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Abstract

The full elastic constants tensors of diopside (CaMgSi2O6) and jadeite (NaAlSi2O6)
have been calculated using a planewave and pseudopotentials based implementation
of density functional theory within the generalised gradient approximation at pres-
sures between 0 and 20 GPa. Both minerals stiffen over this pressure range with the
isotropic average bulk moduli increasing by ∼50 % and the shear moduli by ∼20 %.
However, in detail the behaviour of the individual elastic constants varies and this
drives changes in the anisotropy. Overall, and in contrast to predictions based on
the extrapolation of calculations based on inter-atomic potential models, the elastic
anisotropy of diopside decreases with increasing pressure. The elastic anisotropy of
jadeite increases slightly at low pressure, exhibits a maximum at around 10 GPa and
then begins to slowly decrease. Despite the small changes in the total and maximum
anisotropy, the shear-wave anisotropy for certain propagation directions vary dra-
matically with pressure. For example, the anisotropy experienced by a shear-wave
propagating in the [010] direction in diopside doubles between 5 and 15 GPa.
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1 Introduction

Many of the strongest constraints on the composition and behaviour of the
Earth’s interior come from seismic observations. When combined with a data-
base of the elastic properties and densities of Earth materials under the rele-
vant conditions of high pressure and temperature, the travel times of seismic
waves provide insight on the variation of temperature and composition of the
deep interior. Furthermore, knowledge of the full elastic constants tensor can
be used to interpret the different travel times of perpendicularly polarised
shear waves in terms of a crystal preferred orientation caused by convectively
driven deformation. To make best use of our growing seismic data sets, it
is necessary to know how the elastic constants, Cij (throughout this article
contracted Voigt notation is used to express the fourth-order elastic stiffness
tensor as a 6×6 matrix), and density, ρ, of Earth materials vary with pressure,
P , temperature, T , and chemistry. Knowledge of the effect of pressure on the
elasticity of the clinopyroxenes is currently lacking (Mainprice, 2007).

The monoclinic (space group C2/c) clinopyroxenes diopside (CaMgSi2O6) and
jadeite (NaAlSi2O6) share the same chain silicate structure and, at elevated
temperature, form a solid solution. Up to 20% of fertile upper mantle peri-
dotite is formed from diopside rich clinopyroxenes which are lost on partial
melting (Herzberg, 1995), and these minerals form the majority component of
subducted Mid-Ocean Ridge Basalt (MORB) to ∼10 GPa where they dissolve
into garnet (Irifune et al., 1986; Irifune and Ringwood, 1993). However, the
elastic constants of diopside and jadeite are only known from experiments at
low pressure. Cij for nearly end-member diopside and jadeite have been deter-
mined under ambient conditions from Brillouin spectroscopy by Levien et al.
(1979) and Kandelin and Weidner (1988), respectively. The elastic properties
of pyroxenes with intermediate compositions have been measured by Bhagat
et al. (1992) and Collins and Brown (1998), who found that most (but not all)
of the individual elastic constants follow a linear mixing law across the com-
positional range. This analysis was extended by Isaak and Ohno (2003) who
measured the elastic constants of a chrome-diopside which, when projected
onto the jadeite-diopside join, plot close to the predicted linear relationship
for all of the elastic constants apart from C66, C13 and C15. In light of this,
Isaak and Ohno (2003) argue that these elements of the elastic constants ten-
sor of end-member diopside warrant revisiting.

