielded the strongest correlation with LAI 

(testing ơ up to 25) and was used in all subsequent analyses. 

Table 2. Pearson’s product moment correlation coefficients (Spearman’s rho) between 

predictor variables for the field derived point data. NS—correlation not significant at p = 0.05. 

1—Mean Annual Precipitation, 2—Potential Evapotranspiration, 3—Moisture Index,  

4—Temperature Range, 5—Precipitation driest quarter, 6—Moisture index for driest 

quarter, 7—Population pressure, 8—SRTM Slope, 9—SRTM Elevation, 10—Herbivore 

Browser Richness, 11—Distance to Roads, 12—Distance to Towns. NS: correlation not 

significant. Cell entries: spearman’s rho estimates. Bold values indicate values above the 

correlation threshold of 0.6. 

 1 2 3 4 5 6 7 8 9 10 11 

2 −0.39 -          

3 0.64 NS -         

4 −0.16 0.80 0.13         

5 0.64 −0.14 0.52 NS -       

6 0.57 NS 0.53 NS 0.91       

7 0.48 NS 0.47 0.19 0.18 0.18 -     

8 NS −0.31 −0.13 −0.37 0.13 NS −0.29 -    

9 0.42 −0.22 0.38 0.28 0.38 0.31 0.43 NS -   

10 −0.26 −0.14 −0.41 −0.15 −0.19 −0.24 −0.26 0.29 NS -  

11 0.25 NS 0.36 0.16 0.16 NS NS NS 0.23 −0.14 - 

12 −0.17 NS NS 0.12 −0.25 −0.28 NS −0.45 ns ns −0.21 

The sample size (number of artificial plots) used for LAIavhrr was matched to the number of LAITrue 

plots measured for the respective biome in the field, so that statistical power was similar for LAIavhrr 

and LAITrue. LAIavhrr was subsetted for each biome (except forests and plantations) by randomly 

choosing samples 100 times. We then computed distance correlation statistics, DisR, using the dcor 

function (R package ―energy‖) to test for statistical dependence between LAITrue or LAIavhrr and each 

environmental predictor. We used the mean value of DisR across the 100 subsets of data. These 

analyses were repeated across and within biomes to account for potential biome-specific constraints 

masking relationships between biophysical structure and environmental drivers. 
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For subsequent analyses with general additive and general linear models, LAITrue and LAIavhrr were 

log-transformed to meet assumptions of normality. We included latitude and longitude as predictors to 

test for landscape-scale spatial autocorrelation. Models were fitted using Maximum Likelihood. 

Automated model selection was carried out using information theoretic approaches and multi-model 

averaging [41]. First, we constructed a global model including all predictors described above, except 

for moisture indices and PPD_DQ which were highly correlated with precipitation (Table 2). We then 

used the dredge function (R Package MuMIn v1.9.13), which constructs models using all possible 

combinations of the explanatory variables supplied in the global model. These models were ranked, 

relative to the ―best‖ model, based on the change in Akaike Information Criterion (delta AIC). 

A multi-model average was calculated across all models with delta AIC < 2. 

3. Results 

3.1. LAI Distribution within and between Biomes 

LAITrue and LAIavhrr are not drawn from the same population, differing significantly in their medians, 

spread and shape (Mann-Whitney-Wilcox test: p < 0.001). LAITrue increased with vegetation height, 

from shrubland and bushland (similar) to woodland and then to forest (pairwise Wilcoxon tests, 

Bonferroni adjusted, p < 0.008; Table 3). Plantation had significantly lower LAITrue compared to forest, 

but significantly higher LAITrue compared to shrubland and bushland (Figure 2). LAIavhrr increased 

significantly with from shrubland to bush to woodland to forest (Table 3, Figure 2). Forest also had 

significantly higher LAIavhrr compared to plantation and cropland; which had significantly lower 

LAIavhrr than plantation. When comparing for each biome separately, LAIavhrr was significantly higher 

than LAITrue for forest, bushland, woodland and plantation (p < 0.001; Kruskal-Wallis tests), whilst 

being similar for cropland and shrubland. 

Table 3. LAITrue was measured within plots or along transects in the field (FI) using 

hemispherical photography. LAIavhrr was extracted from the earth observation-derived 

GIMMS LAIg3 product (EO, biome-specific plots randomly created in GIS). Shaded cells: 

LAI estimates differed significantly between FI and EO (Kruskal-Wallis test, p < 0.001). 

