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Abstract: In recent work, we presented a deterministic algorithm to investigate collusion 

between players in a game where the players’ payoff functions are subject to a 
variational inequality describing the equilibrium of a transportation system. In 
investigating the potential for collusion between players, the diagonalization 
algorithm returned a local optimum. In this paper, we apply a coevolutionary 
particle swarm optimization (PSO) algorithm developed in earlier research in 
an attempt to return the global maximum. A numerical experiment is used to 
verify the performance of the algorithm in overcoming local optimum.  

Key words: Nash Equilibrium, Equilibrium Problems with Equilibrium Constraints, 
Diagonalisation, Bilevel Variational Inequality 

1. INTRODUCTION 

This paper discusses the determination of Nash Equilibrium (NE) subject 
to variational inequality constraints. This is an emerging area of research 
within transportation network analysis and has particular significance in an 
environment of deregulated infrastructure provision. When these private 
sector participants compete in a market in simultaneously and non-
cooperatively deciding their strategic variables to offer to consumers, the 
concept of the Cournot-Nash game can be used to model the equilibrium 
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variables offered by each firm to the consumers. However when the firms 
(players) are constrained by another variational inequality which describes 
the equilibrium condition of a given system, we obtain an Equilibrium 
Problem with Equilibrium Constraints (EPEC) [11]. Note that we use the 
term “firm” and “player” interchangeably throughout this paper as the 
subject matter transcends game theory and market structures.   

In this paper, we focus on this problem but consider implicit collusion 
and the potential for these lead to equilibrium strategies that are beneficial to 
both parties. In doing so, we make use of the concept of local NE introduced 
in [16] to distinguish that from a global NE.  

This paper is organized as follows. In the next section, we introduce the 
EPEC and define associated concepts of Nash equilibrium taken from [16].  
A currently available deterministic optimization algorithm available is also 
given. In Section 3, we will outline the essential concepts in a transportation 
network setting which is our application area. We then describe the 
coevolutionary particle swarm optimization algorithm (CoPSONash) [7] in 
Section 4 to this problem and by way of a numerical example in Section 5 
show that the CoPSONash obtains a global optimum for this problem 
overcoming the local NE trap. Section 6 summarizes. 

2. EPECS AND NASH EQUILIBRIA 

An Equilibrium Problem with Equilibrium Constraints (EPEC) [11, 12] 
seeks to find equilibrium points in a game when the constraints describe a 
variational inequality that defines an overall system equilibrium. For the 
purposes of this paper, the system equilibrium is the equilibrium in route 
choices in a (highway) transportation setting. The study of EPECs has only 
just recently surfaced as an important research area within mathematics and 
optimization theory with significant practical applications e.g. in deregulated 
electricity markets (e.g. [5]). To do so, we formally define the various facets 
of NE and give an outline of an available deterministic local search 
algorithm that can be used to seek such equilibrium points.   

2.1 Nash Equilibrium  

In a single shot normal form game with N players indexed by  
, {1, 2,..., },i j N i j∈ ≠ each player can play a strategy i iu U∈  which all players 

are assumed to announce simultaneously. Let 1 2( , ,..., )Nu u u u U= ∈  be the 
combined strategy space of all players in this game and let ( )i uψ be some 
payoff or profit function to i∈{1,2,...,N} player if the combined strategy is 
played.  
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The combined strategy tuple 

1 2

* * * *( , ,..., )
N

u u u u U= ∈  is a Nash 
Equilibrium (NE) for the game if the following holds 

* * *( , ) ( , ) , , {1, 2,... },i i j i i j i iu u u u u U i j N i jψ ψ≥ ∀ ∈ ∀ ∈ ≠  (1) 

Equation (1) states that a NE is attained when no player has an incentive 
to deviate from his current strategy. This is the concept as introduced by 
Nash in [13].  We now consider two refinements from [16].  

2.2 Local Nash Equilibrium and NE Trap 

LOCAL NASH EQUILIBRIUM [16,  DEFINITION 2, P306]: 
 
The combined strategy tuple *u (as above) is a local NE if: 0ω∃ >  such that 

*, ( ),i i ii u B uω∀ ∀ ∈  ˆ ˆ( ) { }i i i i i iB u u U u uω ω= ∈ − <  the following holds: 

* * *( , ) ( , ) , , {1, 2,... },i i j i i j i iu u u u u U i j N i jψ ψ≥ ∀ ∈ ∀ ∈ ≠  (2) 

Each NE that satisfies the above definition given in (1) clearly also satisfies 
the definition of local NE given by (2). But the converse is not true 
generally. In essence this means that a strategy is only a Nash equilibrium 
within some ball radius in strategy space; but it may not be necessarily so 
globally. Hence we define the notion of a local NE trap.  

