
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Proceedings of the
5th UK e-Science All Hands Meeting (AHM '06).
White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/77923

Paper:
Wang, H, Brodlie, KW, Handley, J and Wood, J (2006) Service-oriented
approach to collaborative visualization. In: Proceedings of the 5th UK e-Science
All Hands Meeting (AHM '06). 5th UK e-Science All Hands Meeting (AHM '06).,
18th-21st September 2006, Nottingham, UK. EPSRC . ISBN 0-9553988-0-0

http://www.allhands.org.uk/2006/proceedings/index.html

Service-Oriented Approach to Collaborative Visualization

Haoxiang Wang, Ken Brodlie, James Handley, Jason Wood

School of Computing, University of Leeds, Leeds, LS2 9JT, UK

Abstract

This paper presents a new service-oriented approach to the design and implementation of
visualization systems in a Grid computing environment. The approach evolves the traditional
dataflow visualization system, based on processes communicating via shared memory or sockets,
into an environment in which visualization Web services can be linked in a pipeline using the
subscription and notification services available in Globus Toolkit 4. A specific aim of our design is
to support collaborative visualization, allowing a geographically distributed research team to work
collaboratively on visual analysis of data. A key feature of the system is the use of a formal
description of the visualization pipeline, using the skML language first developed in the gViz e-
science project. This description is shared by all collaborators in a session. In co-operation with
the e-Viz project, we generate user interfaces for the visualization services automatically from the
skML description. The new system is called NoCoV (Notification-service-based Collaborative
Visualization). A simple prototype has been built and is used to illustrate the concepts.

1. Introduction
Visualization is widely recognized as a critical
component in e-science, allowing insight into
the increasingly large datasets generated by
simulation and measurement. In recent years a
number of important visualization tools have
been developed, many of these following the
dataflow paradigm. This dataflow approach
sees visualization as a sequence of processing
steps, whereby raw data is first filtered in some
way, then transformed to a geometric
representation and finally this geometry
rendered as an image. Visualization software
provides these steps either as classes that can be
embedded in a user program (vtk – vtk, 2006 -
is an example of this approach), or as an overall
environment with a visual programming editor
that enables pipelines to be built from a supplied
set of modules (here IRIS Explorer – IRIS
Explorer, 2006; Walton, 2004 - is an example).
These pipelines can be built, torn apart and
reformed, as users experiment with different
ways of looking at their data. The dataflow
paradigm for visualization (first suggested 20
years ago) has stood the test of time, not least
because it provides a high level of abstraction
for designing visualization applications.

Major computational applications today
typically involve distributed computing – with
the user interface executed at the desktop, and
remote resources used for computationally
demanding tasks. Some traditional visualization
systems have managed to evolve to this style of

working: in fact IRIS Explorer was designed
from the outset to have this capability, with the
visual editor on the desktop controlling remote
execution of modules. Recent work in the gViz
e-Science project (gViz, 2006) has exploited
this to adapt IRIS Explorer to grid computing.

However there is a trend today to employ
Service-Oriented architectures in designing
distributed computing applications. An
important and pioneering effort to utilize web
services in visualization was the GAPtk toolkit
(Sastry and Craig, 2003) which provides
specific ‘turnkey’ visualization services such as
isosurfacing, but without the ability to chain
them together in pipelines. However, the
traditional dataflow visualization paradigm is an
excellent match to the concept of a service-
oriented architecture: the modules simply
become services. Charters (Charters et al, 2004;
Charters, 2006) has described the design of a
visualization system based on these concepts, in
particular using Web Services. Our work in this
paper takes this approach further, by using
stateful Web services and the facilities in
Globus Toolkit 4 (GT4, 2006) for subscription
and notification.

Much e-science is multi-disciplinary in
nature, involving geographically distributed
research teams, and so visualization tools must
be designed to be used collaboratively. Again
the dataflow paradigm has proved extremely
flexible, and it has been exploited in a number
of different ways to provide collaborative
visualization systems. This work however pre-
dates the emergence of Service-Oriented

architectures, and so it is important to study
how best to provide team-working in this newer
context. We see collaboration as fundamental,
and so our design incorporates multi-user
working from the outset. The style of
collaborative working has evolved from our
experiences with collaborative visualization
over the past decade.

