
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in IEEE Conference on
Visualization, 1993. Visualization '93, Proceedings

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/77855

Paper:
Brodlie, KW, Poon, A, Wright, H, Brankin, L, Banechi, G and Gay, A (1993)
GRASPARC - A problem solving environment integrating computation and
visualization. In: Bergeron, D and Nielson, GM, (eds.) IEEE Conference on
Visualization, 1993. Visualization '93, Proceedings. IEEE Visualization '93, 25-
29th October 1993, San Jose. California. IEEE Computer Society , 102 - 109 (8).
ISBN 0-8186-3940-7

http://dx.doi.org/10.1109/VISUAL.1993.398857

GRASPARC - A Problem Solving Environment IntegratingComputation and VisualizationKen Brodlie Lesley BrankinAndrew Poon Greg BaneckiHelen Wright Alan GaySchool of Computer Studies NAG LtdUniversity of Leeds OxfordLeeds, UK UKAbstractVisualization has proved an e�ective tool in the un-derstanding of large data sets in computational sci-ence and engineering. There is growing interest todayin the development of problem solving environmentswhich integrate both visualization and the computa-tional process which generates the data.The GRASPARC project has looked at some of theissues involved in creating such an environment. Anarchitecture is proposed in which tools for computa-tion and visualization can be embedded in a frame-work which assists in the management of the problemsolving process. This framework has an integral datamanagement facility which allows an audit trail of theexperiments to be recorded. This design therefore al-lows not only steering but also backtracking and morecomplicated problem solving strategies.A number of demonstrator case studies have beenimplemented.1 IntroductionVisualization has become a key tool in computa-tional science and engineering. The `�rehoses of data'predicted by the NSF Report (McCormick et al [10])can now be directed at one of a number of powerfulvisualization systems, and the scientist can gain anunderstanding of their data that would not previouslyhave been possible.Generally, however, the computation process whichgenerates the data is seen as quite separate from thevisualization process which views it. The next chal-lenge is to study how to provide an environment inwhich the two are combined, and where the scientist

thinks in terms of the overall task of solving a prob-lem, not simply of viewing the results, and in which adistributed computing environment can be exploited.This paper describes the GRASPARC project, whichhas looked at some of the issues involved in creatingsuch a problem solving environment.2 Visualization and Problem SolvingEnvironments - Some LimitationsWe begin by looking at the use of existing visual-ization systems as problem solving environments.Fundamental work by Upson et al [14] and Haberand McNabb [7] has established a model for data visu-alization that has underpinned many current softwaresystems. This model decomposes a visualization taskinto a set of modules; the modules belong to one offour classes: data sources; �lters - to re�ne the data;mappers - to construct an abstract geometrical repre-sentation of the data; and renderers - to generate animage.This modular decomposition is the basis of a num-ber of popular visualization systems: AVS [14], IRISExplorer [5], IBM Data Explorer [8], apE [4] andKhoros [13]. These all provide a visual programmingfront end, in which the user can select appropriatemodules for an application, connect them together ina network and trigger execution by activating a datasource. Data passes through the network of modules,from �lters to mappers to renderers, �nally generat-ing an image - see Figure 1 - hence the term dataowsystem. Each module is typically controlled by a setof parameters - for example, the threshold value in anisosurface mapping module; user interface widgets as-sociated with each module allow the user to modify

