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New developments in the spatial 
scan statistic 

Read S, Bath PA, Willett P. 
Information School, University of Sheffield 

Maheswaran R. 
School of Health and Related Research, University of Sheffield 

Abstract 
The quantity and variety of spatial data have increased over recent years, and the variety and sophistication of tools for 
analysing this type of data have also increased. One such tool is the spatial scan statistic, which is freely available 
(www.satscan.org) and has been the subject of much scholarly research since its introduction in 1995 due to its 
numerous applications in epidemiology, criminology and other fields. This paper provides readers with a non-technical 
introduction to the spatial scan statistic, together with an overview of associated research which focuses particularly on 
work conducted at the University of Sheffield’s Information School, in collaboration with the School of Health and 
Related Research. This work falls into three main areas. Firstly, we provide an examination of the probability of 
obtaining false alerts when using the statistic, and ways in which this can be managed. Secondly, we describe the 
development of a definitive way of measuring the spatial accuracy of the statistic. Thirdly, and potentially the most 
important in terms of impact, we discuss a means of substantially increasing the detection capability of the statistic by 
placing a realistic constraint on the strength of any cluster which is likely to be present in the data. The paper also 
provides a discussion of potential future research directions. 

Keywords  
Spatial scan statistic; spatial epidemiology; geospatial data; case-control study. 

1. Introduction 
Through the efforts of quantitative geographers and statisticians, over the past half-century there have been dramatic 
developments in the field of spatial1 data analysis. Simultaneously, information technology has facilitated the collation 
and processing of data in all walks of life, including spatial data. More recently, the inclusion of satellite positioning 
devices in cameras and mobile phones presents hitherto unimaginable opportunities for gathering spatial data, as well 
as justifiable concerns about how such data may be used. Interested readers can find discussions of some important 
topics in spatial data analysis in Maheswaran and Craglia (eds.) [1]. 
Within the field of spatial data analysis lies spatial cluster detection, which provides tools that find application in a 
variety of different areas, such as epidemiology, criminology and forestry and which provides the focus for this paper. 
Specifically, we describe recent work at the University of Sheffield on a popular method of spatial cluster detection: 
the Spatial Scan Statistic (SSS).  The paper summarises these developments for a non-specialist audience in a form that 
avoids the use of mathematical expressions and overly technical language. Section 2 provides a primer which may be 
helpful for those new to handling spatial data, whilst Section 3 describes cluster detection and the SSS.    Our studies 
are presented in Section 4, and the paper concludes with a discussion of potential future research directions. Further 
details of the research are provided by Read et al. [2-4]. 

                                                           
1 Although we only discuss spatial data in this paper, it should be noted that many of these concepts can be applied to 
spatio-temporal data. 
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2. A primer: basic concepts in spatial statistics 
To discuss current research in spatial data analysis, it is helpful to be able to think about spatial data in the way that 
statisticians do. In this section, we include a primer which may be helpful for those new to the subject. 
 

2.1. Location 
By spatial data we mean any data set where one (or more) of the characteristics associated with each object or case is a 
location. This seems simple enough, but what we mean by location is not always obvious, and usually requires some 
thought.  
When the subjects are immobile, such trees in a forestry study, location seems obvious. Even here, one must decide 
whether to give each subject a point location (e.g. GPS reading) or whether to divide the study region into areas (e.g. 
grid squares) and count the number of objects in each area. The former is called point data, the latter areal data; this is 
one of the most important demarcations in spatial statistics. When the objects of the research/cases are mobile, e.g. 
people, matters become considerably more complicated. Location can be fixed, for example, a residential address, or a 
workplace address, or the address of a shop where the subject obtained a particular good or service relevant to the 
study. Alternatively, the ‘location’ may be a route (e.g. a commute to work) rather than a fixed position [5]. It may also 
be a spatially vague location, e.g. “central London”.  
 
To simplify our discussion, in this paper we will only consider fixed point and areal locations, whilst bearing in mind 
that these basic principles can be extended to more complicated definitions of location. 

2.2. Data quality 
Data quality is a limiting factor in spatial data analysis, as it adds an additional element of “random noise” to spatial 
processes that inherently contain a high degree of randomness (see Section 2.5). Although we do not directly address 
this issue in our research into the SSS, it is important to be aware of spatial data quality in order to minimize any 
adverse effect it has on the veracity of results. To this end, Haining [6] presents a useful four-dimensional framework 
for spatial data quality issues: 

1. Accuracy: the level of error within the variables obtained 
2. Resolution: the level of detail to which locations can be specified 
3. Consistency: compatibility in data between samples, and the suitability of the manner in which they are 

compared 
4. Completeness: the presence of sufficient indicators, besides location, to complete a successful analysis 

