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Abstract15

Significant progress has been made in the use of ensemble agricultural and climate modelling, and16

observed data, to project future productivity and to develop adaptation options. An increasing17

number of agricultural models are designed specifically for use with climate ensembles, and18

improved methods to quantify uncertainty in both climate and agriculture have been developed.19

Whilst crop-climate relationships are still the most common agricultural study of this sort, on-farm20

management, hydrology, pests, diseases and livestock are now also examined. This paper introduces21

all of these areas of progress, with more detail being found in the subsequent papers in the special22

issue. Remaining scientific challenges are discussed, and a distinction is developed between23

projection- and utility- based approaches to agro-climate ensemble modelling. Recommendations24

are made regarding the manner in which uncertainty is analysed and reported, and the way in which25

models and data are used to make inferences regarding the future. A key underlying principle is the26

use of models as tools from which information is extracted, rather than as competing attempts to27

represent reality.28
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1. Introduction35

The use of climate ensembles with agricultural models, particularly crop models, is an increasingly36

common method for projecting the potential impacts of climate change (see e.g. reviews by37

Challinor et al., 2009a,b). These developments are timely, given the significant societal interest in38

both the implications of climate change and the uncertainty surrounding predictions. Ongoing39

increases in greenhouse gas emissions will continue to alter climate for some decades. Climate and40

impacts ensembles provide a tool for predicting the implications of these changes and for41

developing adaptation options.42

This special issue demonstrates the maturity of this field by highlighting recent progress in43

methodologies for the design and use of ensembles and in the agricultural modelling that is used in44

such studies. The word ensemble is used here to indicate any multiple model simulations that seek45

to quantify uncertainty. This includes both ensembles that quantify parametric uncertainty using one46

model and ensembles that quantify structural uncertainty by using a number of models. Ensemble47

agricultural and climate modelling, or more briefly agro-climate ensemble modelling, refers here to a48

set of directly comparable agricultural simulations generated using one or more climate projections49

with one or more agricultural models in one or more configurations. The direct comparability of the50

simulations makes the ensemble a tool for quantifying and exploring uncertainty. An ensemble crop51

simulation, for example, seeks to quantify uncertainty due to some or all of: climate, crop response52

to climate, and other determinants of crop productivity.53

The papers in the special issue reflect the growing breadth of topics that are being assessed using54

ensemble techniques. They also suggest a parallel with the development of ensemble methods55

within climate change science itself, whereby a “new era” in prediction was identified as a result of56

the increasing use of ensembles (Collins and Knight, 2007). The increase in the use of ensemble57

techniques in agriculture has been largely enabled by this development in climate science. The58

influence of climate science is evident from the common use of multiple climate realisations in agro-59

climate ensembles, compared to the far rarer use of multiple crop models. Thus agro-climate60

ensembles are often the result of the use of an agricultural model as a tool for interpreting climate61

ensembles in an agriculturally relevant way.62

The generation of robust projections of agricultural production requires adequate account of63

uncertainty in future atmospheric composition and climate, the subsequent response of agricultural64

systems, and the range of non-climatic drivers that affect agriculture. Only in this way can65

appropriate adaptation and mitigation actions be determined. The question of how much account66

of uncertainty is adequate for any specific adaptation and mitigation action is not trivial. This67

important question is discussed briefly in section 3.2, but falls largely outside the scope of this68

special issue. Our starting point here is the recognition that, in an effort to ensure that treatments of69

uncertainty are at least adequate, the climate impacts community is putting increasing efforts into70

improving the methods used to assess impacts and adaptation, and understanding the associated71

uncertainties. This includes assessing, intercomparing and improving tools and methodologies (see72

Rosenzweig et al. 2012) and asking: what do our models tell us about the real world?73

The choices in climate impacts modelling regarding model complexity, ensemble size and spatial74

resolution, whether made explicitly or resulting from the inherent trade off forced by limited75

computer power, affect the way in which the model results need to be interpreted (Challinor et al.,76



2009a). Computing power limits the potential for studies to employ complex models over a large77

spatial domain and systematically sample uncertainty, so that modelling work tends to focus on one,78

or maybe two, of these three characteristics. The agricultural simulation studies in this special issue79

demonstrate this trade off: they vary in their sampling of uncertainty and can broadly be divided into80

those that have relatively high spatial resolution (Ewert et al. 2012, Gouache et al. 2012, Graux et al.81