The effect of temperature on the elasticity of diopside has been measured by
Isaak et al. (2006), who found that the temperature dependence was small.
Indeed, the temperature induced softening of the polycrystalline averages for
the bulk and shear moduli were the smallest measured for any of the main
mantle minerals. The individual measured values of (∂Cij/∂T )P indicate that
the elastic constants generally soften by ∼10% with a temperature increase
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of 1000 K, but it is notable that C15, C25 and C46 significantly stiffen with
increasing temperature. Recently, Li and Neuville (2010) have measured the
velocity of ultrasonic waves propagating through polycrystalline aggregates of
diopside as a function of temperature and pressure to 1073 K and 8.4 GPa.
This data permits the recovery of the average bulk and shear moduli along
with their temperature and pressure derivatives. The measured temperature
derivatives are within error of the averaged values of Isaak et al. (2006) and
the bulk modulus and its pressure derivative is broadly compatible with scat-
tered results from compression experiments (Levien and Prewitt, 1981; Zhang
et al., 1997; Zhao et al., 1998; Tribaudino et al., 2000; Thompson and Downs,
2008). Although these data can be used to interpret the seismic wave veloci-
ties in much of the upper mantle, averaged elastic moduli are not sufficient for
the analysis of seismic anisotropy: the pressure derivatives of the individual
elements of Cij are required.

In the absence of experimental data, it is reasonable to turn to atomic scale
simulation to provide knowledge of the mineral properties needed to interpret
seismological observations. In a recent review, Mainprice (2007) noted the lack
of measurements of (∂Cij/∂P )T for diopside and recommended the use of the
results of an atomic scale study by Matsui and Busing (1984). This study
used interatomic potentials derived from the experimental structure and elas-
tic constants of diopside to describe the forces acting between model atoms.
In detail, the potential model predates many important advances towards
transferable models for atomic interactions in silicates (e.g. polarisable shell
models, suitably flexible SiO4 groups; see Dove, 1989, for further discussion).
A further difficulty with the use of these results is more fundamental to any
interatomic potential — however well the model reproduces known experi-
mental data, it is not easy to predict the limits beyond which the results of
this kind of extrapolative model become unreliable. Perhaps in recognition of
this Matsui and Busing (1984) limited their calculations to only 5 GPa; some
diopside is expected to persist in the mantle to ∼20 GPa. In the current work
the elastic constants of diopside and jadeite were predicted at the atomic scale
whilst avoiding the use of a parameterised model to describe the interactions
between atoms. Instead, the interatomic interactions were calculated by con-
sidering the distribution and interactions of the electrons in the system. This
sidesteps the dangers associated with the extrapolation of a simple potential
model fitted to selected experimental results.

2 Methodology

Density functional theory (DFT: Hohenberg and Kohn, 1964; Kohn and Sham,
1965) was used to calculate the elastic constants and seismic wave velocities
of diopside and jadeite to elevated pressure. DFT allows the calculation of
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the forces acting between atoms, and thus the equilibrium structure and de-
rived properties, of materials by finding an approximate solution to the many
body time-independent Schrödinger equation for a collection of electrons in
the potential field of their nuclei. Importantly, this is done without the need
to evaluate the full many-body wave function for a system of interacting elec-
trons. Instead, all ground state properties, such as the cohesive energy, are
functionals of the electron density. The current study builds on the previous
calculations of the athermal equation of state of diopside reported by Walker
et al. (2008). In common with the previous study, the semi-local gradient cor-
rected (GGA) functional of Perdew et al. (1996) was used as an approximation
to the (unknown) exact exchange correlation functional. Ultrasoft pseudopo-
tentials were used to describe the core electrons and nuclei with electrons in
the 2s, 2p, and 3s levels in Na, the 3s and 3p levels in Al, the 2s and 2p levels
in O, the 2p and 3s levels in Mg, the 3s, 3s and 3p levels in Si, and the 3s,
3p and 4s levels in Ca treated as belonging to the valence. Further details of
the pseudopotentials can be found in Walker et al. (2008). The valance elec-
trons were described using a planewave basis expansion that includes all waves
whose kinetic energy is less than a cutoff energy threshold. Following conver-
gence testing (see Walker et al., 2008, and the Supplementary Information) a
planewave cutoff of 700 eV was used for all calculations. The Brillouin zone
was sampled with a 2 × 2 × 3 Monkhorst-Pack grid (Monkhorst and Pack,
1976). All calculations were performed using version 5.0.2 of the CASTEP
code (Clark et al., 2005).

