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Flexible Delivery of Visualization Software and
Services

Jason Wood, Jungwook Seo, David Duke, Jeremy Walton and Ken Brodlie

Abstract An important issue in the design of visualization systems is to allow flex-
ibility in providing a range of interfaces to a single body of algorithmic software.
In this paper we describe how the ADVISE architecture provides exactly this flex-
ibility. The architecture is cleanly separated into three layers: user interface, web
service middleware and visualization components. This gives us the flexibility to
provide a range of different delivery options, but all making use of the same basic
set of visualization components. These delivery options comprise a range of user
interfaces (visual pipeline editor, tailored application, web page), coupled with in-
stallation choice between a stand-alone desktop application, or a distributed client-
server application.

Key words: visualization; service oriented architecture

1 Introduction

Visualization algorithms have been the focus of much innovation and development
over the past 25 years, with improvements in their capability and performance be-
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ing presented annually at the IEEE Visualization conference, and many other con-
ferences and journals. But these advances are only of value to the wider research
community when the algorithms are made available through visualization systems
that are easily available, easy to use, easy to tailor to different application areas and
scalable across a wide range of problem sizes. In this paper we discuss ADVISE,
a new framework for visualization software that is designed to be flexible in terms
of both its configuration and the interface that is presented to the user, allowing the
one system to serve a variety of different computing environments and a wide range
of users.

Our aim in this work has been to cleanly separate three aspects of a visualiza-
tion system: the algorithmic content; the management of the visualization service;
and the interface to the user. Through this three-layer reference model we are able
to present a single body of visualization techniques in a number of different con-
figurations. Moreover, the framework will allow new technology advances to be
introduced at each layer, without disrupting the other layers. Thus new interfaces to
the same collection of algorithms can be added; new algorithms can be introduced
which are still accessed via the same interfaces, and so on.

Our paper begins with a historical review. Visualization systems have evolved
in parallel with general developments in computing. The impact has tended to be
cumulative, in the sense that the early approaches to visualization service provision
linger on, while new approaches are introduced alongside them. We present our
historical perspective in the following section, before introducing ADVISE and its
three layer model in § 3. An early prototype of ADVISE has already been presented
elsewhere [16]; the contributions of this paper are a demonstration (§ 4) of the flex-
ibility of ADVISE in terms of configuration and interface. We conclude in § 5 with
some suggestions for further work, including the extension of the use of ADVISE
to visual analytics through the incorporation of statistical algorithms.

2 Historical Perspective

We reflect on the development of visualization systems, from the point of view of
both the user (in terms of how they create the visualization using the system) and
the computing infrastructure (in terms of the hardware and software technologies
that underpin the system).

In the early days, during the 1960s, visualization was ‘programmed’ by scripting
a sequence of library calls to a graphics package. The scripting might be performed
using the programming language - often Fortran - or some domain-specific lan-
guage associated with a larger application, as was typically the case with statistics
packages. Examples of early Fortran visualization systems include NCAR Graph-
ics in US and GHOST in the UK. The computing infrastructure in the 1960s was
generally a (relatively) high-performance mainframe accessed from a terminal; this
evolved into the workstation/PC world in the 1980s with the same scripting inter-
faces. This approach is still popular with users today, as evidenced by the success of
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script-based environments such as VTK and Matlab, whilst NCAR Graphics is still
finding active usage.

The late 1980s saw major developments in the design of visualization systems.
The dataflow reference model of Haber and McNabb [6] elegantly decomposed the
visualization process into a pipeline of smaller, re-usable chunks or modules: differ-
ent visualizations could be created from the same set of modules, which represented
a clear separation between the algorithmic content and the visualization process.
The designers of AVS [11] - an early example of a so-called modular visualization
environment (MVE) - recognized that the conceptual paradigm could form the basis
of an attractive user interface; this realization led to the development of a number of
MVEs besides AVS (including IRIS Explorer and IBM Data Explorer) in which the
pipeline construction process was exposed to the user. A key aspect of each system
was a well-defined data model, which was required to ensure that the output from
one module could connect to the input of another. Internally these systems often re-
tained a scripting interface (for example, IRIS Explorer used a language called skm,
an implementation of the Lisp dialect Scheme) but this was sometimes hidden from
the user. Moreover the interface and the management of the service were closely
entwined with the algorithmic content, so providing different interfaces could be
difficult. However, the dataflow paradigm itself has stood the test of time and is still
widely used - for example, VTK uses such a conceptual approach, and we have built
on the same paradigm in ADVISE.

