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Abstract

Visualization has proved an effective tool in the un-
derstanding of large data sets in computational sci-
ence and engineering. There s growing interest today
m the development of problem solving environments
which integrate both visualization and the computa-
tional process which generates the data.

The GRASPARC project has looked at some of the
1ssues involved in creating such an environment. An
architecture is proposed in which tools for computa-
tion and wvisualization can be embedded i a frame-
work which assists in the management of the problem
solving process. This framework has an integral data
management facility which allows an audit trail of the
experiments to be recorded. This design therefore al-
lows not only steering but also backtracking and more
complicated problem solving strategies.

A number of demonstrator case studies have been
implemented.

1 Introduction

Visualization has become a key tool in computa-
tional science and engineering. The ‘firehoses of data’
predicted by the NSF Report (McCormick et al [10])
can now be directed at one of a number of powerful
visualization systems, and the scientist can gain an
understanding of their data that would not previously
have been possible.

Generally, however, the computation process which
generates the data is seen as quite separate from the
visualization process which views it. The next chal-
lenge is to study how to provide an environment in
which the two are combined, and where the scientist
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thinks in terms of the overall task of solving a prob-
lem, not simply of viewing the results, and in which a
distributed computing environment can be exploited.
This paper describes the GRASPARC project, which
has looked at some of the issues involved in creating
such a problem solving environment.

2 Visualization and Problem Solving
Environments - Some Limitations

We begin by looking at the use of existing visual-
ization systems as problem solving environments.

Fundamental work by Upson et al [14] and Haber
and McNabb [7] has established a model for data visu-
alization that has underpinned many current software
systems. This model decomposes a visualization task
into a set of modules; the modules belong to one of
four classes: data sources; filters - to refine the data;
mappers - to construct an abstract geometrical repre-
sentation of the data; and renderers - to generate an
image.

This modular decomposition is the basis of a num-
ber of popular visualization systems: AVS [14], IRIS
Explorer [5], IBM Data Explorer [8], apE [4] and
Khoros [13]. These all provide a visual programming
front end, in which the user can select appropriate
modules for an application, connect them together in
a network and trigger execution by activating a data
source. Data passes through the network of modules,
from filters to mappers to renderers, finally generat-
ing an image - see Figure 1 - hence the term dataflow
system. Each module is typically controlled by a set
of parameters - for example, the threshold value in an
isosurface mapping module; user interface widgets as-
sociated with each module allow the user to modify



these parameter values, and thus adapt interactively
the flow of data through the network until a required
view is obtained.

In early versions, the data source modules simply
read data from a file and so there was no possibil-
ity of a direct link to the computation process which
created the data. It was a natural extension how-
ever to allow application code, for example Computa-
tional Fluid Dynamics (CFD) software, to be incor-
porated as a ‘data source’ module. This gives rise to
the term application builder, where the visualization
system houses both computation and visualization - a
complete application. A user interface can be created
for the embedded computational code; parameters of
the application can be changed interactively allowing
a simple form of computational steering (see Marshall
et al [9], for example) - as shown in Figure 1.

Thus such application builders can act as simple
problem solving environments. They have necessar-
ily however grown out of visualization systems, rather
than be designed from the outset as problem-solving
environments. Thus while there is support for carry-
ing out one simulation, or a simple sequence of simu-
lations with different parameter settings, there is typ-
ically little or no support for the complex search pro-
cess that a scientist typically undertakes in modelling
some phenomenon. For example, there is generally no
data management facility to record the results of one
simulation for later comparison; it is difficult to back-
track from one point in a simulation, and restart from
an earlier point with some change in parameters.

3 The GRASPARC Project

The GRASPARC project has attempted to work at
the outset from a problem solving point of view. We
are interested in constructing an environment in which
the computational scientist or engineer can ‘plug in’
the tools they need, and in which there is an integral
data management facility to provide an efficient audit
trail of the experiments carried out.

The work has involved a number of strands which
are discussed in more detail in the later sections of this

paper:

Reference Model: An overall view of the mathe-
matical modelling process has been developed, in
order to gain a high-level understanding of the
processes involved in problem solving.

Modelling the Search for a Solution: The next
level of refinement 1s to understand the search

process undertaken by the scientist in solving a
problem. A model has been built which sees the
process as a tree structure: the root of the tree
represents the start of a series of experiments;
a branch is created at some point where a new
experiment with different parameters is begun,;
along any branch are snapshots at which results
are recorded and from which new branches can
be created. The final tree is the complete audit
trail of the set of experiments. The user interface
to our system then becomes an interface to this
model.