There are a number of approaches that can be taken to extract elastic con-
stants from atomic scale calculations. Perhaps the most direct approach in-
volves writing the elastic constants in terms of the second derivative of the
energy with respect to the lattice parameters (Nye, 1985), calculating the
derivatives and from these Cij:

Cij =
1

V

∂2H

∂εi∂εj

∣∣∣∣∣
P,T=0

, (1)

where V is the unit cell volume, H is the unit cell enthalpy and ε is a strain
(expressed as a 6-element vector). This approach is common in calculations
using parameterised models for the interatomic potential where the required
second derivatives are readily available (Gale and Rohl, 2003). The derivatives
can also be calculated using density functional perturbation theory (Hamann
et al., 2005), but the use of ultrasoft pseudopotentials make the implemen-
tation of this approach particularly challenging. Examples of the use of this
method for Earth materials are comparatively sparse, but include Caracas and
Bagigan (2009) and Caracas and Boffa Ballaran (2010). A common alternative
approach is used here. Instead of calculating the second derivatives of the en-
ergy for an undeformed crystal, small strains are imposed on the equilibrium
lattice vectors and the resulting stresses are calculated. If the strains are suf-
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ficiently small to ensure the deformation is in the linear regime, Hooks law is
valid and the constants of proportionality between the stresses, σ, and strains
are elastic constants:

σi = Cijεj, (2)

which can be calculated by linear regression. There are many examples of this
approach in the literature with Wentzcovitch et al. (1995, 2004), Karki et al.
(1999), Stackhouse et al. (2005), Perger et al. (2009), Mookherjee and Steinle-
Neumann (2009) and many others using this method with DFT to evaluate
elastic constants of Earth materials (see Karki et al., 2001).

Practically, calculating the elastic constants involves a number of steps. First
the equilibrium lattice vectors and atomic positions are determined at the
pressure of interest by performing an energy minimisation allowing the atomic
positions and lattice vectors to vary. It is critically important that the min-
imum energy configuration is determined accurately otherwise the stresses
calculated in the next step can be significantly in error. For the calculations
reported here, this was achieved by tightening the various convergence criteria
used to stop the geometry optimisation algorithm compared to the settings
used for the athermal equation of state calculations. The stopping condition
was that the change in total energy, ionic forces, ionic displacements and all
components of the calculated stress were less than 2×10−7 eV/atom, 1× 10−3

eV/Å, 1 × 10−3 Å and 1× 10−3 GPa, respectively, and that these conditions
were met for at least two consecutive optimisation steps. This, in turn, required
tight convergence criteria for the electronic optimiser (total energy change less
than 1×10−8 eV for three consecutive steps). The second step is to strain the
unit cell by a small amount and perform a second geometry optimisation, this
time with fixed lattice vectors. Once the minimum energy atomic co-ordinates
have been found the constant of proportionality relating an element of the
stress tensor of the strained cell with an element of the applied strain tensor
is an elastic constant. By applying several different strains, the full elastic
constants tensor can be determined. Symmetry is used to speed up both types
of geometry optimisation calculation. In the first stage symmetry operators
of the C2/c are applied, in the second stage only the smaller set of operators
which remain after the application of the homogeneous strain are used.

Symmetry means that the elasticity of monoclinic diopside and jadeite can be
described by 13 independent elastic constants rather than the 21 constants
needed in in the most general triclinic case. This, in turn, means that all the
elastic constants can be extracted from four patterns of strain, rather than the
six strain patterns needed for the general case. The four chosen strain patterns
(others are possible) are:

5



ε1 = ±δ


1 0 0

0 0 1
2

0 1
2

0

 ; ε2 = ±δ


0 1

2
0

1
2

0 0

0 0 1

 ; (3)