 
How this framework applies depends on the area of application. Accuracy, for example, may relate to the quality of 
geocoding, which can have a significant effect on the SSS [7]. Resolution may be related to confidentiality issues, such 
as when data are spatially aggregated to provide anonymity; this also can reduce the power of the SSS [8]. Consistency 
could, to give an epidemiological example, relate to differences in diagnosis criteria between hospitals. Completeness 
may be related to missing data; Kulldorf et al. showed that missing data can lead to an increased number of false alerts 
when used with the SSS. 
These issues are so pervasive that it may be difficult to find data that do not have quality issues, in some regard. 
However, Mandle et al. make an important point, that even low quality data can be sometimes be useful if there are 
sufficient of them [9]; this is especially true of spatial statistics which usually require a much larger sample size than 
non-spatial statistics (see Section 2.5).  
2.3. Stochastic processes 
To understand best the material presented in this paper, it is helpful to think of data in the way that statisticians do: that 
outcomes we observe in the real world can often be usefully modelled by simple random processes. Such processes are 
not strictly random, rather they have a kind of ‘guided’ randomness, where some outcomes are more probable than 
others. This form of random process is called a stochastic process, and the probability of each different outcome can 
usually be calculated by some mathematical formula. This allows us to use powerful mathematical tools to analyse our 
data, and make predictions about future data.  
The guiding element of a stochastic process is provided by two types of values which appear in the mathematical 
formula: input variables, which contain observable real-world values (e.g. population density) that influence the 
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probability of each outcome; and parameters, which are underlying values, typically unknown that also influence the 
process (e.g. disease risk). The number (or numbers) produced by the formula are the output variables. 
Consider a simple example, illustrated in Figure 1.Here the incidence count of some hypothetical disease in some 
hypothetical town is modelled as a Poisson random variable 2, where the mean of the variable is specified as the at-risk 
population in the town multiplied by the disease risk in the town. If we have many years of disease incidence records 
for the town (the output variable), and the at-risk population in the town for each year can be estimated with reasonable 
accuracy (the input variable), then using this model we can work backwards to guess the level of disease risk (the 
parameter). We can also estimate the accuracy of our guess. 
Now if we have two towns, say A and B, we can model the disease incidence counts in each town as separate 
stochastic processes, guessing the parameters separately for each process. We can then compare our guesses about 
disease risk in the two towns, and decide whether or not they are significantly different. What if towns A and B were 
close together, or far apart: would this affect our conclusions? We discuss these issues in the next section. 
 

 
Figure 1. Symbolic representation of a stochastic process. 

2.4. Stochastic processes in spatial data 
How do stochastic processes relate to spatial data? To explain this, let us continue with the hypothetical examples 
given in Section 2.3 above. Rather than a single disease risk for a whole town, let us assume that we are interested in 
determining if there are variations in disease risk between different districts within a town. We could model each 
district separately, using the process above, and compare the resulting estimates of disease risk (i.e., what we did in 
Section 2.3 when considering towns A and B). However, most real world processes do not respect administrative 
boundaries. If district X has a high rate of disease, then the adjacent district Y may also have an increased rate too since 
they share overlapping neighbourhoods. Furthermore, changes in processes due to geographic location often occur 
gradually, as stated by Tobler’s first law of geography [10], which may be paraphrased as: close locations tend to be 
more related than distant locations. By considering each district as a separate process, we are not taking account of the 
spatial relationship between districts. 
For example, let us imagine that three neighbouring districts on the eastern side of town A have slightly elevated levels 
of estimated disease risk, none of which are statistically significant when considered separately. However, if these three 
districts are combined and modelled as a single process, then the elevated level of disease risk may well be statistically 
significant due to the increased sample size. This is a simple example of how taking location into account when 
analysing data can increase the power of the analysis; and this form of aggregation is a basic tool in spatial statistics. 
However, knowing which areas (or points) to combine, and being able to do this without compromising statistical 
integrity, is not a trivial task. In Section 3 we will explain a particular method of aggregation that has proved very 
popular in spatial analysis: the SSS; however, before so doing, we first explain some important issues in the next 
section. 
 

2.5. Some important characteristics of spatial data 
As discussed in Section 2.4, taking the spatial location of data into account can increase our ability to detect certain 
phenomena. However, it is important to understand the limitations of spatial data analysis. These are best explained 
using visual examples.  

                                                           
2 A Poisson random variable generates integer numbers in a manner which realistically reflects the distribution of event counts in 
many real world processes, such as disease incidence, traffic flow, IT failures, call volumes to telephone lines, etc. To control the 
probability of this variable generating any particular number, one only need specify the mean average of the variable’s output.   