The structure of the paper is as follows.
We begin in section 2 with the vision which
underpins our research programme in service-
oriented visualization, followed in section 3 by
an overview of NoCoV, our proposed system.
The design of the system is discussed in section
4, and section 5 describes an implementation of
a prototype, developed as proof of concept.
Conclusions and future work are in section 6.

2. Service-oriented Visualization –
The Vision
The overall vision for our design is a next
generation visualization system – based on the
proven concept of dataflow pipelines linking
elementary visualization modules, but
exploiting modern ideas from service-oriented
architectures, and involving collaboration
between users and between providers, at a
global level. Thus we see visualizations being
created from a worldwide repository of
visualization services, being assembled
collaboratively by research teams, and
exploiting the latest Grid computing
technologies.

A fundamental concept therefore in our
design is the Visualization Web Service. This
corresponds to a module in a traditional
Modular Visualization Environment, or MVE,
such as IRIS Explorer or Open DX. In an MVE,
modules can be linked in a dataflow pipeline,
this being achieved typically by a visual
programming ‘front-end’. Often, this front-end
also provides a user interface to each module,
allowing parameters to be modified
interactively. We retain the front-end concept,
but make a clear distinction between the editing
of pipelines and the user interface to services –
we envisage visualization application
developers having access to pipeline editing,
while visualization users only require access to
parameter setting, in pipelines previously
created.

A central aspect of our vision is a formal
description of the visualization pipeline; this
indicates the services, the user specified
parameters of the services, and the linkage
between services. This description, together
with information about the expertise of the user,

is used to build automatically tailored user
interfaces.

The flow of data between modules in an
MVE is handled either by shared memory (on
the same machine) or by socket connection
(between machines). The triggering of dataflow
is handled by a firing algorithm. We are able to
exploit a novel concept in web services to
initiate dataflow, namely notification. A service
subscribes to a data element on another service,
and receives a notification when that element
changes – thus data can flow from one service
to another.

Visualization expertise is distributed across
the world, and so our vision is to see a
worldwide repository of services, maintained on
a co-operative basis by specialist groups. These
can be wrapped as Grid Archives (gars), listed
in a central UDDI, and downloaded and
deployed on a local basis by visualization
service providers. Thus a flow visualization
service developed by a team in the Netherlands
could be deployed in Japan by a Japanese
service provider.

In any pipeline, each service can be
deployed on a different resource – thus allowing
us to exploit dedicated rendering resources for
example. In general, delivery to the desktop
should allow a choice of remote rendering
(delivery of images) or local rendering (delivery
of geometry).

There is increasing interest in collaborative
applications and so a fundamental design
requirement of our system is to support team
working, where the members of the team may
be distributed in space and time. A number of
approaches to collaborative visualization using
traditional MVEs have been suggested. These
include (at two ends of the spectrum): VNC
(RealVNC, 2006), where the display of the
MVE of one user is shared by a number of
collaborators – this is fairly effective when the
collaboration is passive, but is extremely
awkward if several people wish to take an active
role; and COVISA (Wood et al, 1997) where
each user develops their own pipeline but can
tap data from any point in their pipeline and
make it available to all collaborators – this is
extremely flexible, and almost any style of
collaboration can be programmed, but the
different pipelines make it difficult for any user
to have a global view of the set of individual
pipelines. Thus we aim for a midway position:
we have a shared ability to build the pipeline,
but there is a single pipeline for all users.

In addition to this synchronous (same time,
different place) collaboration, there is a similar
need to support asynchronous working, where

the participation is spread over a period of time.
The requirement here is for a persistent pipeline
of services, which a collaborator can pick up

and develop at a later time – important for
collaboration with Australasia for example.

Figure 1: The overview of service-oriented collaborative system (NoCoV)

3. NoCoV System overview
NoCoV (Notification-service-based
Collaborative Visualization) provides a
collaborative visualization system implemented
using Notification Web Services. It is an
evolution of the MVE, implemented using a
Service-Oriented architecture. Here,
visualization services replace the visualization
modules of the MVE, and the links between
traditional visualization modules are
implemented as subscriptions and notifications
between visualization services.

As shown in Figure 1, the Pipeline Editor
Client is the user interface for creating a
visualization pipeline, and the Parameter
Control Client provides the GUI for users to
interact with parameters on each service. This
separation of interfaces allows us to support
various classes of users. Visualization experts
may use the Pipeline Editor to create
visualization applications for use by novice
users who subsequently only interact with these
pipelines through the Parameter Control Client.
A middle class of users may be comfortable
creating their own pipelines so may use both
interfaces.