ε3 = ±δ


0 0 0

0 1 0

0 0 0

 ; ε4 = ±δ


0 0 1

2

0 0 0

1
2

0 0

 ;

where a superscript is used to denote the pattern index and δ is the strain
magnitude. For each pattern three positive and three negative strain magni-
tudes are imposed and linear regression is used to find the elastic constants
from Equation 2. The use of six different strains for each pattern allows an
estimate of the error on each elastic constant arising from inaccuracies in the
calculated stresses (arising, for example, from the finite convergence criteria)
and any non-linearity in the stress — strain curve. These errors can be propa-
gated into values derived from the elastic constants, such as the polycrystalline
averaged bulk and shear moduli. The fitting errors increase if the applied strain
is too large and Hook’s law begins to break down or if the strains are too small
and the calculated stresses become small compared to the errors due to the
chosen convergence criteria. In the current work, it was found that the errors
were acceptably small if strains equivalent to changing the length of a lattice
vector by ±0.0333, ±0.0666 and ±0.1 Å were used.

3 Results

The evolution of the calculated unit cell volume of jadeite and diopside as a
function of pressure is shown in Figure 1 alongside a range of experimental
measurements. It is immediately apparent that at all pressures the cell volume
of both minerals is overestimated by the DFT calculations. This is the result
of a known defect of the GGA which commonly “under-binds” giving bond
lengths that are too long, cell volumes that are too large, phonon frequencies
that are too small and elastic constants that are too soft. However, the deriva-
tives of the energy with inter-atomic separation are typically well reproduced.
This allows the application of an empirical correction to the applied pressure
to correct for the under-binding, yielding results which can more easily be
compared with experiment (e.g. Vanderbilt, 1998; Oganov et al., 2001). In
the previous study of diopside Walker et al. (2008) used empirical pressure
correction of 4.66 GPa. For jadeite, the necessary pressure correction is found
to be 4.30 GPa. Once this correction has been made, the DFT results are in
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good agreement with the experimental results with calculated cell volumes co-
inciding with the experimental measurements across the whole pressure range
(Figure 1). The results of fitting third-order Birch-Murgahan equations of
state to these data are V0 = 401.3 Å3, K0 = 128.8 GPa and K ′0 = 3.8 for
jadeite and V0 = 439.1 Å3, K0 = 122.0 GPa and K ′0 = 4.7 for diopside
(Walker et al., 2008). For jadeite, experimental data gives V0 = 402.26± 0.02
Å3, K0 = 134.0 ± 0.7 GPa and K ′0 = 4.4 ± 0.1 (Nestola et al., 2006) and
K0 = 124.5 ± 4.0 assuming K ′0 of 5.0 (Zhao et al., 1997) with the differences
attributable to the trade-off between V0, K0 and K ′ and the difference in
pressure range between the data sets.

A more stringent test of the calculations is to compare the atomic positions
and lattice vectors with experimental measurements. For diopside agreement
is excellent and is described in Walker et al. (2008). For jadeite the recent
low temperature structure refinement of neutron powder diffraction data per-
formed by Knight and Price (2008) can be used as a reference. Because this
is at very low temperature (1.5 K for the lattice vectors and 2.4 K for the
atomic positions), vibrational corrections to the results from the static DFT
calculations can be neglected. After the pressure correction for jadeite, all
atomic positions agree with experimental data to better than 0.002 fractional
units (∼0.02 Å) and length of the cell parameters, and β angle, are consistent
with the experimental measurements to ∼0.01 Å or ∼0.1◦. Further details,
including a full analysis of the evolution of the jadeite crystal structure with
pressure, are given in the Supplementary Information.