Input variables 
e.g. at-risk population in Town A 

Parameters 
e.g. disease risk in Town A 

Stochastic process, 
e.g. Poisson random 

variable 

Output 
variables 

e.g. disease 
incidence count 

 in town A  
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First, consider the two squares in Figure 2, each containing a spatial distribution of dots. Clearly there are patterns in 
each distribution: in some parts of the square there are no dots at all, in others the dots appear to fall along lines, 
usually curves. Now note the numbers on the left and bottom of each rectangle, from 0 to 100. Each dot in each 
rectangle was generated by selecting a pair of random numbers between 0 and 100, and using these as the horizontal 
and vertical coordinates. This is a process known as complete spatial randomness (often CSR for short). There is no 
underlying process responsible for generating the patterns we observe in Figure 1, they are random artefacts. 
Distinguishing between random artefacts and the patterns caused by genuine phenomena is the great challenge of 
spatial statistics, and it is what differentiates spatial statistics from descriptive spatial data analysis. 
Second, consider the two diagrams in Figure 3. Each ‘box’ contains a distribution of dots, all of which lie in a plane 
parallel to the ‘lid’ of the box. The coordinates of each dot were generated using a stochastic process, controlled by a 
parameter whose value is represented by the surface shown at the bottom of the box: the height of the surface indicates 
how likely it is that a dot will occur over that part of the surface. For example ‘peaks’ in the surface will attract more 
dots than ‘troughs’. Going back to our example of disease incidence, one could imagine this surface as representing the 
spatial variation in disease risk, with peaks representing areas of highest risk. Indeed, such a surface may be called a 
risk surface. If one compares the two diagrams in Figure 3, one will notice they are identical, save for a large peak at 
the centre of the right-hand surface. Now consider the distribution of dots in the two diagrams. Does the distribution of 
dots in the right-hand diagram clearly allude to the presence of the peak in risk at the centre? Possibly, in the sense 
there is some gravitation of cases towards the centre, but it is certainly not obvious from the dots what the underlying 
risk surface is. The number of data in each diagram (approximately 50 dots) is clearly an inadequate number for such a 
spatial analysis, despite being a perfectly respectable sample size for many non-spatial statistical purposes (for 
example, Cohen suggested that for a medium or large effect size3 in multiple linear regression with two variables, a 
sample size between 30 and 67 gives 80% power at the standard significance level of 0.05 [11]). The reason for this is 
the curse of dimensionality [12], which means that as one adds extra dimensions to one’s analysis, the sample size 
required grows exponentially. Put simply, spatial statistical analysis is best reserved for  large data sets. 

 
Figure 2. Two homogeneously random distributions of points. 

Figure 3. Example of control data points (left) and case data points (right), with differing risk surfaces shown. 

                                                           
3 Meaning a value of 0.15 (medium) and 0.35 (large) for the value of R2/(1-R2), this expression being equivalent to the sum of 
squares due to the regression divided by the sum of squares due to the error terms. See [11] for full details. 
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3. Research background 
Having  provided a general introduction to spatial statistics,  we now focus on a specific branch of the subject,  cluster 
detection, and then on  a particular method of cluster detection, the SSS.  

3.1. Cluster detection 
In Section 2.5 we explained that when using statistics it is very difficult to interpret specific patterns in spatially 
distributed data. That is, while it is always possible to observe detailed patterns  in spatial data (such as can be seen in 
Figure 2) these are likely to be random artefacts  without strong evidence to the contrary.   However, it is underlying 
trends in the distribution of spatial data that usually concern spatial statisticians. The simplest of such trends is the 
tendency for results to cluster, i.e. to spatially aggregate. Ironically, despite being an intuitively simple concept, there is 
no generally accepted definition of what spatial clustering is and, consequently, no generally accepted optimum method 
of spatial cluster detection. There are, in fact, numerous different spatial cluster detection tests, with very little 
objective evidence for their relative efficacy.  
There is, however, a common, fairly unambiguous three-part categorization of cluster detection techniques:  global, 
focused and local. 
Global refers to a method that detects the presence of clusters somewhere within the study region, but does not point to 
where the coalescence is. One example is Ripley's K-function [13], which examines the cumulative distribution of 
distances between point locations, and another  is Cuzick and Edward's test [14]. 
Focussed refers to a method which tests for the presence of a cluster in some part of the study region which has been 
identified a priori, as a result of some external hypothesis. An example might be the area around some putative 
pollution source. Exclusively focussed methods are less common than global and local methods, but one example is 
Stone's test [15]. 
Local refers to methods that, as with global, attempt to identify clusters anywhere within the study region, but also 
attempt to specify the location(s) concerned. The SSS, which we discuss in the next section, is a prime example of a 
local method. Other well known examples are Openshaw's Geographic Analysis Machine [16] and Turnbull's test [17] 
(which are both predecessors of SSS), as well as Besag and Newell's test[18]. 

3.2. The spatial scan statistic 
The SSS was first introduced by Kulldorff [19, 20] as an extension of Naus’ one-dimensional [21] and two-
dimensional scan statistic [22] and  has been the subject of much recent study.. In this section we point the reader to a 
representative (but by no means exhaustive) selection of this research. 
As mentioned in Section 3.1, the SSS is local cluster detection method, the aim of which is to detect the presence and 
location of clusters within spatially distributed data4. However, the term ‘spatial scan statistic’ does not refer to a single 
mathematical formula; rather, it refers to a collection of formulae, each suitable for use with different types of data, but 
all sharing a similar method of application. In its broadest sense, the term also refers to the computer algorithm which 
performs the application. In this sense it has a parallel with the word SaTScanTM, which is the name of the free 
software package (www.satscan.org), overseen by Kulldorff since 1997, which provides a user friendly interface for 
many of the different versions of the SSS. 
Taking the term ‘spatial scan statistic’ in its broadest sense then, we can consider the algorithm as having two main 
parts, each of which contains several steps: 
1) Delineating and evaluating a large, manifoldly overlapping, set of potential cluster locations: 

a) Drawing a series of scan windows over the study region, of various sizes (and possibly different shapes). 
b) Assessing the probability (in this sense called the likelihood) that the data contained within each scan window 

is, in some sense, a cluster. 
c) Ranking the likelihood values from each scan window, taking particular note of the most likely scan window 

to contain a cluster 
2) Calculating the probability that the strongest potential cluster is a random artefact. Typically (after Dwass [23]), this 

involves: 
a) Spatially randomising the data in a manner that removes any possibility of a genuine cluster being present, 

and repeating the first part of the test a large number of times, each time recording the likelihood value of the 
most likely scan window 