The Pipeline Controller Service sits between
the end-user clients and the distributed
visualization services thus making the
visualization services transparent to end-users.
It forwards the requests from clients to
corresponding services and broadcasts

visualization results to subscribing clients as
notifications. Users only need to consider the
visualization process at a logical level without
being aware of the physical locations of these
services or the different invocation methods
required. The Pipeline Controller Service also
acts as a collaborative workspace by sharing
pipeline and control parameters with
subscribing clients.

The visualization dataflow is implemented
by making subscriptions between different
visualization services (service A, B and C in
Figure 1). Each visualization service publishes
one or more notification topics which act as the
output ports for that service through which data
is sent to other connected services. There is a
special service set as an endpoint within each
pipeline to which the Pipeline Controller
subscribes. This service triggers a notification
every time a new result is generated by the
pipeline.

NoCoV is an extendable visualization
system since customised visualization services
can be introduced into the system, so long as the
Pipeline Controller service knows how to
communicate with these services (i.e. it is
provided with the WSDL descriptions of the
services). The Pipeline Editor Client lists these
customised services as available services for
users to link into their pipeline (i.e. services
register on a UDDI server from which the
Pipeline Editor Client can retrieve the available
service list).

To support collaborative working over the
construction of a pipeline there is a requirement
to share pipeline description information
between the Pipeline Controller Service and all
the clients. An extension of skML (Duce and
Sagar, 2005), an XML based visualization
pipeline description language, is used for this
purpose. It has been extended to fit the NoCoV
system with an emphasis on Service-Oriented
features.

The NoCoV system has been implemented
with GlobusToolkit 4 (GT4). The stateful Web
Services provided by GT4 offer the capability
of maintaining visualization pipeline
information between sessions. This allows users
to save the current status of the pipeline on the
Pipeline Controller Service for use the next time
they reconnect. We also exploit Notification
Web Services in GT4. Moreover, GT4 provides
a set of Grid security specifications which can
be seamlessly applied to the NoCoV system in
its future development to address one of the
desired issues in collaboration: security.

4. NoCoV System design

4.1 Using Notification Web Service

WS-Notification includes a set of specifications
(OASIS, 2006) and a whitepaper
(Publish/Subscribe, 2006) which describe the
use of a topic-based publish/subscribe pattern to
achieve notification with standard Web Services.

Figure 2:The working pattern of Notification

Web Service

With the normal request/response
communication mode between service and
client, the client has to keep polling the service
in order to get the latest changes. By contrast,
the notification approach works in the manner
shown in Figure 2. When the service publishes a
set of notification topics, clients can subscribe
to relevant topics according to their different

interests. Every time a change happens in these
notification topics, the service will
automatically deliver the changed information
to the subscribing clients.

The main reason for choosing Notification
Web Services to implement visualization is their
‘push’ feature. It fits well with the requirement
of a visualization pipeline which needs the
services to send their results to other services
connected to them ‘downstream’, each time
they produce a new result.

The publish/subscribe pattern provides a
data sharing approach for collaboration. The
notification topics published by the
visualization service can be either the data or
the control parameters. Actions from
participants (such as changing parameter values)
are also published as notifications, allowing
these to be shared.

The stateful feature inherited from GT4 Web
Services makes it possible to achieve
asynchronous collaboration as the status of the
pipeline is persistent and users can retrieve the
saved pipeline to carry on their previous work –
or new users can take over and continue the
development.

The publish/subscribe pattern can also
reduce network traffic by only delivering
changed information to clients. Moreover it can
cut down service and client workloads as clients
only need to subscribe to the service once and
then just wait for the notification messages. It is
similar to previously used technologies such as
socket communication, but with the facility of
WS-Notification, the system developers do not
need to consider the details of physical
communication ports, and the communication is
relatively easy to set up compared to socket
communication.

4.Trigger a
notification

3.Change
happens

2.Subscribe

1.Publish

Client

Service

Notification
Topic

As XML/SOAP messages have a restriction
on their maximum size, when large data (e.g.
update of geometry) needs to be sent as a
notification, only a reference to the data is
included in the notification message, and the
data itself can be transferred using http, ftp or
gridftp separately. Another possible solution is
to add data as an attachment (e.g. DIME) to the
notification message.