The calculated elastic constants of diopside and jadeite are compared to am-
bient pressure experiments in Tables 1 and 2. DFT results are presented at 0
GPa and at an applied pressure of 4.66 or 4.30 GPa to include the pressure
correction. The calculated results are in much better agreement with the ex-
perimental data once the empirical pressure correction has been made, further
supporting the application of such a correction. Compared to the experimental
results of Isaak and Ohno (2003), the DFT calculations generally overestimate
the stiffness of diopside (the exceptions are C44, where the DFT result lies be-
tween the result of Isaak and Ohno (2003) and Levien et al. (1979), C25 and
C46, where the pressure derivative is negative). The overestimate is generally
less than 10 GPa and of a similar in magnitude to the differences between the
experimental results of Isaak and Ohno (2003) and Levien et al. (1979). How-
ever, C12, C13, C35 and, particularly, C11 are more dramatically overestimated
with deviations from the results of Isaak and Ohno (2003) of between 10 and
16 GPa. For jadeite, almost all the elastic constants calculated using DFT
are within error of the experimental results of Kandelin and Weidner (1988)
with the three exceptions being C11, C55 and C35 where DFT overestimates
the elastic constants by 9.4, 6.4 and 13.5 GPa, respectively. For comparison,
0 GPa elastic constants of both minerals calculated using the local density
approximation (LDA) are also presented. As expected, these are generally
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stiffer than the experimental values and the LDA and GGA tend to bracket
the observed elasticity. Robust conclusions regarding the value of LDA and
GGA estimates of the elastic constants of low symmetry minerals are hard
to make from this limited dataset. However, the case of jadeite is interesting:
here the uncorrected LDA and pressure corrected GGA calculations give very
good estimates of the isotropic (see below) bulk modulus. However, while the
shear modulus is well reproduced by the GGA calculations, it is overestimated
by the LDA calculations. This cannot be corrected by changing the pressure
without detriment to the estimate of the bulk modulus.

A starting point for the analysis of how clinopyroxenes would affect seismic
velocities is to consider the elastic properties of polycrystalline samples where
the individual crystals are randomly oriented. Such a composite is elastically
isotropic and can be described by two elastic parameters, e.g. the effective
bulk, K, and shear, G, moduli. There are multiple methods for finding the
two moduli which make use of different assumptions for the distribution of
stress and strain in the polycrystalline sample. The upper Voigt bound (Kv

and Gv) is found by assuming the strain is uniform throughout the aggregate
while the lower Reuss bound (Kr and Gr) assumes the stress is uniform; the
arithmetic mean (the Voigt-Reuss-Hill average, Kvrh and Gvrh) of these two
limits is often a good approximation of the physically realised situation (Hill,
1952; Chung and Buessem, 1967). Values for the averaged moduli are given
in Tables 1 and 2 where the agreement between the experimental and DFT
averages are acceptable but the overestimate of C11 in diopside results in a
∼10% overestimate of its bulk modulus.

The evolution of the calculated elastic constants of diopside with pressure are
reported in Figure 2 and in tabular form in the Supplementary Information.
It is apparent that several of the shear moduli (C15, C25, C35 and C46) have
negative pressure derivatives. Indeed C25 and C46 become negative by 20 GPa
and C15 approaches zero. It is worth noting that the modelled crystal remains
elastically stable at all pressures (Cij is positive definite, even if C15 becomes
negative, see Born and Huang, 1954, page 141). The effect of pressure on
the polycrystalline average bulk and shear moduli can be compared with the
recent experimental results of Li and Neuville (2010). Taking the difference
between the DFT results at 0 GPa and 5 GPa yields values of 4.7 and 1.2 for
(∂K/∂P )T and (∂G/∂P )T , respectively. These values are in good agreement
with those of Li and Neuville (2010), who find 4.9 and 1.6, respectively. The
equivalent data for jadeite is also reported in Figure 2. The elastic constants
show the same softening of C15 and C46 with increasing pressure but in contrast
to diopside C25 stiffens while C35 stiffens to a maximum at around 10 GPa
before beginning to soften.

Combining the elastic constants with the density calculated from the ather-
mal equation of state allows the phase velocities of the three seismic waves
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to be calculated as a function of propagation direction by finding solutions
to the Christoffel equation (e.g. Mainprice, 2007). In the current work, this
is performed using a Matlab program based on the algorithm presented by
Mainprice (1990). For each direction, the three velocities are assigned to the
fast, Vs1, and slow, Vs2, quasi-S waves and a quasi-P wave, Vp. These wave
velocities are summarised in Figure 3 for diopside and Figure 4 for jadeite
where pole figures describe the distribution of P-wave velocities, the S-wave
anisotropy, aVs = (Vs1 − Vs2)/

1
2
(Vs1 + Vs2), and the fast S-wave polarisation

direction as a function of propagation direction. It can be seen that the P-
wave anisotropy and maximum S-wave anisotropy of diopside is larger than
that of jadeite at low pressure, with the anisotropies becoming more similar
by 20 GPa. The pattern of anisotropy for the two minerals is, however, quite
different at all pressures. Diopside possesses a distinct aVs minimum in the
plane containing the a and c lattice vectors, which is not expressed by jadeite.