                                                           
4 It can also be used to detect temporal and/or spatio-temporal clusters, although we do not address this here. 
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b) Ranking the likelihood value of the ‘real’ most likely scan window, obtained in part 1, step (c), amongst the 
likelihood values recorded in the step (a) above. 

c) If the ‘real’ value is amongst, say, the top 5% of these values, we may come to the conclusion that the cluster 
represented by the ‘real’ most likely scan window is too prominent to be a random artefact, and therefore 
decide that there is a cluster present in the data, whose location coincides with the most likely scan window.  

d) We may also wish to consider other scan windows, with ‘real’ likelihood values close to that of the most 
likely scan window. These may represent secondary clusters, although we may chose to disregard those that 
overlap considerably with the most likely scan window.  

For the sake of accuracy, the description above is couched in quasi-technical language, and an analogy may help the 
reader  to grasp exactly what the SSS does.   Let us imagine ourselves as a baker, cutting raisin cookies from a sheet of 
dough that our assistant has prepared. Looking at the distribution of raisins within the dough, we suspect the assistant 
has been lazy, and not mixed the raisins thoroughly into the dough, resulting in clusters of raisins forming at one or 
more places on the dough sheet. The assistant denies this, claiming the raisins were thoroughly mixed, and any clusters 
are just random artefacts (as we saw in Figure 2). Before admonishing the assistant, we decide to put her/his claim to 
the test. By moving a cookie-cutter over the sheet in a systematic way, we can count the raisins appearing within the 
cookie-cutter “scan window”, and  take note of the highest count recorded. This is analogous to part 1 of the algorithm. 
Next, we gather up the dough, mix it thoroughly so we are certain the raisins are randomly distributed, and re-roll a 
new sheet. We then perform the same process with the cookie cutter, and record the highest number of raisins observed 
within any scan window. This re-rolling and re-scanning is repeated many times. If the highest count in the assistant-
prepared dough is exceeded by only a small proportion (say, 5%) of the highest counts in the re-mixed dough, then the 
likelihood that the assistant was telling the truth is quite small. Moreover, we can point to the part of the original dough 
which contains the evidence of the deceit. This is analogous to part 2 of the algorithm. When one replaces dough with a 
geospatial area, and raisins with cancer cases, one can see how such an algorithm can have far less trivial applications. 
And of course, all that work of “cookie-cutting” and “rerolling” is done by computer! 
Most of the research conducted into the SSS since 1997 has focussed on part 1 of the algorithm, specifically steps 1(a) 
or 1(b).Following the original proposal of a strictly circular scan window [19], others have proposed different schemes 
for different ways of selecting scan windows, e.g. elliptical[24], echelon-based [25] or free-form[26].Following 
Kulldorff’s derivation of the Bernoulli and Poisson SSSs (for case-control point data and areal count data, 
respectively), many other versions have been proposed, e.g. for normally distributed data[27], survival data [28], and 
ordinal data [29]. 
Less attention has been paid to part 2 of the algorithm, from which much of the computational cost of the process 
arises. The method of repeatedly randomising data and recalculating a statistic is commonly called Monte Carlo testing 
(the name alluding to the element of chance involved), and there is a large body of technical research on this method, 
summarised in books such as that by Lui [30]. However, due to the combinatorial complexities involved in analysing 
spatial data, it is not straightforward to apply such methods directly to the SSS. One exception is sequential Monte 
Carlo (e.g. see [31]), which has already been implemented in SaTScanTM. Another method specific to the SSS is 
Gumbel approximation, as proposed by Abrams et al. [32] and discussed in more detail in Section 4.2. A totally 
different approach to part 2 is the Bayesian approach suggested by Neill [33], which has connection to the work in 
Section 4.3.  

4. Recent work in Sheffield 
This section presents an overview of our recent work on the SSS [2-4]. Section 4.1 concerns how the performance of 
the SSS is measured, and explains a novel measure we have developed that has several advantages over existing ones. 
Section 4.2 concerns a new method for improving the computational performance of the SSS, and explains a study we 
have conducted which significantly extends the understanding of the method. Finally, Section 4.3 presents a novel 
version of the SSS and explains some of the advantages this delivers. 