these parameter values, and thus adapt interactivelythe ow of data through the network until a requiredview is obtained.In early versions, the data source modules simplyread data from a �le and so there was no possibil-ity of a direct link to the computation process whichcreated the data. It was a natural extension how-ever to allow application code, for example Computa-tional Fluid Dynamics (CFD) software, to be incor-porated as a `data source' module. This gives rise tothe term application builder, where the visualizationsystem houses both computation and visualization - acomplete application. A user interface can be createdfor the embedded computational code; parameters ofthe application can be changed interactively allowinga simple form of computational steering (see Marshallet al [9], for example) - as shown in Figure 1.Thus such application builders can act as simpleproblem solving environments. They have necessar-ily however grown out of visualization systems, ratherthan be designed from the outset as problem-solvingenvironments. Thus while there is support for carry-ing out one simulation, or a simple sequence of simu-lations with di�erent parameter settings, there is typ-ically little or no support for the complex search pro-cess that a scientist typically undertakes in modellingsome phenomenon. For example, there is generally nodata management facility to record the results of onesimulation for later comparison; it is di�cult to back-track from one point in a simulation, and restart froman earlier point with some change in parameters.3 The GRASPARC ProjectThe GRASPARC project has attempted to work atthe outset from a problem solving point of view. Weare interested in constructing an environment in whichthe computational scientist or engineer can `plug in'the tools they need, and in which there is an integraldata management facility to provide an e�cient audittrail of the experiments carried out.The work has involved a number of strands whichare discussed in more detail in the later sections of thispaper:Reference Model: An overall view of the mathe-matical modelling process has been developed, inorder to gain a high-level understanding of theprocesses involved in problem solving.Modelling the Search for a Solution: The nextlevel of re�nement is to understand the search

process undertaken by the scientist in solving aproblem. A model has been built which sees theprocess as a tree structure: the root of the treerepresents the start of a series of experiments;a branch is created at some point where a newexperiment with di�erent parameters is begun;along any branch are snapshots at which resultsare recorded and from which new branches canbe created. The �nal tree is the complete audittrail of the set of experiments. The user interfaceto our system then becomes an interface to thismodel.Architecture - Components and Framework:From an understanding of the problem-solvingprocess, it becomes possible to identify the com-ponents needed to provide a good working en-vironment: computation and visualization com-ponents provide the tools, but these need to beembedded in a framework that will allow themto work in harmony, and communicate in a waywhich is transparent to the scientist. Most im-portantly, there is a need for a data manager tohold the tree data structure which underlies thesearch process.High-quality numerical tools and excellent visual-ization software already exist, so it is the goal ofGRASPARC to provide the framework in whichthey can be integrated.The animation of sequences of images is seen asa fundamental requirement for visualization, andthus we are investigating as part of the project,special-purpose animation hardware.Throughout the project we have kept in touch witha range of potential users: computational chemists,meteorologists, uid dynamicists, and mechanical en-gineers. These contacts have enabled us to under-stand the requirements of problem solving environ-ments, and they have provided a source of demon-strator studies which have been used as test-bed forour ideas.4 A Reference Model for ProblemSolvingThe work began by developing an overall view ofthe mathematical modelling process, through a seriesof interviews with our user contacts.The model is described in terms of a three-dimensional structure involving two parallel planes:

Filter RenderApplication

Interaction

MapFigure 1: Steering in the Dataow Environment.an Investigator's Plane which holds the cognitive ac-tivities associated with problem-solving (such as as-similation of results); and a Simulation Plane whichholds the states through which a problem passes enroute to solution (see Figure 2).The Simulation Plane is subdivided into layers ofincreasing speci�city: the upper layer is the ModelLayer in which the problem is expressed in some ide-alised form; in the middle layer, termed the Contin-uum Layer, the problem is expressed as a functionalspeci�cation, say a set of di�erential equations; thelower layer, the Discrete Layer, contains a discretisedformulation of the equations to be solved numerically.Lower layers are invoked as necessary when a solutionis not directly available within the present layer.Between the planes lie tools for presentation and in-teraction. Tools for presentation provide the user witha representation (which may or may not be visual) ofwhat is occurring in the simulation plane, whilst toolsfor interaction provide the means for inuencing thesimulation.A complete description of the GRASPARC refer-ence model is given by Wright et al [15]. GRASPARCconcentrates on the lower layer of the model - namely,the search for a solution of the numerical simulation.The next level of re�nement of the GRASPARCmodel is to understand the search process undertakenby the scientist within the Discrete Layer. But �rst wedescribe a simple case study which will help explainthis search process.

