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Development of a numerical optimization approach to

ventilation system design to control airborne contaminant

dispersion and occupant comfort
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Pathogen Control Engineering Institute, School of Civil Engineering, University of Leeds LS2 9JT

Abstract

Airflow, contaminant concentration and temperature distribution during heating and

ventilation in a model room represented by a square cavity with inlet and outlet ports, has

been studied. The aim of this work is concerned with the development and implementation of

a practical and robust optimization scheme based on the combination of response surface

methodology (RSM) and Genetic algorithm (GA) with the aim of assisting hospital ward

designers and managers /operators to enhance infection control (i.e. reduce the risk of

airborne transmission) without compromising patient comfort and environmental impact

Introduction

Ventilation of healthcare environments serves a dual purpose; to provide a thermally

comfortable indoor environment for occupants and to control the distribution of

contaminants, particularly the transmission of airborne infectious particles. Design of

appropriate ventilation depends on the level of infection risk, heat loads in the space and

clinical activity. Ventilation in all occupied environments must consider comfort, energy use

and contaminant control, however healthcare environments present a particular challenge.

Hospitals operate 24 hours per day, so cannot easily adopt practices such as night-venting

that may be used to keep office environments thermally comfortable. The patients that

occupy hospital wards may have less tolerance to poor comfort control than in other

environments and are less able to adjust their surroundings to compensate during temperature

extremes. Infection control is a key issue in all parts of a hospital, and the design of

ventilation in some spaces such as isolation rooms and operating theatres is dominated by the

need to control the risk of infection. Understanding how to balance the sometimes conflicting

comfort and infection risk requirements is increasingly important, particularly as the energy

demands of the ventilation system are also now a critical factor. The balance will vary

throughout the building, with the clinical function and the particular patient cohort

determining whether comfort or infection risk is the critical design factor in a certain space.

Development of design tools that allow architects and building services engineers to evaluate

the performance of ventilation in different parts of a hospital are likely to be of considerable

benefit. The application of computational approaches to study ventilation airflow patterns in

enclosed spaces such as hospital wards, office rooms etc. has attracted considerable interest

among engineers and scientists over the last few decades (see Yam et al. 2011; Chow and

Fung 1996; Fan 2000; Jones and Waters 1993; Nielsen 1988). Much of the work to date uses

Computational Fluid Dynamics (CFD) for parametric study of the influence of the airflow on



the transport of heat and contaminants, including airborne pathogens (Noakes et al. 2006; Ho

et al. 2009) in enclosed spaces. While such studies indicate that certain ventilation regimes or

rates may be better than others for a particular scenario they do not formally seek an optimum

design. In addition, running multiple CFD simulations at design stage can be time consuming

and prohibitively expensive for many organisations.

Numerical optimization approaches offer the potential to both find the best design in a

particular scenario and also create design tools that allow a more robust selection of

parameters in a given case. Numerical optimization is widely used in fields such as structural

engineering and the aerospace industry; however application of optimization techniques to

airflows in building environment control is a more recent area of development. Genetic

Algorithm (GA) approaches have been successfully used for building thermal design (Wright

et al. 2002; Wright et al. 2007), HVAC system control (Wang and Jin 2000; Huang and Lam

1997) and also for green building design (Wang et al. 2005). However application of

simulation based optimization in conjuction with CFD approaches to indoor air flows is

limited. Gyulai et al. (2007) investigated optimizing the window opening angles in a smelting

room to minimise temperature and showed that the numerical results concurred with

expectations. Zhou et al. (2009), appear to be the only authors who have considered general

indoor environments. They showed that it was possible to optimise thermal comfort and

indoor air quality (IAQ) in an office environment using a GA approach with an integrated

artificial neural network (ANN) based response surface methodology (RSM). However, to

date there is no work which uses the formal tools of simulation based optimization in the

context of infection control and patient and/or health care worker comfort in hospital wards.

In the present study it is shown for the first time that in the context of ventilation system

design for hospital wards, that it is possible to use simulation based optimization techniques

to find the best ventilation design incorporating the requirement of infection control and

patient and healthcare worker comfort. The study uses a simplified 2D room model based on

a driven cavity approach to develop and implement a practical and robust optimization

scheme based on the combination of GA (Wright et al. 2002) and RSM (Myers and

Montgomery 1995). The model is used to demonstrate that it is feasible to use such an

approach to produce a tool that considers infection control and comfort in design, and explore

how the optimum design depends on spatial location of monitoring regions and parameter

weighting.