4.1. Measuring spatial accuracy 
This section addresses the measurement of spatial accuracy for the SSS. Before discussing this, we must briefly explain 
the broader context of performance measurement for the statistic. As mentioned in Section 3.1, the SSS is a local 
cluster detection test. This means it has two objectives: to detect the presence of a cluster; and to detect the location of 
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a cluster. Correspondingly, there are two performance measures associated with the SSS, relating to each of these 
objectives, respectively: Power (the term being used here somewhat loosely5); and spatial accuracy 
 
Measuring power is relatively straightforward, and most studies of the SSS include some form of power study using 
benchmark data. A classic example is Song and Kulldorff’s study [34]. If one has a large number of benchmark 
datasets into which an artificial cluster has been injected, and a large number of datasets in which it is safe to assume 
no cluster is present, then one can apply the SSS to every dataset and record the results in a 2x2 table such as that 
shown in Table 1. From this one can obtain standard test performance measures such as sensitivity (a/(a+c)), 
specificity(d/(b+d)), positive predictive value(a/(a+b)) and negative predictive value(d/(c+d)).Sensitivity is equivalent 
to recall in information retrieval research and positive predictive value is equivalent to precision [35]. 

Table 1. The standard contingency table for measuring test performance 

 
 
 
 
 
Measuring spatial accuracy is not so straightforward. This is principally because, unlike power, there is no widely 
accepted definition of spatial accuracy. Many studies of the SSS do not consider spatial accuracy at all, and those that 
do use ad-hoc measures that, although entirely appropriate for the study concerned, are not comparable with the 
measures used in other studies. This makes meta-studies particularly difficult. 
As mentioned in Section 3.2, the SSS is an umbrella term covering a variety of different statistics for application to a 
variety of different types of data; it is therefore hardly surprising that there is no commonly agreed definition of spatial 
accuracy, or method of measuring it. However, many studies share similarities in the way they measure spatial 
accuracy, and breaking down the measurement process into different elements makes it easier to compare different 
measures. For this purpose, in a recent paper [2], we introduced a five-level framework for measurements of spatial 
accuracy, to facilitate the comparison and hybridisation of different measures. 
The framework presented in [2] is necessarily technical, and the details are somewhat beyond the scope of this paper. 
However, when viewed within this framework, two common limitations of existing spatial accuracy measures become 
apparent: they require the specification of an arbitrary detection threshold; and they produce two or more values.  This 
is perhaps easiest to understand by considering Table 2, which is the spatial equivalent of Table 1. 
Firstly one can generate many measures based on such a contingency table, similar to those described above, but these 
measures frequently used in pairs (such as recall and precision are in information retrieval). Secondly, as the SSS 
produces many candidate clusters with varying degrees of statistical significance, building such a contingency table 
necessitates choosing an arbitrary significance threshold, dictating what counts as the ‘detected cluster’. This is 
analogous to the situation in information retrieval, where the application of a threshold to a ranking permits the 
calculation of both the recall and the precision. 
 

Table 2. A contingency table for measuring spatial accuracy 

 
 
 
 
 
 
 
 
 
The first of these limitations is important because it means that the resulting spatial accuracy measure is also arbitrary. 
To explain, the detection threshold is typically the significance threshold, which is the maximum level one is prepared 

                                                           
5 Strictly speaking, power, or even more strictly speaking empirical power, is a synonym for sensitivity as it is defined here. 

 Cluster present in dataset Cluster not present in dataset 
Test positive Number of true positives (a) Number of false positives (b) 
Test negative Number of false negatives (c) Number of true negatives (d) 

 Study area inside actual cluster Study area outside actual clusters 
Study area inside 
detected cluster 

Area of cluster correctly detected Area outside cluster incorrectly 
detected as being part of a cluster 