LOCAL NE TRAP [16,  DEFINITION 3, P306]: 
 

The combined strategy *u is a local NE trap if:  It is a local NE as defined 
above in (2) and in addition: i∃ such that **

i iu U∃ ∈ the following holds: 

** * * *( , ) ( , ) , , {1, 2,... },i i j i i j i iu u u u u U i j N i jψ ψ≥ ∀ ∈ ∀ ∈ ≠  (3) 

2.3 A Deterministic Algorithm for EPECs 

While novel deterministic algorithms have been recently have been 
recently proposed for EPECs [12], their use has not been widely adopted. 
Instead, we describe a simple and well known deterministic (gradient based) 
solution method for this problem known as the diagonalization algorithm. 
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This algorithm decomposes the problem into a series of interrelated 
optimization problems and subsequently solving each individually.  This is a 
fixed point iteration (Gauss-Jacobi/Gauss-Siedel) algorithm. Harker [15] 
popularized this algorithm for solving the classical Cournot Nash game from 
economics and EPECs arising in the deregulated electricity markets were 
solved using this way in [5]. The algorithm is presented as follows: 

Step 1: Set iteration counter 0k = . Select a convergence tolerance 
parameter, ε(ε>0). Choose a strategy for each player. Let the initial 
strategy set be denoted  

1 2( , ,..., )
N

k k k ku u u u=  Set 1k k= + and go to Step 2, 

Step 2: For the thi  player i∈{1,2,...,N}, solve the following optimization 
problem: 1 max ( , ) , {1, 2,... },

i i

k k
i i i ju U

u u u i j N i jψ+

∈
= ∀ ∈ ≠  

Step 3: If 1

1

N
k k
i i

i

u u ε+

=

− ≤∑ terminate, else set 1k k= +  and return to Step 

2. 

 
The problem with the above algorithm is that it could terminate at the 

local NE and fall prey to the local NE trap. This occurrence is crucially 
dependent on the starting point in Step 1 of the algorithm i.e. in the choice of 
the initial strategy of each player. [16] in fact shows that iterative search 
algorithms such as the diagonalization algorithm presented above cannot 
differentiate the real NE from a local NE trap.  

3. PROBLEM DEFINITION 

We now describe in more detail the optimization problem at Step 2 of the 
above algorithm. This is to find an optimal equilibrium toll (level of road 
user charge per vehicle) for each firm who separately controls1 a predefined 
link on the traffic network under consideration. We can consider this 
problem to be a Cournot Nash game between these individual players. 
Therefore the equilibrium decision variables can be determined using the 
concepts of NE as defined above.  

 
1  “Control” is used as a short hand to imply that the firm has been awarded some franchise 

for collection of the tolls.  
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3.1 Notation  

Define:  
A : the set of directed links in a traffic network,  
B : the set of links which have their tolls optimised,  B A⊂  
K : the set of origin destination (O-D) pairs in the network 
v : the vector of link flows [ ],av a A= ∈v   
τ : the vector of link tolls [ ],a a Bτ= ∈τ  
c(v) : the vector of monotonically non decreasing travel costs as a 

function of link flows  [ ( )],a ac v a A= ∈c  
d : the continuous and monotonically decreasing demand function for 

each O-D pair as a function of the generalized travel cost between OD 
pair k alone, [ ],kd k K= ∈d  and 

−1D : the inverse demand function 
Ω : feasible region of flow vectors, (defined by a linear equation system 

of flow conservation constraints). 
 