2012, Robertson et al. 2012, Teixeira et al. 2012, Ramirez et al. 2012, Kroschel et al. 2012) and those82

that use relatively complex models and/or simulate a number of different agricultural processes and83

practices (Ruane et al. 2012, Tao et al. 2012, Hemming et al. 2012, Osborne et al. 2012, Fraser et al.84

2012, Berg et al. 2012). The studies also reflect the increasing ability to simulate agricultural85

responses across large or multiple regions, including global assessment (Berg et al. 2012, Fraser et al.86

2012, Hemming et al. 2012, Kroschel et al. 2012, Osborne et al. 2012, Ramirez et al. 2012).87

Due to the focus on the use of climate ensembles, either to achieve large geographical coverage, or88

to capture uncertainty through the use of many ensemble members, relatively few studies here89

employ downscaling techniques (Gouache et al. 2012, Graux et al. 2012, Hoglind et al. 2012,90

Ramirez et al. 2012, Kroschel et al. 2012). Efforts to produce coordinated ensembles of regional91

climate model simulations (e.g. ENSEMBLES, COREDEX) are likely to lead to an increasing potential to92

sample uncertainty at higher spatial resolution. Downscaling is not covered explicitly in this93

introductory paper, except to note that two studies in this special issue (Hawkins et al. 2012, Hoglind94

et al. 2012) are relevant to weather generation.95

Every approach to climate impacts assessment has its pros and cons. In the development of each96

approach, a number of questions are addressed, either implicitly or explicitly. The following list is97

drawn in part from a workshop on climate impacts held in April 20101:98

1. What is the appropriate degree of complexity for simulation? This is relevant both to the99

biophysical model (section 2.1) and in considering the influence of, and interactions100

between, the range of other drivers of agricultural productivity, such as pests and diseases101

and management practices (section 2.2.2.).102

2. What are appropriate methodologies for quantifying and representing uncertainty (section103

2.2.1)? There are an increasing number of sets of climate ensembles produced from a range104

of research programmes. How are impacts modellers and, more broadly, users of climate105

information to choose between these? Which uncertainties in climate and its impacts106

dominate under which circumstances? Given that complete sampling of uncertainty using107

ensembles is not possible, can objective probabilities be determined? How should108

uncertainty in agricultural models be represented and evaluated?109

3. How should uncertainty be presented and communicated? How do these choices affect the110

methods used to quantify uncertainty? These questions have implications for the design and111

use of ensembles (section 3.2).112

In addition to introducing and framing the special issue, this opening paper seeks to identify113

methodologies for making effective use of agro-climate ensembles. Thus, the summary of progress114

in section 2 is used as a basis for a discussion of knowledge gaps (section 3.1) and some brief115

reflections on the utility of agro-climate ensembles (section 3.2). Conclusions are presented in116

section 4. Throughout the manuscript, the word uncertainty, where used without further117

1
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qualification, is used to denote a lack of predictive precision due to either inherent limitations to118

predictability (e.g. due to unknown future greenhouse gas emissions) or to a lack of predictive skill119

(e.g. errors in the design of a model).120

121

2. Progress in agro-climate modelling122

Here we highlight progress in the models used for agricultural impacts assessment (section 2.1)123

and improvements in the methodological design of studies that use those models, both in terms124

of the quantification of uncertainty (section 2.2.1) and the use of modelling studies to inform125

adaptation, which necessarily implies simulating crop yield but also a range of other quantities126

and processes (section 2.2.2).127

128

2.1 Agricultural models designed for use with climate ensembles129

Judicious choices of both agricultural model and the technique used for calibration are crucial for the130

development of robust conclusions regarding the impacts of climate change. Implicit in this choice is131

a judgement on the appropriate degree of complexity for simulating biophysical and agricultural132

processes. Insufficient complexity, by definition, renders a model incapable of simulating the133

processes that result in observed quantities. Excess complexity in a model results in sufficient134

degrees of freedom to reproduce observations, but this will often require parameter values that135

cannot be adequately constrained – thus increasing the chances of getting the right answer for the136

wrong reason (Challinor et al., 2009b). In practice, use of a range of approaches, with associated137

recognition of the pros and cons implicit in the assumptions made, is a way of assessing the138

robustness of results. This observation has been developed and labelled in a number of research139

fields and in a number of ways, e.g. equifinality (Beven, 2006) and consilience (Wilson, 1998).140