Statistical properties of LAI distributions: Mean ± Standard Error, Median, Interquartile 

range (IQR), and Maximum. 

 
Number Mean ± SE Median IQR Max 

FI EO FI EO FI EO FI EO FI EO 

Shrub 9 995 0.4 ± 0.1 0.4 ± 0.0 0.4 0.3 0.4 0.3 0.8 4.6 

Bush 29 705 0.4 ± 0.1 1.7 ± 0.0 0.3 1.7 0.4 0.5 2.5 3.4 

Woodland 32 624 1.7 ± 0.3 2.1 ± 0.0 1.3 2.0 1.7 0.5 7.4 5.1 

Forest 174 80 2.6 ± 0.1 4.1 ± 0.1 2.3 4.3 1.8 0.9 9.0 5.4 

Crop 7 294 2.0 ± 1.1 2.0 ± 0.1 0.5 1.9 2.3 1.3 7.7 4.9 

Plantation 23 11 1.6 ± 0.2 3.8 ± 0.2 1.3 4.2 1.5 0.7 4.5 4.7 
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Figure 2. Estimates of field-derived LAI (LAITrue) and earth observation-derived LAI 

(LAIavhrr) for natural and man-made biomes in East Africa. (a) LAITrue estimates derived  

for 274 study sites. (b) LAIavhrr estimates derived for randomly created plots using  

MODIS biome maps. (c) Comparison between LAIavhrr and LAITrue (1:1 line indicates 

complete agreement). 

 

3.2. Distribution of LAI Response to Environmental Variation 

Smoothed response curves of LAITrue and LAIavhrr versus PPT and MI were similar, showing an 

increase of LAI to global maxima, followed by a decrease at higher values of the environmental driver 

(Figure 3). Adhering to an a priori functional form, responses of LAITrue and LAIavhrr to PPT and MI 

were better captured by gamma distributions (Residual Standard Error, LAITrue: RSSPPT = 1.574, 

RSSMI = 0.584; LAIavhrr: RSSMI = 0.584, RSSPPT = 0.567) as opposed to logistic functions  

(LAITrue: RSSPPT = 1.609, RSSMI =1.18; LAIavhrr: did not converge) or linear models  

(LAITrue: RSSPPT = 1.676, RSSMI = 1.238; LAIavhrr: RSSMI = 0.600 and RSSPPT = 0.573). 

Coefficients for parameters in the gamma fits (nls function R package ―stats‖) differed significantly 

between LAI estimates (Figure 3): the LAITrue response reached its maximum at lower values of the 

respective environmental driver and declines more strongly thereafter. LAITrue increased to 2.23 at  

MI = 0.76 mm and to 3.19 at PPT = 1400 mm decreasing thereafter, while LAIavhrr increased to 3.13 at 

MI = 1.58 and to 3.48 at PPT = 2700 mm decreasing thereafter. 

Distance correlation statistics imply that both LAITrue and LAIavhrr are not completely independent of 

any of the environmental drivers tested (Table 4). The strength of the correlation between LAITrue and 

LAIavhrr and environmental drivers differs among biomes. Changes in the correlation strength between 

LAI and PPT, MI or HERBIVORES followed similar trends for LAITrue and LAIavhrr (Table 4). 
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Yet, complex patterns emerged for other environmental drivers and field data showed more 

pronounced signals in responses to TOWNS, SLOPE and POPPRESS at biome level. PPT, 

POPPRESS and their interaction were all significant factors contributing to observed variability of 

LAITrue and LAIavhrr in general additive and general linear models (Table 5). Socio-economic variables 

contributed similarly to spatial variability in both LAITrue and LAIavhrr (Table 5). ROADS and TOWNS 

were significantly contributing to variability in LAITrue and LAIavhrr for both model types. LAI was 

higher within protected areas compared to unprotected land, and increased with SLOPE. However, 

general linear models identified fewer environmental predictors as contributing significantly to LAIavhrr 

variability compared to general additive models, suggesting a dominance of nonlinear relationships 

between environmental variables and LAI (Table 5). 