3.2 Optimization Problem for Individual Players 

If we assume that each player controls only a single link in the network 
then, the optimization problem for each player, with the objective being 
maximizing the revenue2 is as follows: 

( ) ( ) ,Max
i

i i iv i N
τ

ψ τ= ∀ ∈τ τ  (4) 

Where iv is obtained by solving the variational inequality (see [2],[14]) 

( ) ( ) ( ) ( ) ( )* * * *, , 0  for ,
T T−⋅ − − ⋅ − ≥ ∀ ∈1c v τ v v D d τ d d v d Ω                    (5) 

Note that the vector of link flows can only be obtained by solving the 
variational inequality given by (5). This variational inequality represents 
Wardrop’s user equilibrium condition where user equilibrium in route choice 
is attained when no user can decrease his travel costs by unilaterally 
changing routes [15]. If we further assume that the travel cost of any link in 
the network is dependent only on flow on the link itself, the above 
variational inequality in (5), for given τ , can be solved by means of a 

 
2 Costs of toll collection could easily be accounted for in the model but ignored here for 

simplicity. 
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convex optimization problem [1] (this is the known as the Traffic 
Assignment Problem). Details can be found in [8].          

In practice, if this problem is to be solved by the diagonalization 
algorithm outlined in Section 2.3, then the optimization problem in Step 2 at 
each iteration involves using a gradient based optimization method (here we 
use the Cutting Constraint Algorithm (CCA) [10]) to solve the problem for 
each player using the objective given in (4). Note that the variational 
inequality constraint (5) implicitly handled within the CCA3. In doing so, the 
decision variables for other players in the game are held fixed.  

 

3.3 Considering Collusion 

In [8], for a model with 2 players, we introduced a collusion parameter α 
( 0 1α≤ ≤ ) to model the possibility of players colluding. With α we can 
consider a more general form of the expression for the payoff function given 
in (4). In this case, at each iteration, the optimization problem to be solved at 
Step 2 by the diagonalization algorithm becomes that as given by (6) 

( ) ( ) ( ( ) ), , ,Max
i

i i i j jv v i j N i j
τ

ψ τ α τ= + ∀ ∈ ≠τ τ τ  (6) 

Subject to (5) 

Equation (6) reduces to (4) when α = 0; similarly when α = 1, the 
objective of each player is to maximize the total toll revenue of both players.  
Note that he can only change tolls on the link under his control and still 
continues to take the other player’s toll as an exogenous input in his 
optimization process. Thus whilst the thi player is in the process of 
optimizing his revenue, he takes into account a proportion represented by α 
of the thj  player’s toll revenue. In doing so, via the diagonalization 
algorithm, he is “signaling” to his competitor that he wishes to “collude” to 
maximize the total revenue, not just his own. Thus α represents some 
intuitive level of collusion between players. We also assume throughout that 
players reciprocate the actions of the competitors and would do likewise.  

The interesting question therefore is whether it is possible to “perturb” 
the diagonalization algorithm at each iterate with the intent of simulating this 
implicit signaling to each other an alternative objective and in so doing 
collude to raise overall revenues.  

 
3 Details of the implementation of CCA for each individual player’s optimisation problem can 

be found in [9].  
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4. COEVOLUTIONARY PSO ALGORITHM 

The PSO algorithm [6] forms the basis of the coevolutionary PSO 
algorithm (CoPSONash) we developed in [7] as an alternative to the 
diagonalization algorithm. For a game with N  players, each sub-population 
represents particles comprising the strategic decision variables (tolls, τ) for 
each of these players. Each of these players’ strategies are encoded in a 
swarm with H particles.  The steps of CoPSONash are as follows: 

 
Step  1: Generate N  subpopulations (1 for each player) of particles (τ) 

and velocities randomly  
Step   2:  Randomly select one particle from each player as its Nash 

strategy 
Step 3: Evaluate each subpopulation by solving a Traffic Assignment 

Problem (5) for fixed τ (and compute (6)) given the Nash strategy (from 
Step 2). Identify the global best (gb) particle from each subpopulation and 
set this as the new Nash strategy for each player.  

Repeat 
Step   4:  Synchronization: Announce Nash strategy to all players. 
 For each subpopulation i = 1 to N do 

Step 5: Re-evaluate ith subpopulation given the announced Nash 
strategy of all other players and obtain personal and global bests. 

  For each particle j = 1 to H do  
Step 6: Fly each particle through problem space using PSO velocity 
update equation (see e.g. [3] for details). Update jth particle position 
using PSO position update equation (see e.g. [3] for details). 

  Step 7: Solve (5) with new τ (and compute (6)) to obtain objective. 
Step 8: Update personal bests (pb) if fitter than previous pb. Update 
gb if fitter than fittest discovered by ith subpopulation so far.  