5 Case Study - Kinetics of ThermallyActivated ProcessesThis is a problem in computational physics, de-scribed by Cartling [3]. A particle is moving in a po-tential and connected to a heat bath. The potentialhas two minima corresponding to the states of the sys-tem between which transitions take place - the physi-cist is interested in how the particle behaves over time,for di�erent strengths of coupling to the heat bath.The motion is described by the Fokker-Planck equa-tion:@P@t = �v @P@x + 1m dUdx @P@v +� � @@v (vP) + �Tm @2P@v2 �where:P = P (x; v; t) is a probability density func-tion, giving the probability of the particlehaving position, x, and velocity, v, at timet;U (x) is the supplied potential (bistable);� is a damping factor.Initially at time t = 0, the probability distributionis a sharp peak centred on x = �2; v = 0 ; that is, theparticle has high probability of being stationary at oneminimum of the potential. The other minimum is atx = +2; v = 0. As t increases, so the distributionchanges, and will vary depending on the value of �.Figure 3 shows the contours of P as time progresses- the plume indicates passage of the particle over thepotential barrier separating the two minima.In the Discrete Layer of our reference model, theproblem is formulated as the numerical solution ofthe Fokker-Planck equation, which in our case is

Discrete

Layer

Continuum

Layer

Model

Layer

Investigator’s Plane

Simulation Plane

PresentationInteraction

Idealised

Problem

Functional

Specification

Discrete

Specification

Increased

Understanding

Continuous

Solution

Discrete

SolutionFigure 2: The GRASPARC Reference Model.
v

xFigure 3: Fokker-Planck Solution : P (x; v) at time t > 0.

achieved using the SPRINT di�erential equation soft-ware (Berzins et al [2]). The PDE's are discretised inthe two space dimensions, generating a set of ODEswhich are solved by SPRINT.The computational scientist will want to control anumber of aspects in solving this problem:� �, the strength of coupling to heat bath� mesh size for spatial discretisation� frequency of output of resultsThere is interest in comparing results for di�erentvalues of �; and in halting a calculation in order tobacktrack some time steps to repeat the calculationwith a di�erent mesh size to gain greater accuracy -both operations which could not easily be achievedsimply by embedding the numerical software in a vi-sualization system.6 Modelling the Search for a SolutionThe fundamental concept in GRASPARC is themodel of the search process by which a scientist in-vestigates a problem in the Discrete Layer. We seethe computational process as an ordered set of eventsin time. These events might be points at which anintermediate solution can be output - or at which thecomputation can be interrupted and some parameterchanged before restarting. This can be modelled as atree structure, which we have termed a History Tree(see Figure 4).To understand the History Tree, consider the solu-tion of the Fokker-Planck case study described earlier.The scientist will begin solution of the equations witha certain mesh size, and with requests for the solutionto be recorded every �ve seconds, say. These outputsare the events mentioned above. If the solution is visu-alized as it is calculated, the scientist may spot somefeature of interest - or notice its absence. This is asignal to halt the computation, and explore this moreclosely. Rather than go back to the start and repeatthe entire calculation at higher accuracy, the scientistwould prefer to reload the solution from a few time-steps previous, and resume from there with �ner meshsize and more frequent output of results.This is the model of working we aim to support inGRASPARC. The overall set of events for a computa-tional experiment is described as a history tree. Thetree will have a set of associated parameters, which

specify the experiment - here the Fokker-Planck equa-tions, the potential within which the particle is mov-ing, and so on. Each branch of the tree corresponds toa particular decision by the scientist - for example, toset the time increment for output. Thus each branchwill also have an associated set of parameters, speci-fying the particular options chosen by the scientist atthat decision point. Finally each branch consists of asequence of snapshots - the individual events along abranch, essentially the iteration steps towards a solu-tion. Data stored at a snapshot may be at di�erentlevels of abstraction: either the raw data, or a geomet-rical representation, or an image representation. Al-ternatively an event may be recorded as having takenplace, but with no actual data stored.7 GRASPARC System Architecture -Framework and ComponentsThe Reference Model has helped identify the scopeof the GRASPARC project as providing an environ-ment in which problem solving in the Discrete Layercan be e�ectively managed. The History Tree hasgiven us a model of the process of searching for a solu-tion. The next step has been to de�ne a basic systemarchitecture, comprising a framework into which dif-ferent components or tools can be inserted.The GRASPARC architecture is shown in Figure 5.The framework provides a support environment forone or more numerical and graphical applications. Itconsists of the following elements:GRASPARC Management System (GMS):This is the principal component of the design. Itsbasic data structure is the History Tree, recordingthe process by which the scientist is iterating to asolution of the problem. Its function is to acceptuser commands and formulate these in terms of abasic set of operations on the tree - for example,`create a new branch' or `visualize a snapshot'.Thus the GMS is essentially a model of the prob-lem solving process as seen by GRASPARC. Theoutput from the model is a set of instructions tothe di�erent components in the system - for ex-ample, creating a new branch will generate an in-struction to a numeric component to restart froma given point with a new set of parameters.The GMS has been designed to allow concurrentprocessing of the basic set of operations - thus itis possible to `explore' multiple branches simulta-neously.