Figure 3. Nonlinear responses of LAITrue and LAIavhrr to annual rainfall (PPT) and moisture 

index (MI). Smoothed curves (local regression of 10% of points with weighted linear least 

squares) of LAI responses to gradients of MI (a) and PPT (b) summarize  

patterns without imposing a priori functional forms. In (c,d) gamma fits  

(y = A × (x
(k − 1)

 × exp(−x/s))/(s
k
 × gamma(k))) are displayed using a natural logarithmic 

for the y-scale. LAITrue response reaches its maximum at lower values of the respective 

environmental driver compared to LAIavhrr response and declines more strongly thereafter. 
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Table 4. Response of satellite-derived LAIavhrr (EO) and field-derived LAITrue (FI) to environmental gradients in single-predictor models, 

according to distance correlations (0 < DisR < 1, where DisR~0 indicates independence). Highlights indicate that DisR for LAITrue and LAIavhrr 

differed by more than 0.1 (green) or by more than 0.2 (purple), in which cases we assume that the relationship between LAITrue and 

environmental predictor is different from the relationship between LAIavhrr and the environmental predictor. 

 
PPT MI PET POP-PRESS Slope HERB MI_DQ PPT_DQ TOWN ELE-VATION ROADS TR 

FI EO FI EO FI EO FI EO FI EO FI EO FI EO FI EO FI EO FI EO FI EO FI EO 

Shrub 0.86 0.64 0.76 0.64 0.76 0.57 0.72 0.54 0.78 0.59 0.41 0.60 0.43 0.60 0.54 0.59 0.67 0.53 0.84 0.59 0.34 0.49 0.39 0.53 

Bush 0.49 0.52 0.43 0.49 0.26 0.39 0.65 0.35 0.76 0.33 0.38 0.41 0.30 0.44 0.39 0.45 0.48 0.36 0.36 0.38 0.25 0.33 0.30 0.38 

Wood 0.35 0.53 0.48 0.49 0.40 0.42 0.33 0.31 0.36 0.41 0.40 0.37 0.60 0.55 0.51 0.54 0.45 0.35 0.32 0.42 0.31 0.32 0.35 0.35 

Forest 0.39 0.17 0.27 0.17 0.31 0.36 0.39 0.19 0.25 0.14 0.37 0.25 0.22 0.23 0.41 0.27 0.30 0.16 0.22 0.22 0.12 0.19 0.29 0.19 

Crop 0.55 0.55 0.58 0.48 0.85 0.27 0.53 0.28 0.69 0.25 0.47 0.44 0.51 0.67 0.70 0.68 0.51 0.24 0.69 0.61 0.46 0.55 0.65 0.59 

Plantation 0.42 0.40 0.36 0.36 0.38 0.39 0.47 0.53 0.29 0.45 0.45 0.36 0.56 0.56 0.47 0.55 0.37 0.63 0.40 0.46 0.43 0.54 0.40 0.44 

All 0.40 0.66 0.23 0.64 0.36 0.41 0.33 0.51 0.32 0.48 0.23 0.48 0.18 0.66 0.32 0.66 0.39 0.46 0.16 0.59 0.14 0.39 0.33 0.40 

We suspect the observed increase of LAI with increasing POPPRESS to be an indirect effect resulting from the increase of POPPRESS with PPT: 

i.e., P (LAI|PPT ∩ POPPRESS) similar to P (LAI|PPT). To visualize this conditional independence, we performed a triangulation-based natural neighbor 

interpolation of the 2D scattered data of LAI at PPT × POPPRESS locations using the Matlab function TriScatteredInterp. 

This creates an interpolant that fits a surface of the form LAI = f (PPT, POPPRESS) which passes through the sample values at the point locations. We 

interpolated LAI on a regular grid of PPT × POPPRESS, which enabled us to look at variations of LAI with one variable whilst fixing the other one. Flat 

slopes in the rainfall isolines suggested that LAI given POPPRESS and PPT is indeed nearly the same as LAI given PPT only, although the curves 

indicate that LAI given high PPT is lower for high POPPRESS especially in the case of LAIavhrr (Figure 4). We also suspect the negative relationship 

between distance to town and LAI (Table 5) to be an indirect effect resulting from a saturation of LAI at higher rainfall, where many towns are located. 