From a computing infrastructure viewpoint, the early dataflow systems were de-
signed to work primarily on workstations. In addition, the way in which the visu-
alization process was broken down into a collection of interconnected modules led
naturally to the distribution of applications across the network as modules were de-
ployed onto different machines. This facility was further exploited when the emer-
gence of larger datasets (and the increased support for the idea of embedding simula-
tions in the pipeline to enable online computational steering) provided the stimulus
for the distribution of modules between the desktop and a supercomputer. As dis-
tributed computing technology has evolved, visualization systems have also been
extended to encompass MPI technology at a low level (for example, pV3 extending
Visual3 [7], and Paraview extending VTK [1]); and at a higher level, Grid comput-
ing [2].

The provision of bespoke applications with tailored interfaces has increased as
the use of visualization has grown. These present a selected group of control param-
eters to the user, hiding controls that are extraneous or unnecessary, or those whose
value it would be undesirable for the user to change. Examples of the use of tai-
lored interfaces to visualization applications include van Wijk’s SequoiaView [12],
which is a successful application to view disk space usage on a PC, and Wattenberg’s
BabyNameWizard [15].

The Web inevitably has had an impact on visualization. From the point of view
of the user, it provides a browser environment within which many people feel com-
fortable; and from the infrastructure viewpoint, it provides, through web service
technologies, a platform for distributed computing. Many examples of this genre
exist: for example, Jankun-Kelly et al. [9] have ported their visualization spread-
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sheet to the web using servlets to perform volume rendering, Eick et al. [4] have
used AJAX technologies to build thin-client interactive visualization applications
and Wang et al. [14] have translated the concept of modules in traditional MVEs to
services in a Web services world.

Similar systems have emerged for workflow design - for example, Taverna [10]
provides a number of tools to compose and execute workflows. However, workflow
systems tend to deal at greater levels of granularity than visualization dataflow, and
lack the experimental plugging and unplugging of components that is typical of
visualization.

Finally, we have seen the influence of Web2.0 in systems such as ManyEyes [13]
where users create their own visualizations using a number of predefined applets,
and can then share these visualizations with other users.

Thus the landscape of visualization systems is forever changing in response to
the widening community of users and the continuing developments in computing
technologies. Our aim in this work is to design a framework for visualization sys-
tems that is flexible enough to deliver different interface environments to different
users and configurable enough to run on different computing infrastructures, all with
a single base of algorithmic content. In addition, we would like our framework to
be sufficiently future-proof to accommodate new requirements from the user com-
munity and exploit new advances in visualization technology and algorithm devel-
opment.

3 The ADVISE Framework

The architecture of ADVISE was introduced in the paper of Wood et al. [16]. There-
fore we present only a summary here, sufficient to provide a background to the
discussion on flexibility in § 4 that forms the main contribution of this paper.

ADVISE is structured in three layers, with well-defined interfaces between the
layers - as shown in Figure 1. This clean separation into distinct layers is key to the
flexibility of user presentation and computing configuration.

The Visualization Components layer is where the algorithmic software lies. The
components are implemented as re-usable modules, as in a traditional dataflow vi-
sualization system, with communication between modules using either sockets or
via shared memory. It would have been possible to use web services at this layer,
making each module a web service as did Wang et al. [14]. This has some attraction,
allowing a worldwide collection of modular visualization services to be established,
but efficiency concerns dictated our approach. By seeing visualization itself as a ser-
vice (rather than a collection of modular services), we are able to avoid overheads
of data conversion in passing data between services. This approach has also allowed
us to use the body of visualization software from IRIS Explorer [8] to provide an
initial set of modules, and more are being added.

The Web Services Middleware layer provides both the glue between the client/user
interface and the visualization components, and an insulation layer which is inde-
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Fig. 1 The ADVISE Architecture.

pendent of the style of interface and the content at the visualization layer. It manages
the visualization service by providing methods for the basic pipeline tasks (starting
modules, connecting and disconnecting modules and so on). It holds a model of the
current pipeline, using the skML [3] description language.

A key decision is to use stateful web services. This allows the model of the
pipeline to be maintained throughout a period of interaction. In practical terms this
delivers significant benefits: when a module parameter is changed, the stateful ap-
proach means that upstream data in the pipeline is available and does not require
re-computation, as would be needed in a stateless approach.

The Client / User Interface layer makes use of standard web service calls to
communicate with the middleware. This clean separation allows different interfaces
to be provided, according to the differing requirements of application developers
and end-users, and of novice and experienced users. This reflects the various styles
of user interface that have been developed over the years (see § 2).