RESTART
 (ROLLBACK)

STOP

FINISH

E
xe

cu
ti

o
n

 T
im

es

SNAPSHOTS
Legend:

BRANCH #n

START

Figure 4: The GRASPARC History Tree.

GRASPARC
Management System

main()
{
 ...
 calculate(...);
 ...
}

User
Interface

Application
Manager

Application
Manager

Numerical
Application

Graphical
Application

Data
Management System

Data Store

History Tree Manipulator
Legend:

data channel

control channel

Figure 5: The GRASPARC Architecture.

GRASPARC User Interface (UI): The GRAS-PARC user interface is likewise modelled on theHistory Tree - indeed it is essentially a rep-resentation of the current state of the HistoryTree as known by the GMS. The scientist thusthinks in terms of a search process with snap-shots, branches and trees. A `tree viewer' displaysthe structure and allows the scientist to select asnapshot as a new branch point, or to select asequence of snapshots for visualization.GRASPARC Data Management System (DMS):GRASPARC includes its own dedicated datamanagement system, which can be logicallyviewed as a subsidiary function of the GRAS-PARC Management System.It is designed as a layered model. The lowestlayer, called the physical data layer, contains aset of primitive data types (such as reals, integersand strings) and has been implemented in termsof the Hierarchical Data Format (HDF) [11].The middle layer, called the composite data layer,contains a set of composite types derived fromthe primitive types: such as di�erent mesh struc-tures, images, etc. The de�nition of this layer hasbeen inuenced by the requirements of the casestudies examined during the project, and also bythe datatypes from existing visualization systems,particularly IBM Data Explorer (see Haber et al[6]).The top layer, called the data model layer, is es-sentially the History Tree data structure, in whichthe composite types are organised in a tree hier-archy.A set of logical operations for the storage, extrac-tion and removal of data from the tree have beendeveloped. Note that the GRASPARC Manage-ment System simply holds a map of the structureof the History Tree - it is the Data ManagementSystem which holds the actual data.Thus we see that the History Tree is the funda-mental concept around which the GMS, the UIand the DMS are all organised.GRASPARC Application Managers (AM):Each numerical or graphical component is at-tached to the framework by means of an applica-tion manager, whose function is to translate dataand commands between the native format of theapplication and a common GRASPARC format.It is the responsibility of the problem solver to

develop the AM, but GRASPARC provides tools,guidance and interface de�nitions.An important aspect is the separate data andcommand highways. Command highways link theAMs to the central GMS; data highways link AMsof components directly - so computational resultscan be passed on a `fast track' to the graphicalcomponent, or the DMS. This separation meansthat the command highways do not get chokedwith data, and instructions can be passed rapidlyto components.A component or its AM can include a user in-terface to control the setting of parameters forthat component - for example, initial conditionsfor solution by a numerics component.Thus a GRASPARC problem solver will be builtby identifying suitable numerical and graphical soft-ware for the problem at hand - this is seen as theresponsibility of the problem owner. These tools arebrought into the GRASPARC environment, by con-necting them to the framework as described.The architecture allows the components to be dis-tributed across di�erent processors - so that the com-putation components for example can run on a highperformance computing node and the graphics com-ponents on one or more workstations.Special-purpose animation hardware is being devel-oped by the other partners in the project, QuintekLtd. This is treated as a graphics component, andconnected via an AM as described above. Images areretrieved from the DMS (by selecting from a historytree display of available images), stored in a cache andreplayed as requested.8 Developing GRASPARC Demon-stratorsAs with any research project, the ideas describedabove have been conceived, formulated and maturedas the project has progressed. In order to test thefeasibility of the concepts, a number of demonstratorshave been constructed during the project.The �rst prototype was built to solve the Fokker-Planck case study mentioned earlier. The numericalcomponent was the SPRINT software; the graphicalcomponents were contouring routines, based on theFARB-E software (Preusser [12]), and surface viewroutines written locally - both based on an implemen-tation of PHIGS [1], the ISO standard for 3D graphics.