Flat slopes of PPT isolines in response to TOWNS indicate conditional independence of LAI in response to TOWNS. 
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Figure 4. Population pressure (POPPRESS) and distance to town (TOWN) isolines of LAI 

in response to increasing annual rainfall (PPT) for LAITrue and LAIavhrr. (a,b) For a given 

level of rainfall, LAI does not depend on the level of POPPRESS. However, in high 

rainfall regions, high levels of POPPRESS have a noticeable negative impact on LAI, 

which is especially apparent in the LAIavhrr response. (c,d) Isolines suggest conditional 

independence of LAI and TOWN. However, there are no data with the combination of high 

TOWN and high rainfall, thus conclusions in the range of these parameter combinations 

are highly uncertain. 
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Table 5. Relative Variable Importance (RVI) in general linear and general additive models 

(GLM and GAM) of field- and satellite-derived LAI in response to environmental 

predictors. RVI is calculated for each predictor by summing the AIC weights across all 

models where the variable occurs (models of interest are determined by delta AIC < 2;  

see main text). Because of high correlation between moisture indices and precipitation 

(Table 2), we excluded the former from global models. GLMs are first order unless 

superscripted (a) in which case second order. Smooth terms in GAMs were allowed  

two effective degrees of freedom. For second order GLMs, signs for coefficients are given 

for first (P1) and second-order polynomial (P2). 

 
RVI; LAITrue Models RVI; LAIavhrr Models 

Sign of Estimated 

GLM Coefficients 

GAM GLM GAM GLM Field EO 

Biome type 1.0 1.0 1.0 1.0 Positive Positive 

Mean annual rainfall (PPT) 0.49 1.0 a 0.50  P1: +; P2: −  

Potential evapotranspiration 0.50 0.28 1.0 0.22 Negative Positive 

Temperature range 0.33 0.61 1.0  Negative  

Population pressure 

(POPPRESS) 
0.53 1.0 1.0 0.30 Positive Positive 

Distance to roads 0.20 0.12 0.32 1.0 Positive Positive 

Distance to towns 1.0 0.11 1.0 0.57 Negative Negative 

Protected 1.0 1.0 1.0  Positive  

Elevation 1.0 1.0 1.0  Negative  

Slope 0.62 1.0 1.0  Positive  

Latitude/Longitude 1.0 1.0 1.0 1.0 Positive Positive 

PPT × POPPRESS 1.0 - 1.0 -   

Biomes:Slope - 1.0 - -   

AIC 479.5–481.4 591.1–593.1 912.6–914.1 −112.3–−110.4   

4. Discussion 

The ultimate objective of linking EO data to biophysical land surface attributes (e.g., vegetation leaf 

area, biomass and productivity) is to characterize those attributes on large spatial scales and over time 

with minimal need for further fieldwork [42], so that the logistical, financial and subjective sampling 

constraints of fieldwork can be overcome. This requires that EO products, such as GIMMS LAI3g, 

accurately reflect conditions on the ground, both in absolute values and in their variation across  

space and time [43,44]. In this study, the increase in LAI with vegetation height for natural biomes 

(from shrubland/bushland to woodland and forest) is captured by both LAIavhrr and LAITrue. However, 

we find that LAIavhrr significantly overestimates LAI relative to LAITrue for all biomes except for 

shrubland and cropland. The coarse-spatial resolution of LAIavhrr may cause a bias towards the global 

mean of the region. Yet in East Africa, one would expect such a bias to result in lower LAI compared 

with estimates derived at high spatial resolution such as field-based LAITrue, because these landscapes 

are highly heterogeneous, and increasingly modified towards low LAI biomes such as degraded 

woodlands and crops. Moreover, LAIavhrr extracted from large tracts of homogeneous forest in Eastern 
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Congo was found to be similar to LAIavhrr extracted for forests in our study area, again suggesting a 

consistent overestimation in the GIMMS LAI3g product. 

In tropical Africa, vegetation phenology is particularly tuned to precipitation and its seasonal  

shifts [45,46], which may be impacted by rising global temperatures [47]. Rainfall triggers the 

emergence of green leaves in deciduous biomes, and controls vegetative growth and growth-duration 

in semi-arid and arid environments [48]. Vegetation indices such as NDVI, as a surrogate of vegetation 

productivity and phenology, have been linked to rainfall and rainfall and rainfall variability [49] in 

East Africa via a log-linear relationship. Nonlinear responses of LAI to PPT (and derived MI) in our 

study area are captured by both LAIavhrr and LAITrue by the same functional relationship. LAI increases 

with water availability up to a maximum, declining at higher values of annual rainfall and moisture. 

However, the response curves differ significantly, in that field-derived LAI reaches its maximum at 

lower values of the respective environmental driver, and exhibits a more rapid rate of change. 