4 Discussion

By any measure the clinopyroxenes are the most elastically anisotropic of
the upper mantle minerals. Two ways of describing the total anisotropy of a
low symmetry crystal are the general anisotropy index (A? = V 2

s(max)/V
2
s(min),

where the maximum and minimum phase velocities are found from a search
over all propagation directions, Ledbetter and Miglion, 2006) and the universal
anisotropy index (AU , derived from the Voigt and Reuss estimates of the
isotropic average bulk and shear moduli, Ranganathan and Ostoja-Starzewski,
2008). By both measures diopside (A? = 1.91, AU = 0.495) and jadeite (A? =
1.86, AU = 0.334) are more anisotropic than enstatite (A? = 1.31, AU =
0.074, Weidner et al., 1978) or olivine (A? = 1.56, AU = 0.23, Abramson
et al., 1997). A more geophysically relevant measure is the maximum value
of aVs found by searching over all wave propagation directions for the two
minerals. For diopside the maximum value of aVs at 0 GPa is 29% (Figure 3)
while for jadeite it is 20% (Figure 4); both values are considerably higher than
those of olivine and enstatite which are 18% and 11%, respectively.

The DFT calculations reveal that, in common with the effect of temperature,
the effect of pressure on the elastic constants tensor of diopside and jadeite is
rather small. For diopside all measures of total anisotropy decrease slowly from
0 to 20 GPa where A? = 1.74, AU = 0.312 (values at other pressures are given
in the Supplementary Information) and the maximum value of aVs is 25%.
This is in dramatic contrast to the linear extrapolation of the data of Matsui
and Busing (1984) which results in an increase in the anisotropy. By 20 GPa
such an extrapolation yields very high anisotropy for diopside with A? = 2.72,
AU = 1.72 and a maximum value for aVs of 43%. Jadeite behaves differently to
diopside. The anisotropy of jadeite slowly increases to a maximum at around
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10 GPa before beginning to decrease.

The high elastic anisotropy of diopside will have an effect on the bulk anisotropy
of the deforming upper mantle. Without a detailed understanding of the active
slip systems and deformation mechanisms of diopside, and a realistic model
of inter-grain interactions the details are hard to predict. However, it is worth
noting that the inclusion of enstatite in a simple two dimensional model of
anisotropy generation around a mid-ocean ridge resulted in significant changes
to the predicted bulk anisotropy (Kaminski et al., 2004). A useful illustration
of the kind of effect clinopyroxenes may have of the seismic anisotropy is pro-
vided by considering a shear wave passing through the oceanic crust forming
the upper layer of a subducting slab. Between depths of about 150 and 400
km, the basaltic layer consists of eclogite, a mixture of clinopyroxene and gar-
net (Irifune et al., 1986; Irifune and Ringwood, 1993). A first approximation
(and upper bound) of the magnitude of the shear wave splitting caused by this
layer can be found by assuming the crust consists of a 5 - 10 km thick layer
of diopside completely aligned by deformation. Furthermore, if the crystals
are assumed to align with (010) parallel to the slab and the wave is assumed
to propagate in the direction perpendicular to the slab, it is possible to cal-
culate the expected shear wave splitting due to the diopside rich layer. In
such a model the shear wave splitting increases dramatically with increasing
depth (Table 3) with 0.2 seconds of delay being possible. Such splitting is not
insignificant. S-wave splitting from local events around northeastern Japan
(Nakajima and Hasegawa, 2004), the New Zealand (Morley et al., 2006) and
the Java-Sumatra subduction zones (Hammond et al., 2010) are typically up
to 0.5 seconds. Two effects that are excluded from this simple analysis are the
increasing garnet component with depth and the corresponding increase in
the jadeitic component of the clinopyroxene. Both of these effects will dimin-
ish the shear wave splitting. On the other hand, geometrical effects can only
increase the apparent thickness of the crustal layer and thus act to increase
the observed splitting. Perhaps the most interesting feature of this result is
that the shear anisotropy in the [010] direction doubles between 5 and 15 GPa
while all estimates of the anisotropy of the elastic constants tensor as a whole
show a small decrease in anisotropy. Changes in shear wave splitting in the
[010] direction are driven by a distortion of the distribution of fast and slow
shear wave velocities rather than a major change in their relative magnitudes.