The system was implemented on a network of SiliconGraphics 4D/240 and Personal IRIS workstations.Figure 6 shows an example from a problem solvingsession. The scientist is looking at two di�erent con-current graphical representations of a snapshot. No-tice that they have backtracked to an earlier snapshotto create a new branch.
Figure 6: Solving the Fokker-Planck Problem.
The scientist may wish to experiment with alter-ing the angle of the wedge, or the velocity of the air.During the solution, the scientist may wish to halt thecomputation, return to an earlier solution time and re-sume calculation with a �ner tolerance, so as to betterpinpoint the position of the front.This demonstrator was built again using SPRINT-based numerical software, but this time using thedataow visualization system, AVS [14], as the graph-ical component. The GRASPARC Application Man-ager which interfaces AVS to the framework, passes ascript to AVS so as to automatically generate a suit-able network based on the data to be displayed - thusshielding the scientist from the workings of AVS itself.The development of this demonstrator was inuencedby the CEC ESPRIT project FOCUS, and indeed theuser interface software from FOCUS was used directly.Figure 8 shows a session from this demonstrator.The scientist has selected a snapshot and is changing

air speed and tolerance at this time in order to createa new branch.
Figure 8: Solving the Wedge Problem.Two further demonstrators are under development- from the �elds of chemical reaction simulation andplanetary motion - involving di�erent numerical andgraphical components. In these cases, as in thedemonstrators just described, the scientist will be ableto exploit the GRASPARC architecture in exploringdi�erent solution options in a well managed way.9 Conclusions and Future WorkGRASPARC has de�ned a model of a problem solv-ing environment, in which numerical and graphicalcomponents can be integrated under a common frame-work. This framework is based on the History Treeconcept, which reects the search process used by ascientist in reaching an optimal solution to a simula-tion. There is an integral data management facilitywhich allows an audit trail to be recorded.The study has led us along a number of avenueswhich are still being explored. For example, the closecoupling of computation and visualization raises im-portant issues for direct manipulation of a simulation,and for the accuracy of visual representation.Taking direct manipulation �rst, consider again theFokker-Planck problem and suppose we overlay thecomputational mesh on the solution as it is visual-ized. Rather than globally request a mesh re�nement,one can point at particular areas of the mesh where re-�nement is needed. This requires the input of spatialdata back to the simulation - a facility rarely providedin current systems.As far as accuracy is concerned, we are looking atthe ways in which `functional' information held in the

The next demonstrator looked at a problem in aero-nautics. A wedge is put in the path of a jet of fast-moving air; the ow cannot continue smoothly overthe wedge and a shock front develops because the airis necessarily compressed into a smaller space in orderto be able to pass the obstruction - the shock frontrepresents a line at which all solution variables changerapidly in space - see Figure 7.

Mach 2.5

shock front

Figure 7: Flow over wedge creating shock front.numerical component can be transferred to the graph-ics component. In conventional systems, the interfaceis at the level of data - with the graphics system inde-pendently recreating the interpolant with consequentloss of accuracy.We are still at the early stages of research into prob-lem solving environments. We hope GRASPARC mayinuence the subsequent development of commercialsystems - whether they grow out of existing visualiza-tion systems or are developed ab initio.The next step is to seek an environment in which ahost of tools can be employed, not just numerical andgraphical, but also computer algebra, computationalgeometry and documentation systems - to provide a`virtual laboratory' for the computational scientist.AcknowledgementsGRASPARC (GRAphical environment for Sup-porting PARallel Computing) is a three year (17 per-son year) collaborative project funded jointly by theUK Department of Trade and Industry and the Sci-ence and Engineering Research Council. The partnersare NAG Ltd, The University of Leeds (School of Com-puter Studies) and Quintek Ltd.Many people have contributed to the thinking be-hind GRASPARC, and to its successful managementas a project. In particular, we would like to thankSteve Hague of NAG Ltd, who has been a most sup-portive and e�ective project manager throughout; andPeter Dew and Martin Berzins of Leeds University,Richard Brankin of NAG Ltd and Pat Mills of Quin-tek Ltd, who have given invaluable technical directionto the project.Others have contributed in many di�erent ways:we would like to thank Victoria Pennington, JustinWare, Neil Bowers and Gary Stead of Leeds Univer-sity; Jimmy Brown and Del Cornali of NAG Ltd; andMark Powell and Phil Copeland, who have worked for