Study area outside 
detected cluster 

Area of cluster remaining 
undetected  

Area outside cluster correctly 
assumed not to be within a cluster 
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to accept for the probability6 that the test has incorrectly detecting a cluster when in fact none is present. A common 
choice of value for the significance threshold is 0.05, but it is not the only choice by any means, and one should always 
bear in mind that to use 0.05 is an arbitrary choice. For example, at one detection threshold 0.05, version A of the SSS 
might perform better than version B, and yet perform worse at other detection thresholds, e.g. 0.01, or 0.001. With 
existing measures, all one can do is use a variety of different detection thresholds and hope that the results are 
representative. 
The second of the two limitations is important if one is seeking to rank objectively different versions of the SSS in 
terms of spatial accuracy. Many measures produce two values: one representing the proportion of the cluster that has 
been correctly identified as such, and another representing the proportion of the study region outside the cluster that has 
been correctly identified as not being part of the cluster. One version of the statistic may perform better in respect of 
the former, whilst another performs better in respect of the latter. How does one then say which one has performed 
better? Of course, one can combine the two measures using some formula, but the choice of this formula is 
unavoidably arbitrary and so, therefore, is the result.  
Within the context of the framework presented in [2], we have developed an entirely new measure of spatial accuracy 
that overcomes both of these limitations, insofar as it does not require the specification of a detection threshold, or any 
other arbitrary parameter, and it produces a single value that has a tangible real-world meaning. We have provisionally 
called this measure Ω (pronounced ‘omega’). For a technical definition of Ω we refer the reader to [2], however Ω also 
has a straightforward intuitive definition, which we present here.  
Consider a spatial study containing one or more clusters, and consider two randomly chosen data  from the study, one 
having a location somewhere inside the cluster(s), the other having a location somewhere in the study region outside 
the cluster(s). Imagine that the version of the SSS in question is applied to this data set. Ω is simply the probability that 
a rational observer, using only the information provided by the output of the SSS, can correctly determine which datum 
is which. Being a probability, Ω naturally has a value between 0 and 1, with 1 representing perfect spatial accuracy: i.e. 
the test has correctly ranked every point within the true cluster location over and above every point outside the true 
cluster location. An Ω value of 0 is the exact converse, i.e., perfect spatial inaccuracy. Ironically, Ω = 0 is not a poor 
result, as one can simply invert the output of the SSS to achieve Ω=1. In practice, an Ω value of 0.5 is the worst 
outcome, as it means the test has provided no useful information as to the spatial location of the cluster; in which case 
one might as well have tossed a coin to decide which datum is which. 
An example application of the Ω measure is given in [2], where it is used to examine the difference among the six 
different ways in which the SaTScanTM software handles the reporting of secondary clusters (i.e. clusters that are 
unlikely to be random artefacts but that are not the most likely potential cluster). The Ω measure also finds application 
in the work discussed in Section 4.3, where its unique qualities make it ideal for the study described. 
In terms of the volume of literature that has been reported to date, the measurement of the SSS comes a long way 
behind the development of new versions of the statistic. Indeed, so far as we are aware this is the first attempt to treat 
the measurement of spatial accuracy for the SSS as a subject worthy of consideration for its own sake.  We believe  that 
this work is important, not only because it introduces some intellectual rigour into a largely overlooked subject, but 
because a better understanding of how to measure the performance of the SSS is key to understanding how to improve 
it; after all, one cannot make something better unless one is clear about what ‘better’ actually means. 

4.2. Gumbel approximation 
This section concerns the efficacy of a new method for reducing the computational cost of the spatial statistic 
algorithm: we first describe briefly this new method (called Gumbel approximation) and we then explain extensions to 
the method. 
As discussed in Section 3.2, the established SSS algorithm uses Monte Carlo simulation to estimate the probability of 
incorrectly detecting a cluster when none is present. This probability is often simply called the p-value of the test. 
Calculating the p-value involves repeating the test a large number of times (typically 999), which greatly increases the 
computation expense. Although negligible for small datasets (e.g. several minutes for a few hundred data points, 
running on 2GHz desktop machine), the computation time increases quadratically7 with the size of the data. This means 
that for large datasets, the computational expense can become prohibitive, especially for routine scanning of data, 

                                                           
6 This is equal to 1-specificity, i.e. b/(b+d), referring to Table 1. 
7 A quadratic relationship is one of the form y=x2, meaning that as x (e.g. the size of the data) increases, y (e.g. the computation 
time) increases considerably more.  
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where the computation needs to be repeated at regular intervals. Furthermore, there is a computational cost associated 
with the accuracy of the p-value, as every extra decimal place requires up to a ten-fold increase in computational time. 
A method of reducing computational expense, whilst maintaining accuracy, was proposed by Abrams et al. [32].This 
makes use of fact that the SSS is a maximum value (see Section 3.2), by assuming that it follows the Gumbel 
distribution, a type of statistical distribution that is used for modelling extreme values [36]. This process involves 
running a Monte Carlo test with a relatively small number of iterations to obtain a rough sample of the true distribution 
of maximum likelihood values (again, see Section 3.2). A Gumbel distribution is then ‘fitted’ to this rough sample, and 
it is then this Gumbel distribution, rather than the actual values produced by the Monte Carlo simulation, that is used to 
estimate the p-value. For brevity we refer to this process as Gumbel approximation. The rationale for using Gumbel 
approximation is that, in principle, it reduces the amount of random variation in the p-value, making it substantially 
more accurate for little additional expense. 
A limitation of a previous study by Abrams et al [32] is that it was based on a relatively small number of datasets, and 
concentrated on the Poisson version of the SSS (which is used for areal data). We chose to complement the work of 
Abrams et al.  by conducting an extensive set of benchmark tests on the application of Gumbel approximation to the 
Bernoulli version of the SSS (this version is discussed in more detail in Section 4.3). Our study found the following: 

1. Gumbel approximation produces substantially more accurate p-value estimates for the Bernoulli SSS than the 
conventional Monte Carlo method, for a given number of iterations. This confirms the previous finding [32]. 

2. Gumbel approximation tends to produce slightly more extreme p-value estimates than the conventional 
method for the Bernoulli SSS. This means it has lower specificity (see Section 4.1) than the conventional 
method making it more likely to generate false alerts. 

3. In circumstances when Gumbel approximation has lower specificity for the Bernoulli SSS, it also has 
correspondingly higher sensitivity than the conventional method, so the overall detection capability is not 
impaired. 

4. Over and above any reduction in computational expense, Gumbel approximation is superior to the 
conventional method for estimating very low p-values (e.g. < 0.0001).  