The use of a range of approaches within agricultural modelling is perhaps most evident with crops,141

as is indicated by the papers in this special issue, which range from detailed process based models142

(e.g. Ruane et al. 2012) to empirical models (Lobell 2012) and diverse models of intermediate143

complexity (e.g. Ramirez et al 2012, Osborne et al 2012, Watson et al 2012). Model complexity is144

inherently linked to the spatial scales at which crop responses are being simulated (for a full145

discussion, see e.g. Challinor et al., 2009a,b). Ramirez et al (2012) integrate the FAO-EcoCrop146

database with a basic mechanistic model that uses environmental ranges as inputs to determine the147

main niche of a crop and then produces a suitability index as output. Ruane et al. (2012) investigate148

the ability of empirical models of crop yield to reproduce the results from more complex process-149

based crop model simulations and infer pros and cons of each approach. The range of models now150

available is increasingly enabling spatially explicit global assessments of the actual (Osborne et al.151

2012) and potential (Berg et al. 2012) productivity of crops and the impact of specific processes such152

as heat stress (Teixera et al.2012).153

The studies collected here also demonstrate the relatively recent increase in the use of non-crop154

simulation models for climate impacts studies. The simulations of Hoglind et al. (2012) indicate155

increased grass yields into the future, mainly due to increased temperatures; Graux et al. (2012) find156

new opportunities for herbage production in spring and winter, although future conditions show157



increased interannual variability in production. Section 2.2.2 highlights progress in other non-crop158

simulations, for example socio-economic processes and pests and diseases.159

160

2.2 Improvements in the design of agro-climate ensembles161

162

2.2.1 Improved quantification of uncertainty163

The papers in this special issue present advances in both the methods used to assess uncertainty and164

the knowledge resulting from agro-climate ensembles. Methodological improvements address the165

inability to associate occurrence of events across an ensemble with the probability of those events166

occurring. More broadly, methodologies are required that enable the calibration and evaluation of167

ensemble prediction systems in order to better constrain ensemble outputs. Tao et al. (2012)168

applied Bayesian probability inversion and a Markov chain Monte Carlo (MCMC) technique to a169

large-scale crop model in order to attempt to make probabilistic predictions. This study, which170

focuses on the use of statistical tools to constrain ensembles, contrast with approaches that focus on171

specific processes such as heat and/or water stress (e.g. Teixida et al. 2012, Challinor et al. 2010),172

sometimes constraining ensembles using relatively simple techniques (e.g. Challinor and Wheeler,173

2008a).174

New knowledge on sources of uncertainty contained in this special issue can be divided into two175

categories:176

(i) Uncertainty in specific processes such as CO2 fertilisation and pest occurrence. Gouache et177

al. (2012) simulate the occurrence of Septoria tritici blotch on winter wheat and find that the178

contribution of the disease model to total uncertainty was greater than that of the climate179

model. Ruane et al. (2012) used the positive and monotonic relationship between CERES-180

Maize yield and carbon dioxide concentrations as a metric for the uncertainty associated with181

CO2 fertilisation and found this uncertainty to be significant (10 to 20%). This issue may be182

addressed by constraining the response of crops to increased CO2 using observations183

(Challinor et al., 2009c). However, interactions between water stress and CO2 can add184

significantly to the uncertainty in the response of crops to changes in CO2 (Challinor and185

Wheeler, 2008a).186

Model simulations with fully coupled vegetation and climate also provide evidence of the187

magnitude of the CO2 fertilisation effect. Hemming et al. (2012) examine both direct and188

indirect plant physiological responses to CO2 using such a model. The direct effects of189

elevated CO2 account for a 75% increase in net primary productivity (NPP), whilst indirect190

effects (i.e. the sum of effects mediated through the associated change in climate) account for191

a 21% decrease in the ensemble average. The extent to which results for NPP can be directly192

compared to results from calibrated and/or constrained crop model simulations is not yet193

clear.194

(ii) Assessments of the impact of uncertainty in agricultural model inputs, including climate195

model data. It is clear from the analysis above, and from a broader reading of the studies196



presented here, that the uncertainty resulting from simulation of a climate impact (such as197

crop yield or disease occurrence), and the fraction that this contributes to total uncertainty,198

varies across studies. Studies using crop and climate models have suggested that uncertainty199

in climate is a significant, if not dominant, contribution to total projected uncertainty (e.g.200