Architecture - Components and Framework:
From an understanding of the problem-solving
process, it becomes possible to identify the com-
ponents needed to provide a good working en-
vironment: computation and visualization com-
ponents provide the tools, but these need to be
embedded in a framework that will allow them
to work in harmony, and communicate in a way
which is transparent to the scientist. Most im-
portantly, there is a need for a data manager to
hold the tree data structure which underlies the
search process.

High-quality numerical tools and excellent visual-
ization software already exist, so it is the goal of
GRASPARC to provide the framework in which
they can be integrated.

The animation of sequences of images is seen as
a fundamental requirement for visualization, and
thus we are investigating as part of the project,
special-purpose animation hardware.

Throughout the project we have kept in touch with
a range of potential users: computational chemists,
meteorologists, fluid dynamicists, and mechanical en-
gineers. These contacts have enabled us to under-
stand the requirements of problem solving environ-
ments, and they have provided a source of demon-
strator studies which have been used as test-bed for
our ideas.

4 A Reference Model for Problem
Solving

The work began by developing an overall view of
the mathematical modelling process, through a series
of interviews with our user contacts.

The model is described in terms of a three-
dimensional structure involving two parallel planes:
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Figure 1: Steering in the Dataflow Environment.

an Investigator’s Plane which holds the cognitive ac-
tivities associated with problem-solving (such as as-
similation of results); and a Simulation Plane which
holds the states through which a problem passes en
route to solution (see Figure 2).

The Simulation Plane is subdivided into layers of
increasing specificity: the upper layer 1s the Model
Layer in which the problem is expressed in some ide-
alised form; in the middle layer, termed the Contin-
uum Layer, the problem is expressed as a functional
specification, say a set of differential equations; the
lower layer, the Discrete Layer, contains a discretised
formulation of the equations to be solved numerically.
Lower layers are invoked as necessary when a solution
is not directly available within the present layer.

Between the planes lie tools for presentation and in-
teraction. Tools for presentation provide the user with
a representation (which may or may not be visual) of
what 1s occurring in the simulation plane, whilst tools
for interaction provide the means for influencing the
simulation.

A complete description of the GRASPARC refer-
ence model is given by Wright et al [15]. GRASPARC
concentrates on the lower layer of the model - namely,
the search for a solution of the numerical simulation.

The next level of refinement of the GRASPARC
model 1s to understand the search process undertaken
by the scientist within the Discrete Layer. But first we
describe a simple case study which will help explain
this search process.

5 Case Study - Kinetics of Thermally
Activated Processes

This is a problem in computational physics, de-
scribed by Cartling [3]. A particle is moving in a po-
tential and connected to a heat bath. The potential
has two minima corresponding to the states of the sys-
tem between which transitions take place - the physi-
cist 1s interested in how the particle behaves over time,
for different strengths of coupling to the heat bath.

The motion is described by the Fokker-Planck equa-
tion:
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where:

P = P(x,v;t) is a probability density func-
tion, giving the probability of the particle
having position, z, and velocity, v, at time
t;

U(x) is the supplied potential (bistable);
[ is a damping factor.

Initially at time ¢ = 0, the probability distribution
is a sharp peak centred on z = —2,v = 0 ; that is, the
particle has high probability of being stationary at one
minimum of the potential. The other minimum is at
z = 42,v = 0. As ¢ increases, so the distribution
changes, and will vary depending on the value of 3.
Figure 3 shows the contours of P as time progresses
- the plume indicates passage of the particle over the
potential barrier separating the two minima.

In the Discrete Layer of our reference model, the
problem is formulated as the numerical solution of
the Fokker-Planck equation, which in our case is
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Figure 2: The GRASPARC Reference Model.

Figure 3: Fokker-Planck Solution : P(z,v) at time ¢t > 0.



achieved using the SPRINT differential equation soft-
ware (Berzins et al [2]). The PDE’s are discretised in
the two space dimensions, generating a set of ODEs
which are solved by SPRINT.

The computational scientist will want to control a
number of aspects in solving this problem:

e (3, the strength of coupling to heat bath
e mesh size for spatial discretisation

e frequency of output of results

There is interest in comparing results for different
values of 3; and in halting a calculation in order to
backtrack some time steps to repeat the calculation
with a different mesh size to gain greater accuracy -
both operations which could not easily be achieved
simply by embedding the numerical software in a vi-
sualization system.

6 Modelling the Search for a Solution

The fundamental concept in GRASPARC is the
model of the search process by which a scientist in-
vestigates a problem in the Discrete Layer. We see
the computational process as an ordered set of events
in time. These events might be points at which an
intermediate solution can be output - or at which the
computation can be interrupted and some parameter
changed before restarting. This can be modelled as a
tree structure, which we have termed a History Tree
(see Figure 4).