5 Conclusions

Because of the low crystal symmetry the effect of pressure on the individual
elastic constants of jadeite and diopside is difficult to determine experimen-
tally. For diopside, previous results based on interatomic potentials fitted to
room pressure elastic constants (Matsui and Busing, 1984) give an adequate
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description at low pressures but become very anisotropic at transition zone
pressures. In this work elastic constants have been calculated using an elec-
tronic structure based approach which does not require experimental input
beyond an approximate initial crystal structure. For both minerals, the elastic
constants at 0 GPa are in good agreement with values derived from experi-
ment (with the notable exception of C11, which is significantly overestimated).
Extending the calculations to 20 GPa shows that the anisotropy decreases
slightly with pressure. Despite this decrease in total anisotropy, the expected
shear wave splitting for waves propagating perpendicular to the (010) plane
increases rapidly with pressure. The effect of the inclusion of clinopyroxenes in
models of seismic anisotropy of the upper mantle is thus likely to be more com-
plex than anticipated from straightforward estimates of the total anisotropy
of these minerals.
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Table 1
Elastic constants (in GPa) of diopside from GGA calculations at 0 GPa and
4.66 GPa compared with experimental data. adata for Di93Hd9Jd3Cr3Ts12 from
resonant ultrasound spectroscopy results of Isaak and Ohno (2003). bdata for
Ca0.99Na0.02Mg0.9Al0.01Fe0.02Si1.9906 from Brillouin scattering results of Levien
et al. (1979).

Chrome-diopsidea diopsideb LDA 0 GPa GGA 0 GPa GGA 4.66 GPa

C11 228.1±1.0 223±2 242.6±1.4 212.3±1.1 243.7±1.4

C22 181.1±0.6 171±2 183.7±1.2 158.0±1.1 184.1±1.2

C33 245.4±1.3 235±2 254.3±2.5 226.3±1.5 251.0±1.8

C44 78.9±0.3 74±1 79.8±0.3 65.3±0.6 76.9±0.4

C55 68.2±0.2 67±1 73.8±1.1 61.9±0.1 69.3±0.1

C66 78.1±0.2 66±2 84.5±0.9 69.3±0.5 80.6±0.7

C12 78.8±0.5 77±3 90.5±0.8 69.8±0.7 91.2±0.7

C13 70.2±0.7 81±2 78.8±1.1 60.6±0.9 80.5±1.1

C23 61.1±0.7 57±2 62.5±0.7 50.7±0.4 68.0±0.7

C15 7.9±0.5 17±1 9.3±0.6 15.4±0.3 9.1±0.3

C25 5.9±0.5 7±2 5.4±0.6 10.0±0.1 4.5±0.1

C35 39.7±0.4 43±1 51.8±0.4 54.9±0.3 50.9±0.1

C46 6.4±0.2 7.3±0.9 3.6±0.4 10.8±0.4 3.9±0.2

Kvrh 116.5±0.9 113±1 122.6±0.6 99.8±0.4 124.3±0.6

Gvrh 72.8±0.4 67±0.6 74.6±0.4 63.5±0.2 71.7±0.2
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Table 2
Elastic constants (in GPa) of jadeite compared with experimental data from Bril-
louin spectroscopy of Kandelin and Weidner Kandelin and Weidner (1988).