Challinor et al., 2009c). The broader issue of error in the inputs to climate impact models is201

therefore an important one. Lobell (2012) finds, using an empirical crop model, that studies202

that ignore measurement errors are unlikely to be biased for estimating the temperature203

sensitivity of yields, but can easily underestimate sensitivity to rainfall by a factor of two or204

more. Watson et al. (2012) examine the impact of error in rainfall, temperature and yield data205

(used for calibration) on process-based crop model, by randomising and perturbing observed206

data. For their study case, errors generated by randomising the temporal sequence of207

seasonal total precipitation produced an error in simulated yield of approximately three times208

that of temperature or yield. However, perturbing input data to values beyond those found in209

the current climate increased all yield errors significantly and to comparable values.210

The above studies all focus on the importance of input data from the perspective of211

agricultural models themselves. An important exception is the study of Craufurd et al. (2012),212

which highlights the role of crop science experiments in providing high quality data to inform213

crop modelling. In particular, the authors note that the diversity of genotypic responses is not214

well represented by existing crop science experiments, since responses have only been215

quantified for a limited number of genotypes.216

The importance of weather and climate inputs in determining the predictive skill of217

agricultural models implies that appropriate effort should be made to ensure that these inputs218

are as accurate as possible (without introducing false confidence through unwarranted219

precision). After reviewing the methods available for post-processing climate model output,220

Hawkins et al. (2012) employ these methods using a ‘perfect sibling’ framework, which is221

similar to the perfect model approach, and find significant variation in results. Whilst that222

study does not employ a weather generator, the results are relevant for the on-going223

development of weather generators.224

225

2.2.2. Going beyond biophysical crop yield impacts226

Much of the progress in agricultural modelling using ensembles has occurred with crop models.227

However, in order to inform adaptation, information is needed not just on likely future crop yields as228

influenced by biophysical processes, but also on the influence of a broader range of processes. Many229

of the studies discussed in section 2.1, and those presented elsewhere in this special issue, address230

adaptation in some way. These studies aim for a more complete description of the system through231

accounting for socio-economic drivers of productivity (Fraser et al. 2012), on-farm management232

such as choice of crop variety or planting date (Osborne et al. 2012; Ruane et al. 2012), or the233

impact of pests and diseases (Garrett et al. 2012; Kroshel et al. 2012; Gouache et al. 2012). For234

example, Fraser et al. (2012) use socio-economic data to model adaptive capacity and hydrological235

data to model exposure to drought, without the use of a crop model (though such work has been236

combined with biophysical models: Challinor et al., 2010). Garrett et al. (2012) provide a framework237



for integrating models of livestock, crops, pests and disease, whilst Kroschel et al. (2012) present a238

specific tool for adaptation planning in the integrated management of potato tuber moth.239

As the use of ensembles is extended to increasingly complete descriptions of agro-climatic processes240

(including biotic stresses and human actions), the complexity of the associated models and/or model241

chains will increase. Since the number of interactions between physical, agricultural and biological242

systems increases as the number of processes simulated increases, the uncertainty in the243

interactions will likely result in greater total uncertainty. Thus additional complexity brings with it244

demands for increased ensemble size in order to adequately sample uncertainty. If such models and245

model chains are carefully calibrated and have appropriate complexity then we may expect to see246

increasingly accurate representations of agro-climatic processes that in turn can be used to inform247

adaptation.248

249

250

251

3. Discussion252

3.1 Remaining science questions and challenges253

If projections based on agro-climate ensembles are to be robust, then a number of questions remain254

to be answered. Crop modelling relies on measurements for development, calibration and255

evaluation. How can field experiments, such as those that assess crop phenotypes, be best targeted256

towards modelling? Without addressing this question and others like it, agricultural models will at257

best make sub-optimal use of environmental data, and at worst they will be relied upon in lieu of258

that data, thus likely misleading adaptation efforts.259

A second challenge is to better understand the relationship between model complexity, measured260

uncertainty and actual uncertainty, and the manner in which this varies across spatial scales.261