An important consideration in modern visualization system design is where the
rendering takes place, and any system must provide both local and remote render-
ing. ADVISE provides the twin approach: local render, where the 3D geometry is
rendered in the client layer; and remote render in which the geometry is rendered to
an image in the visualization component layer, and a compressed form of that image
is transferred, through the middleware, for display in the client layer. We return to
this point in § 4.2, below.

In the next section we explore some aspects of the flexibility provided by this
framework, presenting examples of different ways in which the framework can be
configured, and examples of the different interfaces we have built.
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4 Flexible Framework

The three-layer model allows us great flexibility in ways that the underlying visual-
ization software is delivered to the user. We can imagine this as allowing variation in
(a) the interface presented to the end-user; and (b) the configuration of the software
across the computing infrastructure.

We illustrate the flexibility by showing a single case study - the visualization of
a 2D dataset from lubrication studies [5]. The data measures the pressure values
in the oil over a region where two journal bearings of an engine make contact. The
visualization technique used is to display the pressure as a coloured height map with
the height and colour both indicating the pressure. The modules used to achieve the
visualization are shown in the following dataflow schematic diagram:

Fig. 2 Lubrication application dataflow.

4.1 Interface flexibility

We begin by discussing the variety of user interfaces that can be created. These form
different instances of the client layer, and are targeted at different classes of user.

4.1.1 Designer - Visualization Scientist

This tool (see Figure 3 (a)) provides a visual programming facility, as found in many
existing MVEs [6, 8] to allow the construction of dataflow pipelines (maps). It al-
lows modules to be selected from a list and connected into pipelines, with a ‘plug-
play-throw away’ style of working. This is targeted at the visualization scientist who
will experiment with different forms of visualization in order to achieve the most ap-
propriate view of their data. The tool is written in Java and on start-up connects to an
ADVISE middleware service from which it receives a list of available visualization
components (modules) that is displayed in a panel within the application window.
The user drags modules from the list into a workspace, causing the middleware to
start an instance of each module in the components layer on the server. The user
is then able to connect the modules together in the workspace; as connections are
made or broken in this layer, the tool uses web service calls to communicate these
actions to the middleware that passes the requests to the components layer on the
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(a) (b)

Fig. 3 Example interfaces in ADVISE to visualize the lubrication data. (a) A map is constructed
by selecting modules from the repository on the right and connected together in the edit pane on the
left. One of the modules has been selected; its widgets are shown in the pane at bottom right. The
window at bottom left has been created by the module which is rendering the geometry; it shows
the lubrication data as a coloured height map. (b) A tailored interface to the lubrication application.

server. The behaviour of each module is controlled by a collection of parameters,
and the user sets values for these via standard widgets such as dials and sliders. As
data passes along the pipeline, modules may choose to alter aspects of their parame-
ters (e.g. change a range in which a parameter is valid due to the range of the current
data set). These changes are delivered to the user interface through the use of web
service notifications.

The output from the tool is a map, described in the skML language (see § 3),
which can be saved and restored. In addition to the desktop user interface, we have
also built a version that runs as an applet within a browser (see § 4.2 below).
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4.1.2 Tailored Application - Scientific End User

Many users will prefer an interface that has been specially tailored to their partic-
ular application and which contains only the controls that they require. In addition,
they are not interested in the structure of the underlying pipeline. Within ADVISE,
visualization developers can create interfaces that hide the pipeline, and present a
simple interface to the user that includes the visualization itself together with a set
of widgets that control key parameters. The designer tool is used initially to create
and save the underlying map, and identify the properties to be exposed in the inter-
face. When the application is run, the map is restored in ‘hidden’ mode and executes
in the same way as any other map. This style also gives the opportunity to express
the interface in the context of the application, rather than using visualization termi-
nology. Figure 3 (b) shows the lubrication application presented using this style of
interface.

4.1.3 Web Browser Interface - Wide Community of Users

Most users are comfortable with an interface that runs within the Web browser. We
have developed an applet version of the designer tool, which can run in this fashion.
Thus, in Figure 4 we see a map for the lubrication example being created, working
within a popular browser environment.

The Web browser interface becomes arguably still more potent with the tailored
application approach, where simple interfaces to visualization web services can be
provided. We discuss this further in § 4.2.

4.1.4 Script Interface - Power User

Finally, there will be some users who prefer to access the visualization software
more directly through a scripting interface. In ADVISE, we provide a low-level in-
terface to allow experienced users to build pipelines using a small set of commands
that operate directly at the visualization components layer. It is also feasible to pro-
vide a scripting interface in the client / user interface layer (similar to the various
interfaces described above) although this has yet to be implemented.