To understand the History Tree, consider the solu-
tion of the Fokker-Planck case study described earlier.
The scientist will begin solution of the equations with
a certain mesh size, and with requests for the solution
to be recorded every five seconds, say. These outputs
are the events mentioned above. If the solution is visu-
alized as it is calculated, the scientist may spot some
feature of interest - or notice its absence. This is a
signal to halt the computation, and explore this more
closely. Rather than go back to the start and repeat
the entire calculation at higher accuracy, the scientist
would prefer to reload the solution from a few time-
steps previous, and resume from there with finer mesh
size and more frequent output of results.

This is the model of working we aim to support in
GRASPARC. The overall set of events for a computa-
tional experiment is described as a history tree. The
tree will have a set of associated parameters, which

specify the experiment - here the Fokker-Planck equa-
tions, the potential within which the particle is mov-
ing, and so on. Each branch of the tree corresponds to
a particular decision by the scientist - for example, to
set the time increment for output. Thus each branch
will also have an associated set of parameters, speci-
fying the particular options chosen by the scientist at
that decision point. Finally each branch consists of a
sequence of snapshots - the individual events along a
branch, essentially the iteration steps towards a solu-
tion. Data stored at a snapshot may be at different
levels of abstraction: either the raw data, or a geomet-
rical representation, or an image representation. Al-
ternatively an event may be recorded as having taken
place, but with no actual data stored.

7 GRASPARC System Architecture -
Framework and Components

The Reference Model has helped identify the scope
of the GRASPARC project as providing an environ-
ment in which problem solving in the Discrete Layer
can be effectively managed. The History Tree has
given us a model of the process of searching for a solu-
tion. The next step has been to define a basic system
architecture, comprising a framework into which dif-
ferent components or tools can be inserted.

The GRASPARC architecture is shown in Figure 5.
The framework provides a support environment for
one or more numerical and graphical applications. It
consists of the following elements:

GRASPARC Management System (GMS):
This is the principal component of the design. Its
basic data structure is the History Tree, recording
the process by which the scientist is iterating to a
solution of the problem. Its function is to accept
user commands and formulate these in terms of a
basic set of operations on the tree - for example,
‘create a new branch’ or ‘visualize a snapshot’.
Thus the GMS is essentially a model of the prob-
lem solving process as seen by GRASPARC. The
output from the model is a set of instructions to
the different components in the system - for ex-
ample, creating a new branch will generate an in-
struction to a numeric component to restart from
a given point with a new set of parameters.

The GMS has been designed to allow concurrent
processing of the basic set of operations - thus it
is possible to ‘explore’ multiple branches simulta-
neously.
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GRASPARC User Interface (UI): The GRAS-
PARC user interface is likewise modelled on the
History Tree - indeed it is essentially a rep-
resentation of the current state of the History
Tree as known by the GMS. The scientist thus
thinks in terms of a search process with snap-
shots, branches and trees. A ‘tree viewer’ displays
the structure and allows the scientist to select a
snapshot as a new branch point, or to select a
sequence of snapshots for visualization.

GRASPARC Data Management System (DMS):

GRASPARC includes its own dedicated data
management system, which can be logically
viewed as a subsidiary function of the GRAS-
PARC Management System.

It 1s designed as a layered model. The lowest
layer, called the physical data layer, contains a
set of primitive data types (such as reals, integers
and strings) and has been implemented in terms
of the Hierarchical Data Format (HDF) [11].

The middle layer, called the composite data layer,
contains a set of composite types derived from
the primitive types: such as different mesh struc-
tures, images, etc. The definition of this layer has
been influenced by the requirements of the case
studies examined during the project, and also by
the datatypes from existing visualization systems,
particularly IBM Data Explorer (see Haber et al
).

The top layer, called the data model layer, is es-
sentially the History Tree data structure, in which

the composite types are organised in a tree hier-
archy.

A set of logical operations for the storage, extrac-
tion and removal of data from the tree have been
developed. Note that the GRASPARC Manage-
ment System simply holds a map of the structure
of the History Tree - it is the Data Management
System which holds the actual data.

Thus we see that the History Tree is the funda-
mental concept around which the GMS, the Ul
and the DMS are all organised.

GRASPARC Application Managers (AM):
Each numerical or graphical component is at-
tached to the framework by means of an applica-
tion manager, whose function is to translate data
and commands between the native format of the
application and a common GRASPARC format.
It is the responsibility of the problem solver to

develop the AM, but GRASPARC provides tools,

guidance and interface definitions.

An important aspect is the separate data and
command highways. Command highways link the
AMs to the central GMS; data highways link AMs
of components directly - so computational results
can be passed on a ‘fast track’ to the graphical
component, or the DMS. This separation means
that the command highways do not get choked
with data, and instructions can be passed rapidly
to components.