There are however some disadvantages of
notification services. When a client subscribes
to a notification service, the client needs to be
able to function as a listening service waiting
for the notification. In the case of a GT4
implementation, it requires GT4 to be installed
on the machine where the notification client
runs. In addition, every time a change happens
on a notification service, the service needs to
start a connection to the subscriber. If the

notification client (subscriber) sits behind a
firewall, the firewall may block all the
connections initiated from outside. In this case,
although the client can subscribe successfully to
the service, it can not receive any notifications
from outside of the firewall. WS-Messenger
(Huang, et al, 2006) proposed an approach to
address the issue of the delivery of notification
through a firewall by using a MessageBox
service to store all notification messages and
having consumers periodically pull notification
from the message box. Another alternative,
which is less secure but more straightforward, is
to set a small range of open ports in the firewall
and configure the local notification system to
only use ports within this range.

4.2 The Extended skML

As the proposed NoCoV system is expected to
enable the collaborative creation and
configuration of visualization pipelines, and the
persistence of pipeline information, the
visualization pipeline must be represented in
such a way that it can be stored as service
resource properties.

skML is an XML-based dataflow description
language (Duce and Sagar, 2005) which
describes visualization pipelines in a generic
way, so that the skML description can be
independent of the implementation of the
pipeline. The skML language was developed as
part of the gViz e-science project, and was
heavily influenced by MVEs such as IRIS
Explorer. However it lacks certain features to
describe characteristics of Service-Oriented
collaborative visualization pipelines. Rather
than create a different description language, we
have chosen simply to modify and extend skML.

An ‘instance’ element replaces the ‘module’
element in the skML to represent visualization
service instances, but the ‘link’ element in
skML is kept to represent the subscriptions to
notifications. One of the significant differences
is that the extension aims to present richer
information about the visualization pipeline. For
example, all the output and input ports for each
service are recorded: this is then made visible at
the user interface, to allow users the ability to
change the connections to/from that service. In
contrast with the original skML, all control
parameters for a service instance must be
explicit in the description, again so that they can
be presented in an automatically generated user
interface. Another difference is the adding of
new properties such as ‘owner’ and ‘sharable’,
which identify who owns this visualization
service instance and who are allowed to access
this service instance. These new properties will

make it possible to add security control in
NoCoV.

4.3 Pipeline Controller Service

A Pipeline Controller Service is placed
between the end-users and the visualization
notification services, in order to enable users to
collaboratively build the pipeline and configure
each visualization service linked within the
pipeline. Figure 3 displays the components of
the Pipeline Controller Service.

The Pipeline Controller stands between the
distributed visualization services and the end-
users as a proxy, through which users can send
requests to create/destroy, connect/disconnect
service instances and set parameters of these
instances. The removing or adding of
visualization services or any changes inside
visualization services are transparent to end-
users.

Figure 3: The Pipeline Controller Service

The Pipeline Controller also functions as a
shared workspace for all the participants. For
visualization experts who create visualization
pipelines, the Pipeline Controller keeps a
description of the current pipeline in the
extended skML, which can be retrieved for the
later joiners to the collaborative session. The
Pipeline Controller is implemented as a
notification service, in which a notification
topic about the latest status of the jointly created
pipeline is published so that users can share the
same pipeline and join in synchronous
collaboration of the construction of a pipeline.

Notification topics about control parameters
and the latest visualization result generated from
the pipeline, are published for scientists who do
not want to be involved with the building of the
pipeline but simply wish to modify control

parameters. By subscribing to these notification
topics, scientists can jointly control the
distributed visualization services and view the
resulting geometry (in case of local rendering)
or image (in case of remote rendering).

4.4 Collaborative Visualization Clients

As mentioned in the previous section, the end-
user interfaces are separated into a Pipeline
Editor Client and a Parameter Control Client,
which only provides users with a parameter
control interface rather than the view of whole
pipeline.

The Pipeline Editor Client allows users to
collaboratively select suitable visualization
services and link them in an appropriate way.
The Parameter Control Client initializes its GUI
from the pipeline description retrieved from the
Pipeline Controller, presenting a separate tab
corresponding to each service instance created
in the pipeline. Users can view parameters on
the services and steer the service by changing
the parameters through the Parameter Control
Client. Code from the e-Viz project (Riding et
al, 2005) is used to generate the GUI from the
extended skML pipeline description – see
section 5.4 for more information.