Kandelin and Weidner (1988) LDA 0GPa GGA 0 GPa GGA 4.30 GPa

C11 274±4 285.4±2.3 243.6±2.5 283.4±2.6

C22 253±4 262.3±1.8 228.1±1.7 252.6±1.7

C33 282±3 290.9±2.1 266.2±2.4 281.8±0.9

C44 88±2 91.4±0.7 79.5±0.4 86.7±0.2

C55 65±4 74.3±0.4 64.6±0.4 71.4±0.1

C66 94±2 102.1±1.3 85.7±1.2 96.5±1.4

C12 94±2 94.4±1.0 77.4±0.9 93.3±0.8

C13 71±8 68.1±1.2 56.1±1.0 72.5±1.2

C23 82±4 79.8±0.3 73.5±0.3 81.8±0.9

C15 4±3 5.0±0.5 11.7±0.9 4.4±0.4

C25 14±4 14.6±0.3 14.0±0.2 14.0±0.1

C35 28±3 43.0±0.9 37.8±0.6 41.5±0.6

C46 13±1 12.2±0.1 14.5±0.3 11.9±1.4

Kvrh 143±2 143.9±0.6 124.5±0.6 142.8±0.7

Gvrh 85±2 90.7±0.4 78.9±0.3 86.5±0.3

Table 3
Simple model of shear-wave splitting for eclogite layer on subducting slab. δt is the
calculated delay time between the fast and slow shear-wave arrival. See text for
details.

Pressure V
[010]
s1 V

[010]
s2 aV [010]

s δt (5 km) δt (10 km)

(GPa) (km/s) (km/s) (%) (s) (s)

5 5.21 4.88 6.5 0.06 0.13

10 5.42 4.83 11.5 0.11 0.23

15 5.54 4.90 12.3 0.12 0.24

20 5.59 4.62 19.0 0.19 0.38
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Fig. 1. Unit cell volume of jadeite and diopside as a function of pressure from these
calculations (open symbols; squares: uncorrected jadeite, circles: jadeite with pres-
sure correction, diamonds: uncorrected diopside, triangles: diopside with pressure
correction) and experiments. Experimental results are shown with filled symbols:
squares, diamonds and star: jadeite (Nestola et al., 2006; Zhao et al., 1997; Knight
and Price, 2008, respectively), circles, upward pointing triangles, downward point-
ing triangles and crosses: diopside (Tribaudino et al., 2000; Levien and Prewitt,
1981; Zhang et al., 1997; McCormick et al., 1989, respectively).
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Fig. 2. Evolution of the elastic constants of diopside, (a) and (c), and jadeite, (b) and
(d), as a function of pressure. Pressure is corrected for the under binding of the GGA.
Parts (a) and (b) show the longitudinal (solid lines – squares: C11, unfilled circles:
C22, filled circles: C33 and shear (dashed lines – right pointing triangle: C44, left
pointing triangle: C55, downwards pointing triangle: C66) constants. Parts (c) and
(d) show the off diagonal constants (dashed lines – squares: C12, unfilled circles: C13,
filled circles: C23; dotted lines – right pointing triangle: C15, left pointing triangle:
C25, downwards pointing triangle: C65, upwards pointing triangle: C43). Calculated
errors on the elastic constants are smaller than the symbol size. Numerical values
are given in the Supplementary Information.
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Fig. 3. Wave velocities and anisotropy in diopside at 0 GPa (a), 5 GPa (b), 10 GPa
(c), 15 GPa (d) and 20 GPa (e). Upper hemisphere pole figures with cartesian axis
system and approximate location of crystallographic a axis shown in the inset (b is
parallel to X2 and c is parallel to X3).
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Fig. 4. Wave velocities and anisotropy in jadeite at 0 GPa (a), 5 GPa (b), 10 GPa
(c), 15 GPa (d) and 20 GPa (e). Upper hemisphere pole figures with cartesian axis
system and approximate location of crystallographic a axis shown in the inset (b is
parallel to X2 and c is parallel to X3).
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