Further to climatic constraints, our analyses show that socio-economic factors play an important 

role in observed vegetation structure. LAI was found to be higher with increasing terrain steepness  

and within protected areas. These findings add evidence, based on biophysical structure, to previous 

studies showing how inaccessibility functions as a passive protection for woody biomes [18,19]. Our 

results are especially relevant for environmental management concerned with the maintenance of 

ecosystem processes and function, which are linked to biophysical properties such as LAI. Curiously, 

LAI was also found to be higher in regions under greater population pressure. Population pressure is 

greatest in areas of high rainfall, which are suitable for both crop production and high-LAI forest  

(of which there is less). Further, associated resource demands on adjacent woodlands and forests mean 

that, in many areas, these biomes have degraded to bushland and shrubland, which may exhibit higher 

biome-specific LAI than rainfall-limited bushland and shrubland elsewhere. Thus the observed pattern 

may reflect historical land use impacts rather than a positive causal relationship between human 

population pressure and vegetation leaf area. A visual comparison of LAI rainfall isolines along a 

gradient of increasing population pressure shows primarily flat slopes, supporting the above 

hypothesis. This pattern is especially apparent in the LAIavhrr response and, if at all, there seems to be a 

negative effect of increasing population pressure on LAI in regions with high rainfall. 

Validating coarse-scale spatial resolution data with field measurements is inherently difficult due to 

challenges of spatial mismatch [50] and differing spatial scales [51]. LAI distributions inferred from 

field measurement and satellite retrieval should ideally converge to the true intrinsic distribution of the 

vegetation class in a given region at a given time [52]. Whilst our findings are encouraging regarding 

the capacity of EO data to capture spatial variation in LAI along major environmental gradients,  

they also highlight the need for further field assessments of inter- and intra-annual LAI dynamics, 

especially in remote woody biomes, in croplands and in plantations. An important issue, arising from 

our use of MODIS land cover products in the generation of biome-specific random plots, is that 

plantations are difficult to distinguish from natural forests, especially if consisting of broadleaved 

evergreen trees. We find that very few plantations are identified by the MODIS product, despite  

large areas of forests being converted to plantations in both Kenya and Ethiopia. Similarly, spectral 

similarities complicate the distinction between ―woody savanna‖ and savanna, as well as between 

grassland and cropland [30], particularly when the latter are rotated in seasonal succession rather than 

being left fallow. It is encouraging, however, that despite these uncertainties in biome-specific LAIavhrr 
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estimates, the increase in LAI with vegetation height is captured by LAIavhrr and LAITrue similarly. 

Furthermore, general additive models identified the same set of environmental predictors having 

similar impacts on both LAI estimates. 

5. Conclusions 

Remotely sensed, global-scale estimates of biophysical structure, such as LAIavhrr effectively 

capture spatial variation in LAI along major environmental gradients, but some challenges remain. 

First, LAIavhrr appears to consistently overestimate LAI in woody biomes such as forest. Second, 

nonlinear responses of LAI to water availability, while captured by both LAIavhrr and LAITrue similarly, 

differ significantly in their parameterization, such that the remotely sensed product reaches its 

maximum at higher values of rainfall and moisture index than field-derived LAITrue suggests may be 

the case. LAITrue increased to 2.23 at MI = 0.76 mm and to 3.19 at PPT = 1400 mm decreasing 

thereafter, while LAIavhrr increased to 3.13 at MI = 1.58 and to 3.48 at PPT = 2700 mm decreasing 

thereafter. Third, distance correlation statistics show significant relationships with all environmental 

drivers tested for both LAITrue and LAIavhrr, although the strength of that correlation varies between 

LAITrue and LAIavhrr responses. 

More generally, we find that the same set of environmental drivers emerges as significant in models 

of LAI variability. Beside rainfall, temperature and topography, socio-economic correlates such as 

population pressure, distance to roads, distance to towns and protection status are important for 

understanding spatial variation of vegetation biophysical structure in the human-modified landscapes 

of tropical Africa. The responses to these drivers are largely consistent for LAIavhrr and LAITrue except 

for their responses to potential evapotranspiration. Note though, that protection status, rainfall, 

temperature range and topography were not significant in general linear models of LAIavhrr variability 

despite being significant in general additive models suggesting complex underlying relationships. 

In particular, higher forest LAI observed within the protected area network suggests a potential 

mechanism for monitoring efforts to reduce forest degradation (e.g., for carbon conservation or 

catchment protection). Given the above challenges, targeted field measurements, stratified according  

to both environmental and socio-economic gradients, will be needed to improve the accuracy of 

satellite-derived estimates. 
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