5. Prototype Implementation
A prototype was implemented as a proof of
concept for the NoCoV system. The prototype
involves a set of simplified visualization
services, a Pipeline Controller Service with
basic functions as proposed in the design, a
Pipeline Editor Client for visualization experts
and a Parameter Control Client for scientists.

5.1 Visualization Services implemented as
Notification Web Services

In order to demonstrate the capability of
building and controlling a visualization pipeline
through end-user interfaces, four visualization
services were created with simple visualization
functions.

The data service retrieves data from a source
according to the file name or URL provided by
the user. The output of the data service can be
subscribed to by an isosurface service or a slice
service, which can generate output geometries
in VRML format. The inline service can
subscribe to both isosurface and slice services to
combine multiple geometries into a single scene.

5.2 Pipeline Controller Service

The Pipeline Controller acts as an agent for end-
users, releasing users from the burden of dealing

directly with visualization services. In the
prototype, the Pipeline Controller service can
create instances from visualization services,
connect instances to build up a visualization
pipeline and subscribe to the endpoint of
visualization pipeline to receive newly
generated visualization results.

The Pipeline Controller has the following
notification topics: a representation of the
current pipeline information including which
visualization instances have been created, how
these instances are connected to each other and
the setting of control parameters for each
instance; the latest result generated from the
pipeline endpoint; and a representation of the
changes of control parameters which enables
collaborative parameter control.

5.3 Pipeline Editor Client

Figure 4 – Pipeline Editor Client

The Pipeline Editor Client (see Figure 4) is
initialized with a list of available visualization
services shown on the left hand side from an
XML format service list file (which makes it
possible to retrieve a list of available services
from a UDDI server). By clicking on the
visualization services, a corresponding instance
will be created and displayed as a box in the
editor window on the right hand side. The editor
window supports drag-and-drop operation. By
right clicking on the instance in the editor
window, the user can specify the output or input
to that instance in order to connect different
instances together to create a pipeline. All the
participants in the collaboration will see the
same pipeline on their editor windows, as they
subscribe to the same notification topic – the
definition of the current pipeline. At this stage,
we simply assume clients know notification

topics published by each visualization service,
but in our future work, each visualization
service will provide a method which returns a
description of notification topics published for
the client to subscribe.

5.4 Parameter Control Client

The Parameter Control Client (PCC) provides a
user interface for the control parameters of the
individual components of the visualization
pipeline created by the Pipeline Editor Client.
The PCC is implemented using the user
interface component from the e-Viz system
(Riding et al, 2005), called the e-Viz Client.
This component takes an XML description of
the visualization pipeline and generates a user
interface for each component based on its
description. It also provides connectivity from
the user interface to the remote visualization
component to send and receive parameter values.

The original e-Viz Client used the gViz
library as its sole communications mechanism
to send/receive parameter changes. This tool has
now been extended to allow alternative
communications mechanisms to be used in
place of the gViz library. This is managed by
specifying in the RDF section of the XML
description file what mechanism is to be used
for each pipeline component. In this case, a
Notification Services mechanism has been
specified to link the e-Viz Client with the
NoCoV system.

Figure 5: Parameter Control Client for

pipeline shown in Figure 4

When a user changes the visualization
pipeline using the Pipeline Editor Client, these
changes are passed using XML to all of the
attached PCCs. The e-Viz Client is designed to
respond to snippets of XML that represent
alterations to the pipeline and to adjust the user
interface accordingly. Thus, when the user adds
a module to the pipeline, the e-Viz Client grows
a tab to accommodate its control parameter
widgets. When a user interacts with a widget on
the control panel, these changes are passed to
the Pipeline Controller Service which in turn
reflects these changes to all PCCs as well as to
the intended visualization service. Figure 5

shows the PPC corresponding to the pipeline
displayed in Figure 4.

5.5 Simple illustration

We illustrate the use of the NoCoV system with
a very simple example. In Figure 6, one user
has built a pipeline of two services to visualize a
volumetric dataset (data – to read in the data;
slice to display a cross-section).

Figure 6 – Slice Visualization

A collaborator then joins the session, and
initially sees the same slice, but with ability to
view from a different angle. Figure 7 shows the
two screens, displayed side-by-side here to
show the effect.

Figure 7 – Collaborative Slice Visualization

The collaborator then suggests that the

addition of an isosurface would enhance the
understanding of the dataset. They use the
pipeline editor to collaboratively alter the
pipeline, and the resulting visualizations are
shown in Figure 8, again showing the ability of
each collaborator to select their own viewing
direction.