 
Point 1 is encouraging, as it provides additional support for the recent introduction of Gumbel approximation, as an 
option, into the SaTScanTM software. However, points 2 and 3 reveal that Gumbel approximation is not necessarily the 
optimal choice for every application of the SSS, as some consideration needs to be given to an, albeit slight, increase in 
false alerts that can ensue from using it. For example, Fienberg and Shmueli [37] noted  that  epidemiological 
applications of the SSS required a  high significance threshold to achieve a reasonably high level of sensitivity, 
resulting in a correspondingly high false alert rate. If the cost of a false alert is non-trivial (in terms of staff time and/or 
resources) then even a small increase in the false alert rate has a financial cost. For example, the Bernoulli SSS was 
part of the system designed to provide early warning of an outbreak of West Nile virus by monitoring reports of bird 
deaths; here the follow-up to an alert was the collection and examination of mosquitoes, which is labour intensive and 
thus costly [38]. So, for large datasets in certain applications it may be more cost effective to find additional 
computational resources to run the conventional method, rather than incur an increased probability of false alerts. 
Obviously, this depends on the specific application.    
Point 4 applies to applications where evidence of clustering is very strong, but correspondingly a very high level of 
certainty is required to assume a cluster is present. In such applications, Gumbel approximation should be used in 
preference to  the conventional method, since  its tendency to overestimate p-values is more than counteracted by the 
increased accuracy of Gumbel approximation for very small p-values.Point 4 may be somewhat theoretical, as the use 
of such low p-value thresholds in spatial epidemiology have not yet been reported. However there are examples of p-
value thresholds close to this, such as the study by Souris et al. [39] where a threshold of α=0.001 (0.1%) was 
stipulated.     
Note that points 2 and 3 stem directly from a numerical characteristic of the Bernoulli SSS, originally identified in one 
of our early papers [40]. Although this characteristic also applies, in theory, to the Poisson SSS, Gumbel approximation 
for the Poisson version is much less likely, in practice, to produce an increase in false alerts. However, the space-time 
permutation scan statistic [41], for which Gumbel approximation is available in SaTScanTM, shares this characteristic 
and is likely to have an increased false alert rate when it is used. These points are discussed in detail by Read et al. [3]. 

4.3. Beta-Bernoulli spatial scan statistic 
In this last section, we detail a new version of the SSS which we have derived from first principles as an alternative to 
the existing Bernoulli version, which is useful for spatial (or spatio-temporal) case-control studies. If our findings are 



Simon Read, Peter Bath, Peter Willett and Ravi Maheswaran  10

 

Journal of Information Science, XX (X) 2013, pp. 1–13, DOI: 10.1177/016555150nnnnnnn © The Author(s), 2013  

correct then our beta-Bernoulli SSS gives substantially improved detection capability and spatial accuracy over the 
Bernoulli version. To explain the beta-Bernoulli version, it is necessary to understand something of how the existing 
Bernoulli version works, and exactly what is meant by a spatial case control study.  
First, consider Figure 3. As well as showing how two similar risk surfaces can give rise to very different distributions 
of events (represented here by points), the two sides of this figure also provide an illustration of how a spatial case-
control study works. If we consider the points on the left-hand side of Figure 3 to be controls, and those on the right-
hand side to be cases, then the aim of a spatial case control study is to determine whether the underlying risk surface 
for the cases is significantly different from that which underlies the controls. Put another way, one is trying to identify 
areas within the study region where cases are more (or conversely, less) likely to occur than controls. One uses controls 
to account for clustering which we already know to be present; thus we are only looking for clustering in the cases 
which is not explained by the clustering of the controls.  
The best way to understand this is by example, perhaps the best being Diggle’s classic study of larynx cancer and lung 
cancer around a waste incinerator in North West England [42]. When viewed on a map, the residential location of lung 
cancer patients tends to cluster, chiefly due to spatial variations in population density, but also due to spatial variations 
in risk factors, such as tobacco consumption. Larynx cancer shares many risk factors with lung cancer, so when viewed 
on a map we would expect larynx cancer cases to cluster in similar locations to those for lung cancer. However, 
according to [42], larynx cancer is presumed to be more closely related to air pollution than lung cancer. So, if larynx 
cancer cases tend to cluster more strongly than lung cancer cases in the area downwind of a waste incinerator, this may 
be evidence of a link between the incinerator and larynx cancer. 
The methodology used in [42] predates the Bernoulli SSS, but nonetheless the study emphasises that it is the spatial 
distribution of cases, relative to that of controls, that is of interest. As described in Section 3.2, the SSS places many 
thousands of scan windows over the study region and applies the statistic to each one in order to assess the likelihood 
of that scan window being the location of a cluster. For case control data, the Bernoulli SSS counts the number of cases 
and controls within each scan window, and compares this to the number of cases and controls in the rest of the study 
region.  
To understand how the comparison is made, we need to leave the concrete world behind and enter the abstract world of 
probability models. Leaving aside all the complexity of how the cases and controls in our study came into existence, 
imagine that the locations of each point in the study are pre-ordained, and that the status of each point (i.e. case or 
control) is simply the outcome of an unfair coin toss, the coin landing “case” side up with a certain probability and 
“control” side up with a certain probability (the two probabilities not being equal, hence it being an unfair coin). Such a 
two-outcome test is called a Bernoulli trial, hence the name of the statistic. For each scan window, the statistic 
calculates the ratio of two things: 

1. The likelihood that the unfair coin used to decide the status of the points inside the scan window is different to 
the unfair coin used for the rest of the study region. By different, we mean the probabilities of landing on each 
side are different (but still not necessarily equal). Typically, it is an increased probability of a case that we are 
interested in. 