       Next j 
Step 9: Identify gb particle and set this as the Nash strategy for ith 
subpopulation.  

   Next i 
Until Termination Criteria is met (e.g. after a given maximum number of 

iterations) 
 
During initialization, particle positions and associated velocities are 

randomly generated. One strategy from each subpopulation is randomly 
selected as the initial Nash strategy for that player. Each subpopulation is 
evaluated separately, by solving the traffic assignment problem (5), to 
determine the objective for each player (6), given the Nash strategy of the 
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other players. Hence, the personal bests and global best particle for each 
player can be identified. With all subpopulations evaluated, each player’s 
global best particle is announced to the whole group during the key 
synchronization phase of the algorithm. This synchronization intrinsically 
embodies coevolution as the fitness of a particular strategy is dependent on 
that of others in the game. This process continues for a maximum number of 
user defined iterations. The aim of the algorithm is to evolve a swarm of 
strategy vectors for each player robust to the strategies of others which 
would then satisfy the Nash equilibrium condition as defined by (1). For 
more details of the algorithm, the reader is referred to [7]. 

Our numerical example in the next section shows that by harnessing the 
global search capabilities of PSO, the pitfall of falling into the local NE trap 
can be obviated. In addition, any variant of PSO (see e.g. [3] for a full 
review) can be employed in the search process in Steps 6 to 9 of the above.  

5. NUMERICAL EXAMPLE  

The numerical example used here is a network shown in Figure 1 and 
taken from [9]. The link parameters and the elastic demand functions can be 
found therein. This network has 18 one way links with 6 O-D pairs (1 to 5, 1 
to 7, 5 to 1, 5 to 7, 7 to 1 and 7 to 5). Links 7 and 10, shown as dashed lines 
in Figure 1, are the only links in the network subject to tolls.  The maximum 
allowable toll for each link was set to be 1000 seconds. 

 

Figure 1. Traffic Network for Numerical Example  

Our numerical example focuses only on the case when α, the collusion  
parameter, for each player, equals 1. In this case, the solution of the EPEC 
should be the similar to assuming that 1 player has control over both links 7 
and 10 in the network. Therefore this represents the maximum total possible 
revenue arising from tolls on these two links and serves as a benchmark in 
terms of the total revenues received. The results of the diagonalization 
algorithm (with CCA) are contrasted with that obtained by CPSONash and 
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the benchmark and are shown in Table 1. This table also shows the best 
solution from 20 runs of the CPSONash algorithm (with 200 iterations per 
run).  

Table 1. Comparing Diagonalisation with CPSONash (α = 1) 
 Solution when 1 player 

controls both links 
Diagonalisation 
Algorithm with CCA 

CPSONash   

 Toll (secs) Revenue 
(secs) 

Toll 
(secs) 

Revenue 
(secs) 

Toll 
(secs) 

Revenue 
(secs) 

Link 7 713.19 280,255 189.76 116,186 713.17 282,291 
Link 10 709.53 266,465 186.58 111,216 709.55 264,427 
Total  546,720  227,402  546,719 
 

 

Figure 2. Total Revenue Surface as Tolls on Link 7 and Link 10 vary 

Figure 2 plots the revenue surface (i.e. the revenue obtained by 
simultaneously varying tolls on Links 7 and 10) and illustrates that the 
solution obtained by diagonalization is in fact a local optimum of this 
function. These results, as reported in Table 1, are highlighted in Figure 2. 
From Figure 2, it is evident that the diagonalization algorithm fell into a 
local NE trap defined by (3) while the CoPSONash converged to the global 
optimum of this problem.  

6. CONCLUSIONS AND FURTHER RESEARCH 

In this paper, we applied a coevolutionary particle swarm algorithm to 
overcome a local NE trap defined by [16]. Our particular application showed 
that it is possible for players to collude by taking into account a modified 
objective function. Using a coevolutionary PSO algorithm, we demonstrated 
that it was possible to bypass the NE trap, attain the global optimum and 
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thereby increase toll revenues. A limitation of this work is the problem 
considered here is a game with only two players and a single strategy 
variable (tolls). Nevertheless there appears to be potential in applying the 
proposed algorithm to more difficult EPECs with increased dimension in 
both strategies and players. Further work on this topic is ongoing.  
 
Acknowledgements: This work is supported by UK EPSRC.  
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