Problem formulation: fluid flow in a cavity

Figure 1 Schematic diagram of the 2D cavity with a scalar source S and monitoring regions A and B

centred at x=0.65H,y=0.45H and at x=0.25H,y=0.45H respectively. The width x and height y of

these regions are assumed to be 0.1H .

Fluid flow in cavities with or without driven lids and/or with inlet and outlet ports have been

studied extensively due to their usefulness as a test bed for benchmarking numerical tools for

the solution of complex flows with recirculation (Saeidi and Khodadadi 2006). Cavity flow

systems have relevance in a wide range of engineering applications including electronic

components cooling and building ventilation and there has been a quite a lot of interest in the

parametric study of such flow configurations (Saedi and Khodadadi 2006).

Forced convection in a cavity in particular has been used as an analogy for ventilation in

buildings by several authors. Investigation of velocity and temperature distribution in a two

dimensional room heated by warm air introduced via an inlet and extracted by an outlet at

various locations on the wall was studied by Sinha et al. (2000). Singh et al. (2003), studied

six different configurations of inlet and outlet positions in order to find the best configuration

for maximum cooling efficiency of a cavity. Moureh and Flick (2005), combined numerical

and experimental parametric study of inlet and outlet positions of a ventilated cavity and

showed how to improve environmental parameters such as temperature and contaminant

concentration inside the cavity. More recently Xaman et al. (2009) presented results of a

numerical study to find the optimum ventilation configuration for overall ventilation

effectiveness for temperature distribution inside a ventilated cavity. However, although these

authors claim to have found an optimum design through their parametric studies, none of

them considered the use of formal techniques of optimization to achieve their results.

In our case we represent a room as a two-dimensional cavity with a single supply air inlet

located at high level on the left hand wall and a single outlet located on one of the other three

walls (Figure 1). The flow inside the cavity is considered to be steady and the air is



considered to be incompressible with constant physical properties. The flow is such that

laminar flow exists in most of the regions of the room. While this is unlikely to be the case in

a real room space, the assumption of laminar flow enables the model development without

the complication of turbulence in the numerical solutions. Heat generation inside the room is

not considered but the incoming air is considered to be at a higher temperature than the

ambient room temperature (Sinha et al. 2000). We have a source S of scalar concentration

field  that is representative of an airborne contaminant or pathogen concentration (Noakes et

al. 2004). The schematic diagram Fig. 1 shows the cavity and the coordinate systems used.

The height H and width L of the cavity are considered to be equal H=L. Fluid with constant

density  enters the cavity through a supply inlet width wi. An outlet port of width wo can be

located on any of the walls without the inlet port. In this work we have considered the inlet

and the outlet ports to have the same width w. The distance along the walls have been

parameterised using a special co-ordinate system (Saeidi and Khodadadi 2006) consisting of

a quantity s such that the origin of the system is at x=0, y=H. In these co-ordinates the

centreline of the inlet and outlet ports are 0.5w and so, respectively (Figure 1). The

temperature of the air entering the cavity is Tin and the walls are maintained at a constant

temperature of Tw such that Tw<Tin. The dimensionless form of the governing equations was

obtained by using the cavity dimension H and the inlet velocity uin as the scaling constants

used to scale the length scales and the velocities respectively. The difference between the

inlet temperature Tin and wall temperature Tw=295K was used to non-dimensionalise the

temperature. The scalar source strength 0 was used to scale the pathogen concentration field

. The dimensionless variables are then defined as:
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Here the variables u, v, p, T and are the velocity components in the x-, y-directions, pressure

temperature and pathogen concentration, respectively of the fluid inside the cavity. Based on

the above dimensionless variables, the dimensionless equations for the conservation of mass,

momentum, thermal energy and pathogen concentration are (the superscripts have been

dropped for brevity in all the following discussions)
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Here the Reynolds number is defined as Re=uinw/, the Prandtl number is

Pr=andtheSchmidt numberisScwhere is the kinematic viscosity,  is the mass

diffusivity of the pathogen concentration and  is the thermal diffusivity of air respectively.