2. The likelihood that the same unfair coin was used to decide the status of all the points in the study region (i.e. 
both inside and outside the scan window). 

 
The first point is analogous to saying that the scan window is the location of a cluster of cases, relative to controls. The 
second is analogous to saying there is no clustering of cases relative to controls (we will use the term null hypothesis to 
refer to this statement). As described in Section 3.2, the remainder of the SSS algorithm then calculates the probability 
that the null hypothesis is correct, and if this probability is very low (say < 0.05) we may wish to assume a cluster is 
present at the scan window where the first likelihood above is highest. 
However, no limitation is placed on the assumptions made about the coin in point 1 above. If one has a study region 
with 100 cases and 200 controls, and therein one finds a scan window containing 5 cases and only 1 control, the 
Bernoulli SSS, following the probability model above, assumes that outside the scan window the odds of a point being 
a case are 1:2, whereas inside they are5:1. The problem is that in real applications, such as epidemiology where one 
talks about the odds of an individual having a particular disease, one simply does not find such dramatic spatial 
variation in odds. Although we emphasise it is not yet proven, we think this may lead the Bernoulli SSS to promote 
small random artefacts (see Section 2.5) where the odds are unfeasibly high, ahead of larger clusters with lower, but 
more realistic, odds. 
Our beta-Bernoulli SSS uses the same probability model, but places realistic constraints on the difference in the odds 
(called the odds ratio) inside and outside the scan window. It does this by taking into account the probability of the 
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data point being a case when calculating the likelihoods in bullet-points 1 and 2 above, more specifically it takes into 
account the probability that the probability has a certain value, this being known as a prior probability8. For a 
Bernoulli trial, this prior probability follows a distribution known as the beta distribution, hence the name of the 
statistic. We have developed a novel and time-efficient method for calculating the characteristics of this beta 
distribution from assumptions about the mean and variance of the odds ratio, which can be specified by the user and 
given values realistic for the application concerned (see [4] for more details). 
We have presented empirical evidence that the beta-Bernoulli version outperforms the Bernoulli version in the 
detection of a variety of different shapes and sizes of cluster [4, 43]. Though abstract in nature, there is no reason why 
the findings should not be generalisable to more specific scenarios, such as the detection of spatial clusters in cancer 
incidence or child mortality. Moreover, we have discovered that to obtain this improvement one only need specify 
vaguely realistic values for the mean and variance of the odds ratio (meaning expert judgement is not required). The 
performance improvement is observed in terms of both spatial accuracy [4] and detection capability [43]. Although the 
latter  is only a preliminary study, our results suggest that, for a given false alert rate, the sensitivity of the beta-
Bernoulli SSS is in the order of 10-20% higher than that of the Bernoulli version. We stress these require further 
confirmation, but if correct then this represents a major improvement to a widely accepted technique in spatial 
statistics. 
The only downside that we are so far aware of is that beta-Bernoulli SSS requires slightly more computation resources 
than the Bernoulli. It is difficult to quantify the time increase as it is proportional to the number of points in the study, 
but independent of the number of Monte Carlo iterations as the additional calculations only need to be performed once 
for any given dataset. As Monte Carlo testing is the main source of computational expense in the algorithm, the 
increase is therefore very modest, even for large datasets. 

5. Conclusions 
The SSS is one of the most important and most widely used tools for the important, fast-growing field of spatial data 
analysis.  In this paper, we have provided a non-technical overview of research in the University of Sheffield that seeks 
to develop further SSS.  Specifically, we have discussed the measurement of spatial accuracy, and the use of Gumbel 
approximation and of the beta-Bernouilli distribution to improve the efficiency and the effectiveness, respectively, of 
the method. 
We believe the work outlined in this paper has the potential to make a significant impact to the field of research into 
the SSS, and thereby the wider field of spatial data analysis.  
There are many potential directions which future research might take. These include: extending the studies in Sections 
4.2 and 4.3 to different versions of the SSS; extending all the studies to spatio-temporal, as well as spatial, studies; and 
examining the theoretical properties of the beta-Bernoulli SSS. The first two points would be relatively straightforward, 
but require a significant amount of additional programming work. The purpose of the third point would be to seek 
mathematical proof of the improvements observed using the beta-Bernoulli SSS, providing confirmatory evidence for 
the empirical evidence reported here. 
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8 We are not the first to use a prior probability in conjunction with the spatial scan statistic, as [33] used a gamma prior for the 
Poisson version. However [33] rely on historic data whereas we require only vaguely realistic assumptions about the odds ratio. 
9http://www.shef.ac.uk/wrgrid/iceberg 
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