Repeated projections for the near future, such as seasonal forecasts of crop yield, produce262

uncertainty ranges that are verifiable using standard techniques (e.g. Challinor et al., 2005). No such263

techniques can exist for projections of changes in the mean and variability of agricultural264

productivity on longer timescales, since there will be only one evolution of climate. Where climate265

change predictions are repeated many times, e.g. for multiple locations, ranges can be verified; but266

the extent to which these ranges can be compared to assessments of structural and parametric267

uncertainty is not clear.268

The move from emissions scenarios to Representative Concentration Pathways (van Vuuren et al.,269

2011) facilitates improved understanding of the consequences of uncertainty for prediction: by270

separating the uncertainty in future greenhouse gas emissions from uncertainty in the subsequent271

response of the climate system, the new framework has the potential to identify the component of272

future climate change that we can control. However, it is not yet clear whether or not this change273

will lead to more robust projections. Bayesian theory demonstrates that prior assumptions, whether274

made implicitly or explicitly, affect uncertainty estimates. Whilst some authors (e.g. Berger 2006)275

maintain that this does not preclude objective quantification of uncertainty, other authors question276



the potential for objective uncertainty assessment, both within ( O’Hagan, 2006) and beyond (Yohe277

and Oppenheimer, 2011) the Bayesian framework. Given this conceptual difficulty, and given that278

attempts to quantify uncertainty in agro-climate modelling can lead to very large ranges, and that279

ranges that can rarely be inter-compared (Challinor et al., 2007), it may be that new frameworks for280

quantifying and managing uncertainty are needed (sections 3.2 and 4). Studies that aim to compare281

and improve agricultural models, notably AgMIP (Rosenzweig et al., 2012), should do so in a manner282

that permits direct inter-comparison.283

Uncertainty in projections can be reduced by detailed examination of processes (see section 3.2)284

and/or by using observations to constrain simulations (e.g. Watson et al. 2012). Observational data285

for calibration and evaluation are critical to both of these methods of reducing uncertainty. For286

example, the yield simulations of Ewert et al. (2012) where the crop model is calibrated for287

individual regions using phenology and growth parameters are more skilful than those without this288

calibration, leading the authors to argue for region-specific calibration of crop models when289

conducting pan-European assessments. Similarly, the bivariate yield emulator tested by Ruane et al.290

(2012) for maize in Panama underestimated the potential yield impacts of extreme seasons and291

revealed errors due to the omission of additional crucial metrics including the number of rainy days292

and the standard deviation of temperatures. Thus, at least in some cases bivariate yield emulators293

are not sufficient for the prediction of yield in current or future climates. This work demonstrates294

the need for sufficient complexity in the development and calibration of agricultural models.295

Similarly, Watson et al. (2012) demonstrate the importance of yield data for the calibration of296

regional-scale models. Crop experiments relevant to future climates are also important (Craufurd et297

al. 2012), for example in evaluating the performance of crop varieties under climate change and in298

assessing crop response to elevated CO2.299

300

3.2 Effective use of agro-climate ensembles301

The issues outlined in section 3.1 regarding data, model complexity, and simulated and actual302

uncertainty, make it clear that validated, definitive probabilistic ensembles of impacts are difficult, if303

not impossible, to produce. This implies the need for significant thought in the way that uncertainty304

and prediction are framed. It also implies a need to recognise that different models may be needed305

for different parts of the decision cycle. Depending on the aims of any given study, one of two306

approaches is usually taken to developing agro-climate ensembles. Projection-based approaches use307

models and data to increase understanding and view decision-makers as end users. Utility-based308

approaches focus on the decisions that need to be made, rather than projections of impacts. For a309

broader discussion of these two approaches to managing uncertainty in climate and its impacts, see310

Mearns et al. (2010) or Dessai et al. (2007).311

Projection-based approaches map out the cascade of uncertainty from climate through to impact.312

Their success may be contingent on a degree of consilience (see section 2.2.1), which is something313

that the research process is apt at achieving, albeit at a speed limited by the publication cycle. Model314

inter-comparisons and combinations (Rosenzweig et al. 2012) – including the synthesis of315

information from process-based and statistical approaches – are likely to be particularly useful316

techniques for achieving consilience. Since attempts to combine both climatic and socio-economic317



drivers of agriculture (e.g. Challinor et al., 2010) are relatively few in number, it is not yet clear318

whether or not consilience can be achieved across the biophysical and socio-economic domains.319