4.2 Configuration flexibility

The other axis of flexibility (see § 4) relates to the way in which software execution
has been distributed.
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Fig. 4 ADVISE web browser interface

4.2.1 Single host

In the simplest case we can run all three layers on the same host computer, as would
frequently be done when using a commercial visualization system today. The visu-
alization service provider will supply a ‘standalone’ package via web download, for
the user to install on their computer.

4.2.2 Distributed visualization

The use of Web services in the ADVISE architecture gives us flexibility in the way
the layers are distributed. A typical configuration is to place the visualization com-
ponents and middleware on a server, and place the client / user interface layer (using
any of the interfaces of § 4.1) on the client desktop. To support this separation we
have developed a remote rendering component for ADVISE, called RemoteRender,
that is capable of utilising remote rendering hardware. It takes geometry from the
pipeline and, for a given camera viewpoint, renders an image. This image is de-
livered to the middleware which subsequently forwards images to clients through
Web Services notifications. The middleware supports forwarding requests for cam-
era viewpoint changes so allowing users to interact with the rendering of their data
remotely. Alternatively, we also support using local rendering hardware where a
module called LocalRender is started on the user’s machine and connected to the
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map in the same way as remote modules thus allowing geometry to be passed to the
local machine for rendering.

Figure 5 (a) shows the lubrication example with both kinds of rendering.

(a) (b)

Fig. 5 (a) Lubrication example showing both local rendering (bottom) and remote rendering (top).
(b) ADVISE used to provide an air quality visualization service.

In this scenario, the visualization service provider would supply an organisation
with the software to install on a server while client software - including local ren-
dering, if necessary - would be installed on each user’s machine.

A special case of distributed visualization is where we use the web browser as a
client. In this scenario, the visualization service provider can host all the software,
and there is no software distribution required. The lubrication example is not ap-
propriate here; instead, we have developed an air quality visualization service using
ADVISE [16]. Figure 5 (b) shows this style of working.

To further support distributed visualization, the ADVISE middleware can be con-
figured in a number of modes (in addition to basic client/server). In all modes the
middleware is placed on a client facing host, as described above, to provide a sim-
ple single point of contact to access the visualization services that it supports. The
placement of the visualization components, however, can be configured to use a
number of compute resources that may be hidden from the outside world. In one
mode these hosts are allocated to clients as they connect to allow each user their
own compute resource. In another, users are allocated multiple resources with the
middleware splitting the visualization pipeline by placing different modules on dif-
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ferent resources. A further mode using multiple resources, which is still under much
development, sees the modules of the pipeline replicated on a number of hosts and
a portion of the data fed to each pipeline with the rendered result from each host
combined into a single image using a modified version of the RemoteRender mod-
ule. In this last case, the middleware presents the system as a single pipeline to the
user interface, handling the complexities of multiple pipelines internally.

5 Conclusion and Further Work

As visualization continues to evolve as a discipline, there is a growing body of high
quality algorithmic software - the intellectual heart of the subject. The goal for the
designer of visualization systems is to make this software accessible to the user
community, through the variety of interfaces and in the variety of standalone and
distributed configurations that exist today. This paper has argued that the flexible
framework of ADVISE contributes to this goal. Its three layer model cleanly sepa-
rates the key aspects of visualization system design - the visualization components
layer comprising the algorithmic content; the middleware providing the manage-
ment; and the client / user interface layer handling the presentation. This model
then allows us to deploy a wide variety of visualization services from a single body
of software: different configurations of software across hardware resources are sup-
ported, and different interfaces are readily provided to cater for a range of users.

In a separate study, to be reported elsewhere, we are exploring the performance
implications of the architecture: what does this flexibility cost?

We are carrying out this research within a UK government-funded project to
study visual analytics. Our next step is to augment the visualization modules which
have already been ported to the system with a new set of modules that contain sta-
tistical algorithms. The latter incorporate functionality from the GenStat package,
and the incorporation of statistical techniques will allow for the development of im-
proved analysis methods for users’ data. Moreover, the flexibility of our framework
will allow domain-specific applications to be developed using a variety of delivery
mechanisms.

We are also keen to extend the system to the analysis of very large datasets. The
inclusion of shared memory is a step in that direction, but more work is needed here.

Finally our use of Web services will enable us to exploit Cloud Computing tech-
nologies, such as provided by the Amazon EC2. Indeed we are close to a time when
we can expect to see ‘visualization as a service’: ADVISE can support a scenario
whereby the visualization is generated on the cloud and returned to the user through
a browser interface.
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