Figure 8 – Adding an Isosurface Service

6. Conclusions and future work
We have presented the vision, design and
prototype implementation of a next generation
visualization system. It is built using service-
oriented concepts, and envisages a worldwide
collaboratory in which a research team can
come together to visualize data – the
collaboration can be at the same time, or at
different times. A key feature is exploitation of
Grid and Web services technologies, in
particular notification services. The publish/
subscribe pattern is used to link the
visualization services in a pipeline.

A middle-layer service, the Pipeline
Controller Service – acting as a proxy for
distributed visualization services - is included to
provide collaborative functions for different
levels of end-users. Work from the gViz and e-
Viz e-science projects is exploited to provide a
formal description of the visualization pipeline,
and automatically created user interfaces,
respectively. A prototype of the proposed
system has been implemented as a proof of
concept.

The following aspects need to be explored in
the next stage to create a comprehensive
collaborative visualization system.

Security is an important issue for all
collaborative systems. As the prototype is
implemented with GT4, the GT4 security
mechanisms can be seamlessly applied to
NoCoV. The security issues that need to be
considered in future work include: setting
different roles for users; setting different access
permission to each visualization instance in the
pipeline; and dynamically changing the valid
user list to control the joining and leaving of
users in a collaborative session.

The discovery of available visualization
services is another important strand. In the
prototype, the client gets an available service
list from an XML file which contains details of
each visualization service – but it is possible to
introduce a UDDI server into the system to
provide this functionality.

Other issues include the standardization of
the data format passed between different types
of visualization service, and automatic updating
of the Pipeline Controller when new services
are brought into the NoCoV repository.

Acknowledgements
Thanks to Stuart Charters (Univ of Durham) for
making available an early version of his thesis;
and to John Hodrien (Univ of Leeds) for advice

on GT4 matters. Jason Wood developed the
GUI aspects as part of the EPSRC e-Viz project.

References
Charters, S.M, Holliman, N.S and Munro, M (2004)
Visualization on the Grid: a Web Service Approach.
Proceedings of the UK e-Science All Hands Meeting,
pp202-209.

Charters, S.M (2006) Virtualising Visualisation. PhD
thesis, University of Durham.

Duce, D.A, Sagar, M (2005) skML a Markup
Language for Distributed Collaborative Visualization.
EG UK Theory and Practice of Computer Graphics
pp171-178.

GT4 (2006) Globus Toolkit Web site,.
http://globus.org/toolkit/

gViz project web site, (2006)
http://www.comp.leeds.ac.uk/vis/gviz/

Huang.Y, et al, (2006) WS-Messenger: A Web
Services-based Messaging System for Service-
Oriented Grid Computing. CCGrid 2006, IEEE
Computer Society, pp166-173.

IRIS Explorer web site, (2006)
http://www.nag.co.uk/Welcome_IEC.asp

OASIS Web Services Notification TC, (2006).
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsn

Publish-Subscribe Notification for Web services,
(2006) .http://www.ibm.com/developerworks/library/
ws-pubsub/WS-PubSub.pdf

realVNC web site, (2006) http://www.realvnc.com

Riding, M, et al, (2005) e-Viz: Towards an Integrated
Framework for High Performance Visualization,
Proceedings of the UK e-Science All Hands Meeting,
pp1026-1032. See also e-Viz project website, URL:
http://www.eviz.org.

Sastry, M and Craig, M (2003) Scalable application
visualization services toolkit for problem solving
environments. In Proceedings of the UK e-Science
All Hands Meeting, pp 520-525.

vtk web site, (2006) http://www.kitware.com.

Walton, J (2004) NAG’s IRIS Explorer. In
Visualization Handbook, pp 633--654, Academic
Press. Available at:
http://www.nag.co.uk/IndustryArticles/ch32.pdf

Wood, J, Wright, H and Brodlie, K, (1997)
Collaborative Visualization, Proceedings of IEEE
Visualization 1997 Conference, edited by R. Yagel
and H.Hagen, pp 253-260, ACM Press.

http://globus.org/toolkit/
http://www.comp.leeds.ac.uk/vis/gviz/
http://www.nag.co.uk/Welcome_IEC.asp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.realvnc.com/
http://www.kitware.com/
http://www.nag.co.uk/IndustryArticles/ch32.pdf

	WRROcoversheetBrodlie3.pdf
	service_oriented_collab_vis.pdf