A component or its AM can include a user in-
terface to control the setting of parameters for
that component - for example, initial conditions
for solution by a numerics component.

Thus a GRASPARC problem solver will be built
by identifying suitable numerical and graphical soft-
ware for the problem at hand - this is seen as the
responsibility of the problem owner. These tools are
brought into the GRASPARC environment, by con-
necting them to the framework as described.

The architecture allows the components to be dis-
tributed across different processors - so that the com-
putation components for example can run on a high
performance computing node and the graphics com-
ponents on one or more workstations.

Special-purpose animation hardware is being devel-
oped by the other partners in the project, Quintek
Ltd. This is treated as a graphics component, and
connected via an AM as described above. Images are
retrieved from the DMS (by selecting from a history
tree display of available images), stored in a cache and
replayed as requested.

8 Developing GRASPARC Demon-
strators

As with any research project, the ideas described
above have been conceived, formulated and matured
as the project has progressed. In order to test the
feasibility of the concepts, a number of demonstrators
have been constructed during the project.

The first prototype was built to solve the Fokker-
Planck case study mentioned earlier. The numerical
component was the SPRINT software; the graphical
components were contouring routines, based on the
FARB-E software (Preusser [12]), and surface view
routines written locally - both based on an implemen-

tation of PHIGS [1], the ISO standard for 3D graphics.



The system was implemented on a network of Silicon
Graphics 4D /240 and Personal IRIS workstations.

Figure 6 shows an example from a problem solving
session. The scientist is looking at two different con-
current graphical representations of a snapshot. No-
tice that they have backtracked to an earlier snapshot
to create a new branch.

s

T = L0000 Brorch 2

Figure 6: Solving the Fokker-Planck Problem.

The next demonstrator looked at a problem in aero-
nautics. A wedge is put in the path of a jet of fast-
moving air; the flow cannot continue smoothly over
the wedge and a shock front develops because the air
1s necessarily compressed into a smaller space in order
to be able to pass the obstruction - the shock front
represents a line at which all solution variables change
rapidly in space - see Figure 7.

The scientist may wish to experiment with alter-
ing the angle of the wedge, or the velocity of the air.
During the solution, the scientist may wish to halt the
computation, return to an earlier solution time and re-
sume calculation with a finer tolerance, so as to better
pinpoint the position of the front.

This demonstrator was built again using SPRINT-
based numerical software, but this time using the
dataflow visualization system, AVS [14], as the graph-
ical component. The GRASPARC Application Man-
ager which interfaces AVS to the framework, passes a
script to AVS so as to automatically generate a suit-
able network based on the data to be displayed - thus
shielding the scientist from the workings of AVS itself.
The development of this demonstrator was influenced
by the CEC ESPRIT project FOCUS, and indeed the
user interface software from FOCUS was used directly.

Figure 8 shows a session from this demonstrator.
The scientist has selected a snapshot and is changing

air speed and tolerance at this time in order to create
a new branch.

Figure 8: Solving the Wedge Problem.

Two further demonstrators are under development
- from the fields of chemical reaction simulation and
planetary motion - involving different numerical and
graphical components. In these cases, as in the
demonstrators just described, the scientist will be able
to exploit the GRASPARC architecture in exploring
different solution options in a well managed way.

9 Conclusions and Future Work

GRASPARC has defined a model of a problem solv-
ing environment, in which numerical and graphical
components can be integrated under a common frame-
work. This framework is based on the History Tree
concept, which reflects the search process used by a
scientist in reaching an optimal solution to a simula-
tion. There is an integral data management facility
which allows an audit trail to be recorded.

The study has led us along a number of avenues
which are still being explored. For example, the close
coupling of computation and visualization raises im-
portant issues for direct manipulation of a simulation,
and for the accuracy of visual representation.

Taking direct manipulation first, consider again the
Fokker-Planck problem and suppose we overlay the
computational mesh on the solution as it is visual-
ized. Rather than globally request a mesh refinement,
one can point at particular areas of the mesh where re-
finement 1s needed. This requires the input of spatial
data back to the simulation - a facility rarely provided
in current systems.

As far as accuracy is concerned, we are looking at
the ways in which ‘functional’ information held in the
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numerical component can be transferred to the graph-
ics component. In conventional systems, the interface
is at the level of data - with the graphics system inde-
pendently recreating the interpolant with consequent
loss of accuracy.

We are still at the early stages of research into prob-
lem solving environments. We hope GRASPARC may
influence the subsequent development of commercial
systems - whether they grow out of existing visualiza-
tion systems or are developed ab initio.

The next step is to seek an environment in which a
host of tools can be employed, not just numerical and
graphical, but also computer algebra, computational
geometry and documentation systems - to provide a
‘virtual laboratory’ for the computational scientist.
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