The dimensions of our cavity (length L and height H) are both taken to be 1.0m. The air

enters the cavity with constant velocity uin=0.02 m/sec (equivalent to 7 air changes per hour),

temperature Tin=300K and Re=200, Pr=0.7 and the Sc=15. The dimensionless boundary

conditions (with w*=w/H and s*=s/H we will again drop the sign * for brevity) are

At the inlet (x=0, y=(1-w) to 1):

u=1, v=0, T=1, .

On the walls:

u=v=0, T=0 and 0




n


, where n is the wall normal direction.

At the outlet port (s=s0-0.5w to s0+0.5w), the velocity and temperature were taken to be fully

developed i.e. we adopted a Neumann boundary condition for flow variables (u, v, T, ) at

outlet, 0
n





. Where n is the direction normal to the outflow boundary.

In all simulations the pathogen source was simulated as a dimensionless scalar source term

with a non zero fixed value of S=1 within a finite circular zone of radius 0.05H, inside the

cavity located at x=0.2H, y=0.4H and implemented in the model through a user defined

function (FLUENT, ANSYS Inc 2009). In the context of a hospital ward this is considered to

be representative of continuous release from a static patient source.

Numerical Optimization

The goal of optimization is to find a set of design variables X (such as temperature, velocity

etc.) which optimizes (minimises or maximises) an objective or cost function f(x) (Rao 2009)

subject to certain, defined constraints.
n);(f Rxx  (7)

Here x=[ x1, x2.... xn ] is an n-dimensional vector whose components xi’s represent the n

design variables of the problem and Rn represents the n-dimensional design space. The above

objective function could be subjected to the following inequality

m,1,2j;)(g j  0x , (8)

and equality constraints

r,1,2k;)(hk  0x , (9)

where, m and r are the number of constraints of each type respectively. In the context of room

air, constraints could relate to physical location of ventilation system components or



acceptable bounds for parameters such as velocity and temperature. Figure 2 (Rao 2009)

illustrates a hypothetical two-dimensional design space with contours of objective function

and the corresponding constraints.

Figure 2 Contours of objective function f(x) in a hypothetical two-dimensional design space and

few of the constraint functions (reproduced from Rao, 2009)

Numerical optimization techniques can be broadly classified as either deterministic (Deb

2001) or stochastic. The nonlinear nature of flow phenomena inside enclosed spaces, such as

rooms, leads to discontinuous outputs being generated which in turn causes problems for

deterministic methods (Wetter and Wright 2003). Since these methods are based on

mathematical procedures, in most cases they are generally prone to find the local extrema and

the convergence speed and the value of the final results are strongly dependent on the initial

guess values (Wang and Jin 2000). In contrast, stochastic methods, also referred to as global

methods are better suited to building or indoor environment applications. One of the most

popular in this category and a widely accepted global optimization technique is the GA

method (Holland 1975). Inspired from Darwin’s theory of natural selection, this method has

demonstrated its capability to handle discontinuous variables and also noisy objective

functions (Wright et al. 2002). In addition it can find near-optimal solution using less

computing time compared to other methods such as mixed-integer programming (Sakamoto

et al. 1999), and can be used in conjunction with some non-differentiable RSM methods

(Chow et al. 2002; Lu et al. 2005). Furthermore, GA being a stochastic method has a better

chance to explore the entire design space and reach global optimum. Hence we chose GA as

the optimization engine in all our study.

Multi-objective optimization methods that are based on evolutionary algorithms, especially

multi-objective GAs, require hundreds or sometimes thousands of evaluations of the

objective functions to search for the optimal solutions (Magnier and Haghighat 2010). In

building or indoor applications, where evaluation of the objective function comes from

computationally expensive and time consuming CFD simulations, the optimization process

could therefore take a prohibitively long time to achieve its goal. Hence, in order to save

gj

hk



computational time associated with GA, a RSM method is used to mimic the behavior of the

system response with respect to the change in design variables. In our case, this is the indoor

air flow field as the extract position is changed. The RSM models which are constructed from

high-fidelity simulations provide fast approximations of the objective and constraint

functions at new design points, thereby saving computational time and making optimization

studies using GA feasible (Queipo et al. 2005).