Projection-based approaches are particularly well-suited to research and this is perhaps the320

approach most commonly found in the literature. Over time, new knowledge about agro-climatic321

systems is generated and this knowledge can then be used wherever and however the opportunity322

arises. Projections with well-bounded and uncertainty ranges are more likely to be useful in this323

context than those with wide ranges. Robust outcomes may emerge by focussing on underlying324

processes. For example, Ruane et al. found that avoided water stress from rapid maturity offsets the325

effect of temperature increases. Thornton et al. (2009) found that maize and bean yields in the326

drylands of East Africa responded in a similar fashion to climate change under both increased or327

decreased rainfall, due to the relationship between temperature and rainfall.328

Utility-based approaches hypothesise that taking into account how information is used can improve329

its utility. Thus research design is informed by the decision-making process, for example the chain of330

decisions around investment in new crop varieties. Since decisions naturally involve social and331

economic systems, utility-based approaches usually involve the social sciences (Raymond et al.,332

2010; Twyman et al., 2011). The specific nature of the decisions examined in a utility-based333

approach may make it difficult to generalise the results from different studies. However, the334

embedding of information and learning within decision-making processes can provide an alternative335

framework within which to seek consilience: synthesising sources of information in to a decision336

may, in spite of some individually weak elements, enable a decision that is more robust, due to other337

elements being stronger in the full decision context. For example, Ash et al. (2007) and McIntosh et338

al. (2005) found that an integrated plant growth index was both more predictable and more relevant339

to farm decision-making than the rainfall and temperature data on which that index depends.340

Whether a projection or utility based approach is used in any given study will depend on a range of341

factors. The nature of the specific agro-climatic system studied, and the ability (skill) of the tools342

developed to reproduce the properties of this system, may in part determine the likely success of a343

utility-based approach. Model skill in turn is underpinned by the development of models for344

understanding and for prediction. As agro-climatic ensembles are developed and applied to a range345

of systems, the skill and utility of these tools needs to be carefully assessed. Promising areas for346

future work include the use of household models of agricultural activity as part of ensemble347

systems, in order to assess the impact of human responses to climate change at the local scale; and348

ensembles of integrated assessment tools and economic models (Rosenzweig et al., 2012).349

350

4. Conclusions351

In addition to providing an introduction to this special issue, some recommendations for research352

may be drawn from the analysis above.353

1. Analysis of processes as a tool for navigating uncertainty. The use of models as black354

boxes, with the associated focus on model outputs, places a significant burden on the model355

to correctly reproduce the interactions between processes. The examination of processes356

across a series of models can identify research gaps in both modelling and field data357



(Challinor and Wheeler, 2008b). Such analyses are not routinely applied; indeed, it is often358

unclear which processes have been simulated within a given study (White et al., 2011).359

Model intercomparison projects – notably AgMIP (Rosenzweig et al. 2012) – provide360

opportunities to clearly document which processes are simulated and synthesise the results361

of numerous models.362

2. Explicit reporting on sources of uncertainty. When seeking either to improve363

understanding or to produce decision-relevant information, it is important to distinguish the364

sources of uncertainty. For example, climate change can be affected by policies to alter365

greenhouse gas emissions, but there is no political control over the response of the climate366

system to any given greenhouse gas forcing. Thus uncertainty in these two contributions to367

climate change has different implications for decision making.368

3. Strategies for combining diverse models and datasets. Agro-climate ensemble modelling369

rarely uses ensembles of agricultural models. Techniques for using multiple agricultural370

models could be targeted at projection- or utility- based approaches. In the latter case,371

different models may be needed for different parts of the decision cycle. In either case,372

there is likely to be a role for the development of field experiments that are targeted373

towards modelling, such as those that assess crop phenotypes.374

Underpinning all three of these recomendations is a methodology that treats models (and also data)375

as tools from which information is extracted, rather than as competing attempts to represent reality.376

This methodology could be used to improve understanding of the role of complexity, utility, spatial377

scale and uncertainty in agricultural prediction and adaptation. For example: how can net primary378

productivity from climate models (as analysed by Hemming et al. 2012) be used as part of crop yield379

assessments?; what are the relationships between model complexity, measured uncertainty and380

actual uncertainty, and how do these vary across spatial scale?; and can utility-based and projection-381

based approaches to agricultural prediction be combined by explicitly simulating the decision making382

process in projection-based agro-climate modelling (e.g. Garrett at al. 2012)? One approach to this383

final question is to develop methods for combining analysis of uncertainty from projections with an384

assessment of the accuracy needed for a specific decision.385
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