Quintek Ltd during the project. We would also like tothank our DTI Project O�cer, Dennis Henn, for hisunstinting support.Finally we must thank the many users who havehelped us through discussions and by attendance atworkshops, and ensured we retain contact with thereal world.References[1] ISO/IEC 9592/1. Information processing systems- Computer graphics - Programmer's HierarchicalInteractive Graphics System - Part 1 - functionaldescription. ISO/IEC, 1988.[2] M. Berzins, P.M. Dew, and R.M. Furzeland.Developing software for time-dependent prob-lems using the method of lines and di�erential-algebraic integrators. Applied Numerical Mathe-matics, 5:375{397, 1989.[3] B. Cartling. Kinetics of activated processes fromnon-stationary solutions of the fokker-planckequation for a bistable potential. J. Chem. Phys.,87(5):2638{2648, 1987.[4] D. S. Dyer. A dataow toolkit for visualiza-tion. IEEE Computer Graphics and Applications,10(4):60{69, 1990.[5] G. Edwards. Visualization - the second genera-tion. Image Processing, pages 48{53, 1992.[6] R.B. Haber, B. Lucas, and N. Collins. A datamodel for scienti�c visualization with provisionsfor regular and irregular grids. In Visualization'91 Proceedings, pages 298{305. IEEE ComputerSociety Press, 1991.

[7] R.B. Haber and D.A. McNabb. Visualization id-ioms : A conceptual model for scienti�c visual-ization systems. In B. Shriver G.M. Nielson andL.J. Rosenblum, editors, Visualization in Scien-ti�c Computing, pages 74{93. IEEE, 1990.[8] B. Lucas, G.D. Abram, N.S. Collins, D.A. Ep-stein, D.L. Gresh, and K.P. McAuli�e. An archi-tecture for a scienti�c visualization system. InA.E. Kaufman and G.M. Nielson, editors, Vi-sualization 92 Proceedings, pages 107{114. IEEEComputer Society Press, 1992.[9] R. Marshall, J. Kempf, S. Dyer, and C. Yen. Vi-sualization methods and simulation steering for a3d turbulence model for Lake Erie. ACM SIG-GRAPH Computer Graphics, 24(2):89{97, 1990.[10] B. McCormick, T.A. DeFanti, and M.D. Brown.Visualization in scienti�c computing. ACM SIG-GRAPH Computer Graphics, 21(6), 1987.[11] NCSA. HDF Calling Interfaces and Utilities.National Center for Supercomputer Applications,University of Illinois at Urbana-Champaign,1989.[12] A. Preusser. Algorithm 671 - farb-e-2d: Fill areawith bicubics on rectangles - a contour plot pro-gram. ACM Transactions on Mathematical Soft-ware, 15(1), 1989.[13] J. Rasure, D. Argiro, T. Sauer, and C. Williams.A visual language and software development en-vironment for image processing. InternationalJournal of Imaging Systems and Technology,1991.[14] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw,D. Schlegel, J. Vroom, R. Gurwitz, and A. vanDam. The Application Visualization System : Acomputational environment for scienti�c visual-ization. IEEE Computer Graphics and Applica-tions, 9(4):30{42, 1989.[15] H. Wright, S.V. Pennington, and G.A. Banecki.Reference model for problem solving in a vi-sual environment. In Proceedings of EurographicsWorkshop on Scienti�c Visualization, 1993.

	WRROcoversheetBrodlie.pdf
	grasparc_vis93_colour.pdf