Optimal Latin Hypercube (OLH) (Bates et al. 2004) Design of Experiments (DOE) and

moving least squares methods (MLSM) (Toropov et al. 2005) were used to create the

surrogate objective function from a minimal number of expensive CFD simulations. The

surrogate model circumvented the need to run full CFD analysis to assess the performance of

each and every design variable choice. Next, an optimization algorithm based on GA was

implemented, to find the global minimum of the surrogate (approximated) function with

respect to the design variables (position of outlet etc.). Figure 3 shows the methodology for

obtaining the global optimum (minimum in our case).

Figure 3 Optmization framework.

Problem formulation
Find Min of f(x), subject to g(x) ≤0  

Design of Experiments (DOE)
Optimal Latin hypercube (OLH)

Numerical simulation (CFD)
Determination of objective function at each DOE point

Construction of surrogate function
Moving least squares method (MLSM)

Evolutionary Algorithm
Invoke GA to search for the min of the surrogate of f(x)

Surrogate model validation

Optimal Solution



Results

The flow inside the 2D room was solved using the commercial CFD software FLUENT v12.1

(ANSYS Inc) and the optimization was carried out using HyperStudy v10 software (Altair

Engineering). The two dimensional governing equations were discretised on a uniform grid,

using the finite volume method (Versteeg and Malalasekera 2007) and solved iteratively

using the SIMPLE algorithm (Patankar 1980) inside the cavity. The interpolation of the

gradients of velocities, temperature and scalar concentration used the second order upwind

scheme. The iterative procedure for the solution was considered to be converged when the

residuals of all the equations were less than 10-05. Grid independence tests were carried out

using the well known method of Roache (Roache 1994) based on the grid convergence index

(GCI) on the baseline CFD case (inlet s=0.5w and outlet s=2+0.5w) (Chen et al. 2010; ASME

V&V 20-2009). Table 1 presents the results of this study. The grid densities studied were

defined by the total number of cells N1, N2 and N3 respectively. The volume averaged values

of the non-dimensional velocity magnitude |v| in monitoring region A was used in the

evaluation of uncertainties. Relative percentage errors of the CFD solutions based on GCI

between coarse, and medium (GCI32
medium) and between medium and fine (GCI21

fine) are also

shown in the table. On the basis of the magnitudes of the GCI error estimates (less than 5%)

of the flow field we chose to use a grid of size N3, consisting of 40000 cells, for all

subsequent simulations.

Grid Type Cell count Volume average

in/ vv

Fine (N1) 640000 0.274

Medium (N2) 160000 0.252

Coarse (N3) 40000 0.224

Relative Errors

GCI21
fine(%) 3.35

GCI32
medium(%) 4.61

Table 1: Variation of the flow solution with grid density and the corresponding relative errors.
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Figure 4 Normalised Contours inside the forced convection cavity for four outlet positions (left to

right) left hand side of floor, low level right hand wall, mid level right hand wall, ceiling.

Figure 4 shows normalised contour plots of stream-function, pathogen (scalar) concentration

and temperature for four different extract locations with the pathogen released from the

location shown in Figure 1. The results demonstrate the clear presence of recirculation

regions in all cases and it is quite evident from these plots that although the ventilation rate

remains constant, the flow pattern is quite different inside the cavity for each choice of the

ventilation design, in our case the position of the outlet. It is also evident from these results

that the optimum ventilation design will depend on the required function of the ventilation.

For example, in the case of pathogen concentration, the left hand simulation with the extract

located on the floor is the most effective at preventing dispersion, which may be desirable in

a multi-occupancy hospital ward (Noakes et al. 2006) or in a treatment room where clinical

procedures that generate aerosols are carried out. However, the right hand result with a

ceiling located extract provides the most uniform mixing which may be desirable in a single

1

0



occupancy isolation room where it is important to ensure that healthcare workers have the

same level of risk regardless of where in the space they are working.

While it is clear from Figure 4 that the outlet position influences both comfort and infection

risk parameters, it is not obvious which design may be the most appropriate choice in a given

situation where more than one variable has to be considered. To explore this, an objective

function (Equation 7) was constructed which incorporated weighted system response

parameters representing pathogen concentration and thermal and draught comfort (Fanger et

al. 1988), as a function of the design variable (position of outlet vent)

.ww
TT

T

,TwCw)(f

res

res

TC

ar

res

resTC

1and
101

10
where 








v

v

x

(7)

Here C, Tres and v are the pathogen concentration (related to infection risk); dry resultant

temperature (CIBSE 2006) and air velocity (related to thermal and draught comfort at the

monitoring region) respectively. Tr is the radiant temperature (constant and equal to the wall

temperatures) and Ta the air temperature at a point within the cavity. x represents the design

variable i.e. the position of the outlet along the walls, wc and wTres represent weights and |..|

with over-bar represents volume averaged absolute value of the quantity inside. The

constructed function f(x) is a typical example of a multi-objective cost function (Rao 2009).

For every choice of pathogen source and monitoring region we ran 40 (Loeppky and Sacks

2009) CFD simulations to find the behaviour of each of the system response parameters at

different outlet positions. Figure 5 shows two such choices of the monitoring regions A and B

for a fixed source S and the corresponding behaviour of the system response parameters. It

can be seen from these results that the pathogen concentration (Figure 5(a)) shows the

greatest variance in the space with exhaust position for both monitoring regions. Depending

on the chosen monitoring region, the minima of the concentration appears at different

positions of the outlet. For monitoring region A, at the right hand side of the room, the

minimum concentration corresponds to floor located outlet which prevents dispersion to the

monitoring region, as in Figure 4 (b). However for monitoring region B, which is much closer

to the pathogen source, the minimum concentration is achieved with high wall or ceiling

mounted extracts corresponding to the higher mixing apparent in Figure 4 (b).



(a) Pathogen Concentration

(b) Temperature

(c) Velocity magnitude

(d) Dry resultant temperature

Figure 5 Variation of non-dimensional system response parameters with design variable (outlet

position). Left plots and right plots are for two different square monitoring regions A and B,

centred at x=0.65H, y=0.45H and x=0.25H, y=0.45H respectively. The maximum values of the

system response parameters in monitoring region A were used to rescale all the plots.



The minima of the objective function constructed (Figure 6) from above responses will

depend on the weights used in Equation 7. Furthermore, the minimum is also dependent on

the position of the monitoring region inside the cavity or room (see Figure 6).

a) Chosen weights wc=wTres=0.5

b) Chosen weights wc=0.2 and wTres=0.8

Figure 6 Variation of the non-dimensional objective function with design variable (outlet position)

for two different set of weights and monitoring regions A (Left plot) and B (Right plot).

Figure 7 shows the surrogate objective function constructed using MLSM for weights wC

=0.5 and wTres =0.5. This surrogate function was then used in conjunction with GA to find the

minima. Figure 8 shows the convergence history of the objective function f(x) and the design

variable x using GA for two different monitoring regions. Clearly we can see that the minima

and the corresponding design variable (outlet position in our case) found by the optimization

algorithm are completely different for the two monitoring regions under consideration. For

monitoring region A the optimum position corresponds to the floor level extract at the left

hand side of the room, while for monitoring region B the optimum is located on the ceiling

extract at the left hand side of the room. However these optimums are for the case where the

pathogen concentration and comfort both have equal weightings. Sensitivity analyses of the

optimum design configuration, with respect to the variation of the weight of the indices, were

also performed (see Figure 9). Figure 9 clearly shows that depending on the chosen

monitoring region (A or B) the optimal design configuration i.e. the converged position of

the outlet found by the GA algorithm was either insensitive (region A) or moderately

sensitive (region B) to the weights used(see Figure 9). In particular, both cases shown in



figure 9 indicate that when the weighting on the pathogen concentration dominates, the

optimal ventilation solution is likely to be different than when comfort is the primary design

factor. For monitoring region A, the optimum outlet position moves from 0.3 to 0.4 as wC

increases from 0.5 to 0.95. This equates to the outlet position moving from floor level extract

at the left hand side to one located in the middle of the floor. Region B, which shows more

sensitivity, indicates a shift in the optimum design when wC exceeds 0.5.

Figure 7 Variation of the surrogate objective function (using MLSM) with design variable (outlet

position) for two different monitoring regions A and B. The CFD data points are also shown.

Figure 8 Convergence history of optimization GA search algorithm for the normalised objective

function and the corresponding design variable (outlet position). Left and right plots are for two

different monitoring regions A and B.



Figure 9 Variation of the convergence history of GA search algorithm for the optimal outlet

position with respect to weights. Left and right plots are for two different monitoring regions A

and B respectively. Here wC, represents the weight of pathogen concentration used in Equation 7.

Discussion and Conclusions

We have used numerical optimization techniques to develop an approach for assessing

ventilation design in terms of both infection control and comfort inside a hospital room/ward.

Simulations on a simplified two-dimensional room, represented by a square cavity with a

single supply and extract port, have shown that the method is feasible and that the formal

optimization routine yields realistic results that concur with the expected behaviour from a

parametric study. While our results show that the optimum design configuration of the

ventilation system in a simple test room is attainable, it is important to consider the

applicability and limitations of the model.

The results clearly show that the sensitivity of the weights chosen by the designer and the

choice of monitoring regions have a substantial influence on the results. In order to apply

such an approach to a design scenario it is clearly necessary to give a relative importance to

the response parameters which will depend on the environment and level of perceived risk. In

many hospital spaces it may be reasonable to assume that infection risk and thermal comfort

take equal priority, and in some spaces such as admin and office zones or consulting rooms

where the patients are very unlikely to have or be susceptible to infection, the thermal

comfort may well be the dominant design driver. However in specialist environments such as

operating theatres, isolation rooms, wards for immune compromised patients and even

general wards where there are vulnerable patient groups, infection control is likely to merit a

higher weighting. The results presented here indicate that where a higher weighting is placed

on the infection control the optimum ventilation is likely to be different to that which would

be chosen where thermal comfort is the primary concern. While environments such as

operating theatres already have specialist ventilation for infection control, this result

potentially gives insight into design for patient rooms where ventilation most commonly

follows comfort principles. Similarly the choice of monitoring locations needs to be carefully

considered. In the case of thermal comfort, optimizing comfort in patient areas and other

occupied zones is clearly a priority. For infection risk, the occupied zones are also of greatest

importance however the choice may depend on whether a particular occupant (patient,

healthcare worker, visitor) is considered a source or susceptible. In many cases it may be

most appropriate to consider the whole occupied zone, or even the whole room, particularly if



it is difficult to say with confidence what distribution is suitable or where the source is

located.

The main limitation with the process presented in this paper is that it only considers a

simplified case of a 2-D room. While this demonstrates the potential for using numerical

optimization to assist in healthcare design it does not consider the three-dimensional and

turbulent airflows that are present in real spaces. The choice of a 2-D room for this study was

deliberate as the most computationally challenging and intensive aspect is running the initial

CFD simulations that are required to create an objective function. Conducting 2-D

simulations enabled the study to focus on developing and testing the optimization approach

without the need to deal with the inherent complexities and computational requirements of 3-

D models. Work is ongoing to apply the approach in a 3-D room airflow. Initial indications

from our work (Khan et al. 2011) and the results presented by Zhou and Haghighat (2009)

suggest it is feasible to apply optimization techniques in 3-D flows. Including realistic room

geometry and details such as ventilation diffusers will make the generation of the design

points via CFD simulations in our DOE considerably more expensive. It is also possible that

the number of simulations required to cover the design space is higher due to the increased

variability in the flow due to turbulence. However, the optimization procedure will remain

same; once the CFD data is available the construction of the surrogate function is

straightforward and will not be affected by the 3-D nature of the flow. Application of

numerical optimization approaches to the ventilation design in real spaces is therefore likely

to be constrained by the computational requirements of carrying out the large number of CFD

simulations required to build the surrogate function. Advances in computing power and new

developments in CFD approaches may reduce this constraint. Recent work by Mora et al.

(2003) on coarse grid CFD and Zuo and Chen (2010) on Fast Fluid Dynamics (FFD)

programmed on Graphics processing units (GPU’s) both offer the possibility to accelerate

this computationally intensive aspect while still solving the flow field at an acceptable level

of accuracy. Furthermore, the increasing access to massively parallel machines also offers a

realistic method of speeding up the CFD simulations.

It is also appropriate to consider here how this optimization approach may develop to become

a usable tool for real hospital environments. Clearly it is not sensible to conduct multiple

CFD simulations and then apply an optimization approach for every new design of hospital

room. However, many hospital rooms are based on standard footprints governed by the need

to ensure good access around the bed or space for the clinical procedure, with some

constraints already placed on the ventilation flow rates by guidance documents (Department

of Health 2007). There is therefore the potential that this process could be conducted as part

of developing future design guidance with simulations conducted for typical rooms and

sensitivity to room size incorporated within the study. The response parameters from such

simulations could then be used by designers with appropriate weightings and constraints for

their environments to ensure that the ventilation is best suited to the specific requirements of

the room.
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